IEEE COMMUNICATIONS LETTERS, VOL. 19, NO. 3, MARCH 2015

Consistency is Not Easy: How to Use Two-Phase Update for Wildcard Rules?
Shouxi Luo, Hongfang Yu, and Lemin Li

Abstract—The recent proposed two-phase mechanism is a prov-
able theory to achieve consistent updates for SDN. However, how
to make it work for practical rules is important yet unsolved—(1)
two-phase mechanism requires that rules in the new configuration
after an update are assigned with a distinct version number from
rules in the old configuration before an update; but (2) setting
rules in each configuration with a distinct version number causes
serious rule-space overheads in practice due to the sophisticated
“covered” relationships between practical wildcard rules. In this
letter, we design a simple yet generic solution for the problem. By
using well-designed wildcard-based version number matchings,
we simplify the update procedure, make a stream of updates easy
to be processed in parallel, and avoid all unwanted rule-space
overheads. We think that our mechanism bridges the gap between
the theory of two-phase consistent update and the practical issue
of how to use it for today’s networks.

Index Terms—Consistency, planned change, software-defined
networking, wildcard rule.

1. INTRODUCTION

ECENT trends toward Software-Defined Networking

(SDN) suffers from undesired transient behaviors during
planned changes since the updates on switches take effect disor-
derly [1]-[3]. More specifically, when a network configuration
changes from one to another, in-flight packets will encounter a
mix of both the old configuration and the new configuration
along their paths. The network configuration is inconsistent
during the update; interim forwarding errors like Reachability
Failures, Forwarding Loops, Traffic Isolation and Leakage are
prone to occur.

The seminal work by Reitblatt ef al. [2] has introduced the
theory of two-phase mechanism to deal with such inconsistent
problems (see Section II). By adopting version-based rule
matchings, two-phase mechanism guarantees that a packet or
a flow is handled either by the old configuration before an
update or by the new configuration after an update, but never
by some combination of the two. Nonetheless, there is not
any literature that answers the non-trivial practical question of
how to employ two-phase mechanism for current networks. As
we will see, the straightforward implementation of two-phase
mechanism presented in the literature [2] is impractical for

Manuscript received September 4, 2014; accepted December 30, 2014. Date
of publication January 7, 2015; date of current version March 6, 2015. This
work is supported in part by the 973 Program under Grant No. 2013CB329103,
and the National Natural Science Foundation of China under Grant No.
61271171. The associate editor coordinating the review of this paper and
approving it for publication was P. Serrano.

The authors are with the Key Laboratory of Optical Fiber Sensing and
Communications, Ministry of Education, University of Electronic Science and
Technology of China, Chengdu 611731, China (e-mail: rithmns@gmail.com;
yuhf@uestc.edu.cn; Iml@uestc.edu.cn).

Digital Object Identifier 10.1109/LCOMM.2015.2388754

today’s networks that use wildcard rules—not only because it
requires a complicated version number management but also
because it causes serious rule-space overheads in practice.

In the original two-phase mechanism, each rule is assigned
with the configuration’s version number. Correspondingly,
ingress switches tag each incoming packet with the current ver-
sion number, telling which version of rules that packet should
follow when traveling the network (The version numbers can be
stored in OpenFlow header’s unused fields in implementation,
e.g., the VLAN tag [1], [2]). When an update occurs, two-phase
mechanism first installs the new configuration’s rules to the
middle of the network and then flips packet version numbers at
ingresses. Since only the “right” version of configuration takes
effect along the path for each packet (or flow), the mechanism
avoids the mix of configurations and preserves consistencies.

It is easy and cheap to employ the version-based method to
update network configurations that consist of overlap-free rules
(e.g., rules for per-flow/microflow based routing). In these net-
works, a switch’s multiple rules have disjointed header spaces.
The to-be-updated/updated rules and unmodified rules match
with two disjointed sets of packets. Hence, the controller can
easily carry out an update by only (1) setting a new version
for the updated rules and (2) tagging involved packets with that
new version number. However, this is not the case in most of
current networks, in which rules contain wildcards and overlap
[4], [5] (e.g. the prefix routing table or non-prefix firewall table).
Because of the sophisticated dependency relationship between
rules, a packet matching with an updated rule on a switch,
may match with an unmodified rule in the next-hop switch;
and vice versa. To carry out an update without omissions, all
ingresses need to tag all incoming packets with the same new
version number. This causes a complicated version number
management and requires all rules to be duplicated for the new
version number (i.e., causing rule duplications). As switches
have to reserve the old version of rules until packets tagged with
that version drain, the rule duplications cause serious rule-space
overheads in practice.

