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a b s t r a c t

In OpenFlow-driven SDN, flow tables are TCAM-hungry; commodity switches suffer from lim-

ited concrete flow table size. One method for coping with the limitations is to use aggrega-

tion schemes to reduce the number of flow entries required to express the same forwarding

semantics. Unfortunately, the aggregation of rules would retard table updates and lengthen

the updating duration, during which, the data plane is inconsistent with the control plane.

Forwarding errors such as Reachability Failures, Forwarding Loops, Traffic Isolation and Leakage

are prone to occur. Since network updates take place frequently in practice, the aggregation

scheme must be efficient and effective.

In this paper, we proposed FFTA (Fast Flow Table Aggregation) and its online companion, iFFTA

(incremental FFTA), to make practical flow table aggregation. FFTA is an offline solution per-

forming snapshot aggregation of non-prefix rules by (1) splitting them into prefix-permutable

partitions in an aggregation-aware manner, and (2) applying optimal prefix-based aggregation

techniques, respectively. When some original rules are updated, iFFTA is triggered to incorpo-

rate the update immediately by leveraging the order-independence relationship and structure

information of rules. To the best of our knowledge, iFFTA is the first online aggregation scheme

for non-prefix rules. We employed public available prefix rules as well as synthetic non-prefix

rules generated with real parameters to evaluate their performances. Extensive experiments

demonstrated that FFTA significantly outperforms prior art on both efficiency and effective-

ness, while iFFTA greatly simplifies the update of aggregated rules with an acceptable loss

of compression ratio. Accordingly, users could make a combination use of FFTA and iFFTA in

practice: call iFFTA usually and recall FFTA once the switch is running out of concrete flow

table space.

© 2015 Elsevier B.V. All rights reserved.
✩ The preliminary version of this paper titled “Fast Incremental Flow

Table Aggregation in SDN” was published in the proceedings of the 23rd

ICCCN, 2014. In this extended version, we add the following work. (1) We

present more design rationales about how to split non-prefix rules into

prefix-permutable partitions. (2) We analyze the aggregation chances be-

tween prefix-permutable rules, based which, we further design an algorithm

that makes prefix-permutable rules in an aggregation-aware manner. (3) We

design algorithms to simplify the operation of incorporating incremental up-

dates to aggregated tables by using the order-independence between rules.

(4) We theoretically analyze the computation complexity of all proposed

algorithms and add detailed evaluations for the added algorithms. (5) We

discuss the implementation related problems.
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1. Introduction

In OpenFlow-driven SDN, forwarding tables (i.e., flow

tables) are TCAM-hungry (Ternary Content-Addressable

Memories) since much more header fields are included into

the matching fields. For example, there are 12 fields with

more than 237 bits in the first stable version of OpenFlow

(i.e., 1.0.0 [1]), and the fields continue to grow as more

fields are added in [2,3]. Unfortunately, because TCAMs are
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board-space costly, power-hungry, and expensive [4–7],

commodity OpenFlow switches suffer from restricted

concrete flow table space [7–9].

One promising direction in reducing the demands of

TCAMs is to use flow table aggregation, a technique that

merges multiple flow entries into one without modifying the

forwarding semantics. Flow table aggregation is a software

solution and does not require any change to the OpenFlow

protocol, nor to OpenFlow switches. Controllers are easy to

implement the aggregation as an optional service.

While a number of literatures have proposed aggregation

schemes for traditional prefix IP routing tables [10–12] or

non-prefix TCAMs rules or ACLs [4–6,13], the aggregation of

flow table in SDN has its own particularities.

1. Firstly, the match fields of flow table are non-prefix

since multiple types of field are included (both prefix-

and exact- fields). Hence those specified prefix aggre-

gation schemes cannot cope with the demand (e.g.,

[5,10–12]).

2. Secondly, the potential actions of a flow table are more

varied than that of ACLs, which have about 2 or 4 ac-

tions in general. So those 2- or 4- action dedicated ag-

gregation schemes do not work well (e.g., [4,13]).