In this letter, we propose a simple yet generic mechanism
to simplify the process of two-phase update and to reduce
rule-space overheads. Our mechanism is inspired by a critical
observation—as a rule’s duplications only differ in the field of
version number, implementing the version number matchings
using wildcards will avoid rule duplications. By using a well-
designed version number setting policy and implementing the
version number matchings with the help of wildcards, we
improve the two-phase mechanism to get two crucial benefits:

e Each update is carried out by only operating its own to-

be-updated rules and own involved ingresses—this greatly
simplifies the version number management of a steam of
updates and makes their processes natural to be handled in
parallel.

e No rule duplication is needed—this avoids the serious

rule-space overheads.

1089-7798 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

348

We think that our mechanism bridges the gap between the
theory of two-phase consistent update method and the practical
issue of how to use it for practical wildcard-based networks.

II. BACKGROUND

In this section, we give a brief review of how the two-phase
mechanism [2] processes and why it works.

How a Two-Phase Update Works: Generally, when using
two-phase mechanism, each packet is tagged with the con-
figuration’s version number when it enters the network (done
at each ingress switch); then the subsequent switches it en-
countered use this version number to find the “right” version
of configuration to apply; finally, egress switches strip the
version number when the packet leaves. Suppose the controller
is to update the network configuration from current C,;y to
another C,,,,, where C,;; tags packets with version 1 and G,
tags packets with version 2, the two-phase update mechanism
involves three passes of operations as follows:

1) Pass-1: Install Cy,,,,’s rules in the middle of the network;

2) Pass-2: Install Gy, ’s rules at the ingress switches af-

ter all the operations in Pass-1 complete; these ingress
rules tag all the matched packets with the new version
number 2;

3) Pass-3: Remove all C,;y’s rules after all packets tagged

with version number 1 drain from the network.

Why Two-Phase Mechanism Guarantees Consistency: For
update techniques, the authors [2] summarize the fundamental
building blocks into two types—the one-touch update and the
unobservable update; and prove two theorems—(1) If an update
is a one-touch update then it is a per-packet consistent update;
(2) If an update is a series of an unobservable update and a per-
packet consistent update then it is also a per-packet update.

Roughly, a one-touch update is an update with the property
that no packet will meet/match with the updated rules more than
once, e.g., the sub-update of Pass-2, where involved packets
only meet with the updated rules at ingresses; and an unob-
servable update is an update that does not change the network’s
forwarding behaviors, e.g., the sub-updates of Pass-1 and
Pass-3, where no packet traces have been changed after the
updates. The two theorems give us a simple way to prove
and design consistent update techniques. For instance, as the
original two-phase mechanism’s 3 sub-passes are unobserv-
able, one-touch and unobservable, respectively, it is proved to
guarantee the per-packet consistency.

III. PROBLEM STATEMENT

As the procedure of two-phase mechanism in Section II
shows, the key to make consistent updates is employing distinct
version numbers to distinguish between old/current rules and
new rules. It is easy to determine what an update’s “old” rules
and “new” rules are, if the match fields of rules on a switch
are overlap-free. In such cases, each class' of packets has its
explicit path(s), and rules belonging to its path(s) would not
match with other class of packets. Then, the update’s “old” rules
and “new” rules are just defined by the to-be-updated/modified

The item class here is similar to the concept of Forwarding Equivalence
Class (FEC) in MPLS. It may describe a set of packets with a same destination
IP address, a same 5-tuples, or a same MPLS label, etc.

IEEE COMMUNICATIONS LETTERS, VOL. 19, NO. 3, MARCH 2015

_/ ®‘___\

//(i_),____________.__,.
ri: version=1, dstPrefix = 10.0.0.2/32, ...
r4: version=1, dstPrefix = 10.0.0.0/20, ...

~
N

(i)
ri: version=1, dstPrefix = 10.0.0.2/32, ...

—_— lA'SC Wt T T r}: version=1, dstPrefix = 10.0.0.0/20, ...
elete 1 old: ", 71,73,
s e iyt s r#: version=2, dstPrefix = 10.0.0.0/20, ...
(ii) new: """ 713,
7$: version=3, dstPrefix = 10.0.0.0/24, ...
r{: version=1, dstPrefix = 10.0.0.2/32, .. ~_3

r3: version=3, dstPrefix = 10.0.0.0/20, ... |

r4: version=1, dstPrefix = 10.0.0.0/20, ...
r$: version=2, dstPrefix = 10.0.0.0/20, ... ’Insert r, A's Cowa: ST AR
N Crew! "+ 15,13, .2

i/

Fig. 1. The example of that the controller installs duplicated rules to switch A
for two successive updates: the prior update (i.e., i — ii) is to delete r and the
later (i.e., ii — iii) is to insert ;. As table-(ii) and table-(iii) show, A has to hold
the old versions of rules (i.e., version 1 and 2) until packets tagged with that
versions drain. Note that, we omit both the complete workflow of two-phase
updates and the operations on other switches.

rules. The controller can simply assign a new version number
to the new rules to make consistent updates. For example, the
networks that use per-flow/microflow or per-tunnel routing fall
into this category.

However, the per-flow or per-tunnel routing is only a special
case in current practical networks. In today’s networks, the
match field of a rule is a ternary string consisting of 0, 1
and wildcard *. The ternary string denotes an original network
address (e.g. a prefix destination address, a source-destination
pair, or a 5-tuple etc.) or an aggregated address [5]. In each
switch, rules commonly overlap and are ordered according to
their priorities [4], [5]. Entered packets are processed as the first
matched rule specifies.

When the controller is to insert, delete or modify a set of
rules, the new rules for the update are not only defined by
the to-be-update rules, but also by the “covered” rules. Take
the toy network shown in Fig. 1 as an example, where rules
{-~~,rf-‘,rf-,---} denote r;’s duplications for different version
numbers; and the update’s operation(s) on switch A is to
delete rule r| from Table: [---,r1,r3,---]. As the match field
of r; —10.0.0.2/32 covers that of r3 — 10.0.0.0/20, A’s new
configuration after r| being deleted is Cyey : [+, r%, -++], while
A’s old configuration is Cpg: [--+,7},7,-+-.That is to say, to
make two-phase consistent updates, the controller needs to
install a duplication of the “covered” r3 for the new version
number even though r3 is not an updated rule (see table-ii in
Fig. 1). Moreover, an update generally involves a suit of rule
operations on several switches. The involved rules on different
switches usually have distinct match fields.” To avoid omissions
when upgrading to the new configuration, all ingress switches
need to tag all incoming packets with the new version number.
Accordingly, all the unmodified rules also need to be duplicated
for the new version number even if they are not “covered” by
any updated rules. Since switches must hold both versions of
rules during the update procedure, the rule duplications of two-
phase mechanism causes serious rule-space overheads.

>This may be defined by the update’s demands or caused by flow table
aggregation techniques. In an aggregation-enabled network, the controller
usually needs to insert and delete several aggregated rules to merge an (original)
update, and the rule operations in switches differ from one another [5].

LUO et al.: CONSISTENCY IS NOT EASY: HOW TO USE TWO-PHASE UPDATE FOR WILDCARD RULES? 349

7y: version=0, dstPrefix = 10.0.0.2/32, ...
13: version=*, dstPrefix = 10.0.0.0/20, ...

Fig.2. Employing 0 and 1 as the two version numbers and implementing r3’s
version-based matching using * avoid r3’s rule duplications.

In addition, a dynamic network’s configuration is volatile.
Once a new update occurs before the current two-phase proce-
dure completes, switches have to hold all old duplicated rules
if packets tagged with that version(s) have not drained yet. As
the example in Fig. 1 shows, switch A needs to hold two old
versions of rules temporarily (version 1 and 2), which both
contain r3’s duplications. Besides, the controller must guarantee
that the new version number is not in use as well.

In short, to achieve consistent updates, the original two-phase
mechanism needs a complicated version number management
and causes serious rule-space overheads.

IV. HANDLING ONE UPDATE

Key Ideas: As discussed in Section III, setting wildcard rules
with explicit version numbers complicates the version number
management and causes serious rule duplications. Motivated by
the observation that a rule’s multiple duplications only differ
in the fields of version number, we plan to use wildcards for
the match of version numbers to avoid rule duplications. Then,
the update procedure needs to be redesigned carefully. We first
investigate how to handle a single update in this section and
study the handling of a stream of updates in Section V.
Design Details: When processing an update, we use {0,1}
as the two version numbers which only cost one bit in the
packet header. In implementation, the version number is stored
in unused header fields like VLAN tags or MPLS labels [2].
In consideration of that the value of unused fields in a packet
header is set to O and the value of unused fields in a rule’s
match fields is set to * by default, we assign O to the old/current
configuration and 1 to the new configuration. Accordingly, we
use * as the match fields of the unmodified rules; then they can
match with both versions without duplications.
For example, for the case of deleting 1 from A’s table shown
in Fig. 1, as Fig. 2 shows, we set ry to version O since it is an
old rule to be deleted, and set r3 to * since it is an unmodified
rule existing in both configurations. Following this principle,
we further design the complete procedure of deleting rules from
a network as follows:
1) For the rules to be deleted, modify their match fields of
the version number from * to 0;