3. Thirdly and crucially, flow table aggregation in SDN is

extremely efficiency-critical. This is because forward-

ing rules are volatile, while the aggregation of flow ta-

ble will retard table updates and lengthen the updat-

ing duration. During the update period, the data plane

is inconsistent with the control plane; forwarding er-

rors such as Reachability Failures, Forwarding Loops,

Traffic Isolation and Leakage are prone to occur [14]. As

a result, inefficient offline non-prefix aggregations are

inapplicable (e.g., [4,6]).

To achieve practical flow table aggregations, we present a

pair of aggregation schemes named FFTA (Fast Flow Table Ag-

gregation) and iFFTA (incremental FFTA) in this paper.

FFTA is an offline aggregation scheme sharing the same

high-level idea with the state-of-the-art non-prefix aggre-

gation scheme—bit weaving [6]. Both bit weaving and FFTA

make snapshot aggregations by (1) grouping non-prefix rules

into prefix-permutable partitions, and (2) aggregating each

prefix-permutable partition with prefix-based techniques.

However, FFTA makes two major improvements. Mainly, on

the aggregation of each prefix-permutable partition, FFTA

adopts a tree-based technique derived from ORTC [10] in-

stead of the dynamic programming algorithm [6]. This not

only significantly simplifies the computational complexity

of aggregation, but also makes the aggregated rules well-

structured and easy to update, without any loss of aggre-

gation effectiveness. On the other hand, FFTA splits prefix-

permutable partitions in an aggregation-aware manner. This

greatly increase the chance of successfully aggregations.

As the complement of FFTA, iFFTA is designed to effi-

ciently incorporate incremental updates to the aggregated

table. Once original rules are updated, iFFTA employs the

order-independence of non-prefix rules [15] to reduce the

number of affected partitions, and uses the tree-structural

information of aggregated rules to simplify the computation

of incorporating the update to its involved partition.
We use prefix rules from Stanford University Backbone

Network [16] to test the effectiveness and efficiency of FFTA

and iFFTA on aggregating prefix-permutable partitions, and

use synthetic non-prefix rules from ClassBench [17] (with

real parameters) to evaluate their performances on aggre-

gating entire flow tables. Experimental results demonstrate

that:

1. On aggregating prefix-permutable partitions, FFTA is

about 200 × faster than bit weaving, while using much

less memories and sharing the same effectiveness.

2. On aggregating entire flow tables, FFTA significantly

outperforms bit weaving on the average compression

ratio with the improvement ratio up to 48%.

3. On incorporating updates into aggregated tables, with

iFFTA, more than half of insertions can be directly

incorporated without any modification of the aggre-

gated rules, and each of all other updates can be

incorporated by only recomputing one aggregated

partition.

4. Furthermore, on incorporating an update to its aggre-

gated partition, iFFTA is about 3 × faster than (recall-

ing) FFTA with an acceptable loss of compression ratio.

Obviously, FFTA is effective for making snapshot aggrega-

tion and iFFTA is friendlier for incorporating updates. In prac-

tice, incremental updates will cause the aggregated table to

drift away from the “optimal” one obtained by FFTA. So, users

could make a combination use of FFTA and iFFTA. A simple

but feasible design is calling iFFTA usually and recalling FFTA

once the switch is running out of concrete flow table space.

The remainder of this paper is organized as follows. We

start by giving an overview of the flow table aggregation

problem and its motivation examples in Section 2. Then we

present the high-level idea of our aggregation schemes in

Section 3. After that, we describe the design details of FFTA

and iFFTA in Sections 4 and 5, and analyze their worst-case

complexity in Section 6. Before evaluating the effectiveness

and efficiency of FFTA and iFFTA in Section 8, we also give a

brief discussion of the implementation problem in Section 7.

Finally, Sections 9 and 10 present related work and conclu-

sions, respectively.

2. Background and motivation

In this section, we start by briefly reviewing the formal

model of flow table in Section 2.1, then introduce its aggre-

gation problem in Section 2.2, and finally show the basic idea

of how the non-prefix flow table can be aggregated through

a motivation example in Section 2.3.