2) Install action “tagging version-1" to the ingress switches
to tag the incoming packets with version number 1;

3) (After all the version-0 packets drain from the network)
Remove all the to-be-deleted rules;

4) Remove the version-tagging actions at ingresses.

Note that, before the update begins, all packets are tagged
with version-0 and all rules’ version fields are set with * by
default. Thus, at the first step-Step (1), we modify the match
fields of these to-be-deleted rules from * to O to start the update
procedure. And at the end of the procedure-Step (4), we annul
the tagging of version-1 to make all packets to use the default
version number 0 again.

Similarly, for an update consisting of only insertions, we can
schedule its procedure as follows:

1) For the rules to be inserted, set their match fields of the

version number to 1 and install them to the switch;
2) Install action “tagging version-1” to the ingress switches
to tag all incoming packets with version number 1;

3) (After all the version-0 packets drain from the network)
Modify the match fields of the version number in inserted
rules from 1 to x;

4) Remove the version-tagging actions at ingresses.

Like the case of deletion, at the end of insertion’s procedure,
we first reset the version number fields of each inserted rules
back to default * in Step-(3), and then annul the version tagging
actions in Step-(4) to make packets reuse the default version
number 0.

The Generic Update Mechanism: Generally, an update con-
sists of insertions, deletions and modifications. The modifi-
cation of a rule is equivalent to inserting the new rule and
deleting the old rule. Accordingly, we can design a generic
update scheduling for two-phase updates by making a synthesis
of both the deletion operations and insertion operations:

Step 1) For rules to be inserted, set their match fields of the
version number to 1 and install them to switches;
for rules to be deleted, modify their match fields of
the version number from * to 0;
for rules to be modified, treat each modification as
an insertion plus a deletion.

Install action “tagging version-1” to the ingress
switches to tag all incoming packets with version-1;
(After all version-0 packets drain from the network)
Modify the match fields of the version number in
installed rules to *; remove all the to-be-deleted
rules.

Remove the version-tagging actions at ingresses
(And wait until all version-1 packets drain).

As the procedure shows, besides the change of version-
tagging actions at ingress switches, our method only operates
the to-be-updated rules to process an update. The procedure is
quite simple and no rule duplications are needed.

On the Correctness of the Mechanism: For each unmodified
rule whose match field of the version number is *, we can
expand x* into 0 and 1 to split the rule into two disjointed rules
without changing the forwarding semantics. The two sub-rules
belong to the old configuration and the new configuration re-
spectively. In such an imaginary table, each tagged packet only
matches with rules that have the “right” version number when
traveling through the network; thus per-packet consistency is
guaranteed. Actually, since the Step-1, Step-3, and Step-4 are
unobservable updates and Step-2 is a one-touch update, refer to
the two theorems mentioned in Section III, the whole update is
a per-packet consistent update.

However, similarly to [2], to achieve per-flow consistencies,
our mechanism also needs to install a single rule for each flow
at ingress switches and set a timeout to that rule, or employ
other techniques like wildcard cloning.

Step 2)

Step 3)

Step 4)

V. HANDLING A STREAM OF UPDATES

In a dynamic network, the forwarding configuration is
volatile and updates occurs one after another. As a two-phase

350

71: version=0%, dstPrefix = 10.0.0.2/32, ...
Ty: version=*1, dstPrefix = 10.0.0.0/24, ...
r3: version=**, dstPrefix = 10.0.0.0/20, ...

Fig. 3. The example of using separate bits for different updates’ version
numbers to perform multiple updates in parallel.

update takes a significant duration, controllers need to deal with
a new coming update before the current update completes.

Fortunately, for each update, our method only needs one
bit to store version numbers and the update procedure only
operates its own to-to-updated rules. Therefore, by simply using
disparate fields for different updates, the controller can process
their 4-step update procedures independently and simultane-
ously. Take the two coexisting updates discussed in Section III
and Fig. 1 as an example, where one update is to delete r|
from A’s table and the other is to insert 7, to the same table
(operations on other switches’ tables are not shown); it is easy
to make parallel updates by using two bits for their version
numbers as Fig. 3 shows.