2.1. SDN and flow table

In OpenFlow-driven SDN, forwarding policies are trans-

lated into flow tables to act out [18,19]. Roughly, a flow ta-

ble is a group of prioritized entries, in which each entry

can be simplified as a triple tuple (〈m, a, z〉) consisting of

the match fields (m), specified action (a), and priority (z).

In this paper, we call such an entry a rule; we also use rule

to denote the match field (m) of that entry when no ambi-

guity exists. Formally, a flow table with n rules can be for-

malized as a sequence of tuples in nonincreasing order of
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(a) the original table (b) the aggregated table

Fig. 1. Two semantic equivalent toy flow tables: the left table has more re-

dundancies than the right. In the left table, rules {1, 2, 3, 4} can be permuted

into prefixes by swapping the bit position 1 with 4, and rules {5, 6, 7} can be

permuted into prefixes by swapping the bit position 2 with 3. So bit weaving

would cut it into two prefix-permutable partitions—{1, 2, 3, 4} and {5, 6, 7)}.
rule priorities: 〈m1, a1, z1〉, . . . , 〈mn, an, zn〉, where z1 ≤ ���
≤ zn (with smaller numbers meaning the higher priority),

and rules with the same priority value have disjointed match

fields. Then how a packet will be handled is exactly defined

by the action of the first matched rule.

In current OpenFlow, an action is a sub-collection of

instructions supported by switches, e.g., forwarding, drop,

modification, encapsulation, and tunnel to controller. And the

match field is a fixed-length and fat ternary string (con-

sisting of 0, 1 and wildcard ∗), specifying the ingress port,

packet headers (e.g., VLAN ID, Ethernet src/dst addr, 5-tuple

etc.), and optionally metadata written by a previous table. To

perform fast entry lookup, match fields are suggested to be

implemented using TCAMs in practice. Unfortunately, since

TCAMs are board-space costly, power-hungry, and expensive

[4–7], commodity hardware switches general have limited

TCAMs space [7–9].

2.2. The aggregation problem

In today’s SDN, the forwarding rules might be generated

by different applications, or installed for different destina-

tions or tenants [20–23]. As a result, in some switches, mul-

tiple rules might share the same action (e.g., the same next-

hop), or overlap on their match fields. In such a switch, a lot

of redundancies would exist among the flow table. There is

a chance of aggregating rules to reduce the flow table size.

For example, if a switch holds a toy flow table with 7 rules

as Fig. 1(a) shows, we can replace it with another semantic-

equivalent table which only involves 4 rules as Fig. 1(b)

shows. In this instance, we reduce the flow table size about

42.9% without changing the forwarding semantics. Moreover,

such a scheme does not require a change to the OpenFlow

protocol, nor to OpenFlow devices. It is easy to be imple-

mented as an optional service on controllers. We argue that

flow table aggregation is a promising direction in reducing

the demands of TCAMs.

However, the aggregation of flow table is a hard problem

because rules in the table are non-prefix [1,19]. The work by

D. A. Applegate et al. has proven that finding the minimized

expression for a non-prefix table is NP-hard, even if there are

only two types of action [13]. What’s worse, since the config-

urations/rules of practical networks are volatile, how to effi-

ciently incorporate continuous updates into the aggregated

table is another hard problem.
2.3. Motivation examples

Previous research addressed the computational chal-

lenges of non-prefix aggregation by designing heuristics

based on the characteristics of the aggregated rules [4–6,13].

As far as we know, the best practice at present is to

employ the prefix-patterns/prefix-information among non-

prefix rules to aggregate. Several literatures (e.g., [5,6]) follow

this idea and bit weaving [6] is the best reported scheme.

Bit weaving is based on a key observation that, by per-

muting some of the bit positions, a group of non-prefix rules

could be transformed into prefix format simultaneously (i.e.,

they are prefix-permutable). Take the toy non-prefix rules

shown in Fig. 1(a) as an example. We can permute {r1, r2,

r3, r4} into prefix format by swapping the bit position 1 with

4, and permute {r5, r6, r7} into prefix format by swapping the

bit position 2 with 3. Motivated by this, bit weaving performs

non-prefix aggregations by cutting the non-prefix table into

a series of prefix-permutable partitions, and then aggregating,

respectively. For instance, bit weaving would split the pre-

vious table shown in Fig. 1(b) into {r1, r2, r3, r4} and {r5, r6,

r7}, and then employ bit swapping, weighted one-dimensional

prefix list minimization algorithm, and bit merging to

aggregate.

Our solution shares the same high-level idea with

bit weaving. They both split non-prefix rules into prefix-

permutable partitions to aggregate. However, our method

employs a quite different core method on making prefix-

permutable partitions and on aggregating them. As we will

show, our solution is more efficient and effective. Moreover,

our aggregation scheme makes the aggregated table well-

structured and easy to update. Based on this, we further pro-

pose efficient heuristics to handle incremental updates.

3. Design overview

This section firstly introduces the definition and observa-

tion of “prefix-permutable” in Section 3.1, then presents the

framework of our aggregation algorithms in Section 3.2.

3.1. About prefix-permutable

Definition 1 (Prefix-permutable). A group of ternary

strings are prefix-permutable if there exists a bit position per-

mutation scheme that is able to permute them into prefix for-

mat simultaneously.

Denote x[i] to be the i-th ternary bit in ternary string x

and W(x) to be the set of bit positions in x whose values are

∗s, i.e. W(x) ≡ {i|x[i] = ∗}. Then the observation of checking

whether two ternary strings are prefix-permutable or not, can

be described as follows:

Observation 1. Given ternary string x and y, they are prefix-

permutable if and only if W(x) ⊆ W(y) ∨ W(y) ⊆ W(x).

Obviously, if W(x) ⊆ W(y) ∨ W(y) ⊆ W(x), x and y can be

permuted into prefix format by sorting their bit positions in

increasing order by the number of ternary strings that have a
∗ in that bit position. Consider {∗1∗1, 01∗0} as an example, the

numbers of value-∗ ternary strings on bit position [1,2,3,4]

are [1,0,2,0], respectively; then we can transform them into
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Fig. 2. The framework of how FFTA and iFFTA cooperate.

or no children.

1 In [10], a prefix table is called complete, iff any packet belonging to the

header space of its corresponding BST has a specified action. Similarly, we

call a prefix-permutable partition complete if its permuted prefix rules are

complete.
prefixes–{11∗∗, 100∗} by permuting their bit positions in or-

der [2,4,1,3]. This observation was first reported in [6], and

the authors further extended it to a group of ternary strings

and proved the following theorem.

Theorem 1. Given a group G of ternary strings, they are prefix-

permutable if and only if W(x) ⊆ W(y) ∨ W(y) ⊆ W(x) for ∀(x ∈
G, y ∈ G).

Theorem 1 provides a simple way to check whether a

group of non-prefixes are prefix-permutable or not. As the test

of W(x) ⊆ W(y) ∨ W(y) ⊆ W(x) can be performed in con-

stant time using bitmap representations of sets, the worst-

case time complexity of the test of n non-prefix rules is O(n2).

By ordering G’s non-prefixes in non-decreasing order of

their wildcard numbers, we further get this corollary:

Corollary 1. Given a list l = 〈t1, t2, . . . , tn〉 of n ternary

strings, where |W(t1)| ≤ |W(t2)| ≤ ���|W(tn)|, they are prefix-

permutable if and only if W(t1) ⊆ W(t2) ⊆ ���W(tn).

The corollary indicates that, if a group of rules are prefix-

permutable, their sets of value-∗ positions must be in a chain

of subset relationships. This provides a more efficient way

to check whether rules are prefix-permutable or not. For ex-

ample, by using the binary-search scheme, the worst-case

time complexity of the test of l ∪ tn+1 is log(n), where l =
〈t1, . . . , tn〉 is prefix-permutable and ordered. Similarly, the

worst-case time complexity of the test of n rules would not

exceed nlog (n).