Suppose that the version numbers are stored in VLAN tags
(32 bit) in implementation, then the controller can recycle these
fields to support 32 ongoing updates simultaneously. Moreover,
for a group of updates that occur in a short time, they can be
treated as a hybrid update to reduce the demands of fields.

VI. DISCUSSION

About Ingress Switches: To make consistent updates, both
the original two-phase mechanism and our mechanism tag
packets with version numbers at ingress switches. In our mech-
anism, the ingress switches are not limited to the switches
at the border of the network; they are a group of switches
that can tag all the packets involved in the update before the
packets encounter the to-be-updated rules/switches. So, there
are multiple chooses of ingress switches for an update (but the
“simplest” choice is to use border switches). The selection of
ingress switches defines how many switches need to install
version-tagging actions in Step-2, and affects how long the
process should wait for packet draining in Step-3 and Step-4.
It is an open problem.

Update Durations: The procedure of our mechanism con-
sists of 4 steps and the process would not go to the next step
until all operations in the current step complete (the operations
in each step can proceed in parallel). Suppose that the operation
set for Step-iis O; (i =1, 2, 3, 4), the time cost of operation e is
¢(e), and the (upper bound) time for packet draining is #,. Then
the update duration can be estimated as Y}, max{c(e)|e €
O;} + 2t,, where one ¢, is used to ensure that all version-0
packets have drained in Step-3, and the other is used to ensure
that all version-1 packets have drained from the network in
Step-4. Further, let , = max{c(e)|e € U}, 0;}; accordingly, the
update duration can be roughly estimation as 4#, + 2¢,, which
has a weak correlation to the scale of update.

IEEE COMMUNICATIONS LETTERS, VOL. 19, NO. 3, MARCH 2015

VII. RELATED WORK

This work builds on the seminal work by Reitblatt et al.
[2], which introduces the inconsistent problem during planned
updates and presents the two-phase theory to guarantee per-
packet and per-flow consistencies for updates. However, the raw
two-phase update mechanism they proposed is not friendly to
current network that use wildcard rules—because their method
assigns distinct version numbers to rules, which causes com-
plicated version number managements and serious rule-space
overheads. Based on their theory, we propose a simple yet
generic method to achieve the version-based matching using
wildcards, which makes the update procedure much easier and
avoids all rule duplications.

When modifying pre-exiting rules, the two-phase mechanism
needs 2 x rule-space because it leaves the old rule on the switch
as it installs the new one. To this problem, Katta et al. [6] break
a bulky update into k rounds and introduce algorithms to trade
the time required to perform a consistent update against the
rule-space overheads required to implement it. Our mechanism
can improve their update of each round. Different from Katta
et al., the work by Ratul Mahajan and Roger Wattenhofer [3]
gives up the strong consistency to avoid the rule-space over-
heads. However their algorithms only guarantee loop-free and
are hard to work for non-prefix rules. Moreover, for updates
with large scales, their methods have huge updating durations
since the rule operations have dependencies and need to be
enforced in the planned sequence. Suppose Oy is the set of
operations on the longest path in the dependency tree [3], t(e) is
the time cost of operation e, their methods will cost more than
Yeco, t(e) to complete the update.

VIII. SUMMARY

In this letter, we answered the practical question of how fo
employ two-phase update theory for networks that use wildcard
rules. Our simple yet generic solution simplifies the update
procedure and makes consistent updates easy to achieve.

ACKNOWLEDGMENT

We thank the anonymous reviewers and editors for useful
feedback.

REFERENCES

[1] N.McKeown et al., “Openflow: Enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69-74, Mar. 2008.

[2] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstrac-
tions for network update,” in Proc. ACM SIGCOMM, 2012, pp. 323-334.

[3] R.Mahajan and R. Wattenhofer, “On consistent updates in software defined
networks,” in Proc. ACM HotNets, 2013, pp. 20:1-20:7.

[4] X. Meng et al., “Ipv4 address allocation and the bgp routing table evo-
lution,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 1, pp. 71-80,
Jan. 2005.

[5] S. Luo, H. Yu, and L. M. Li, “Fast incremental flow table aggregation in
SDN,” in Proc. 23rd ICCCN, Aug. 2014, pp. 1-8.

[6] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proc. ACM HotSDN, 2013, pp. 49-54.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