3.2. Framework of our solution

Inspired by the above observations, we can split a flow

table into prefix-permutable partitions, then adopt prefix-

based techniques to aggregate. When the original flow table

is updated, we can locate the involved partition(s) and re-

vise some aggregated rules to incorporate the update. Corre-

spondingly, our aggregation scheme is made of two modules:

FFTA–Fast Flow Table Aggregation, and iFFTA– incremental

FFTA.

FFTA is designed to make snapshot aggregation of a ta-

ble, while iFFTA is designed to handle incremental table up-

dates. Once rules in the original table are inserted, deleted,

or modified, iFFTA is triggered to incorporate the update into

the aggregated table. To reduce the delay caused by aggrega-

tion, iFFTA simplifies both the computation and operation of

update incorporation by leveraging the order-independence

and structural information of the rules. However, such a

method might miss some aggregation chances. Incremental

updates would make the aggregated table drift away from

the “optimal” one achieved by rerunning FFTA. Fortunately,

there is no need to keep a flow table always being best-

aggregated in practice. Accordingly, FFTA and iFFTA can co-

operate on aggregation. A simple but practicable design is

as Fig. 2 shows. When a switch startups, if table aggrega-

tion is needed, its flow table is initially aggregated by FFTA;

subsequently, incremental updates trigger iFFTA to make ef-

ficient incorporations, which might let the aggregated table

drift from optimal; once the switch is running out of concrete

flow table space, e.g., the number of available table entries

FTrem is smaller than a pre-defined threshold FTthreshold, FFTA

is called to make an effective snapshot aggregation.
All relevant technical details of how FFTA and iFFTA work

will be discussed in Sections 4 and 5, respectively.

4. Fast snapshot aggregation with offline-FFTA

In this section, we describe the design of FFTA in detail.

We firstly introduce how FFTA aggregates a prefix-permutable

partition in Section 4.1. Then, in Section 4.2, we analyze

the aggregation chances between prefix-permutable rules and

present how FFTA splits a flow table into prefix-permutable

partitions in an aggregation-aware manner.

4.1. The aggregation of a partition

Key idea. As the non-prefix rules in a partition are prefix-

permutable, the intuition is to use the best reported prefix

snapshot aggregation scheme, ORTC (Optimal Routing Table

Constructor) [10], for help. Given a complete1 prefix table,

ORTC can aggregate it into an equivalent table that prov-

ably contains the minimal number of prefix rules. However,

to handle prefix-permutable partitions, ORTC meets two chal-

lenges. Firstly, ORTC requires the to-be-aggregated rules to

be complete [10], whereas a partition here is usually incom-

plete [24], e.g., the one Fig. 4(a) shows. Secondly, ORTC only

works on prefix rules, while rules in a partition are generally

in non-prefix formats. In rough, FFTA solves the former is-

sue by splitting the incomplete partition into the minimal sets

of complete sub-partitions, and solves the later issue by con-

structing prefix-permutable rules as a modified binary search

tree, with which ORTC can deal directly. In the following, we

describe them in greater detail.

We start by giving a sketch of ORTC, which drives the de-

sign of FFTA. For a given complete prefix table, ORTC builds

its rules as a binary search tree (BST), and uses leaf-pushing

and relabel techniques to aggregate. As an example, consider

the toy prefix table shown in Fig. 3(a). It is complete and its

BST is as Fig. 3(b) shows. ORTC performs three passes over

the BST to aggregate as Fig. 3 and the below items show:

1. Pass-1: Push the nexthop label (i.e. action) from the

parents towards the children to expand the prefixes,

such that every node in the binary tree either has two
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a b c d

Fig. 3. An example of how ORTC works: (a) tabular form with prefix IP address in binary format and next-hop address label; (b) BST(binary search tree) with state

transitions marked; (c) Pass-1 produces the leaf-pushed BST, then Pass-2 gets the set of candidate nexthops for each inner node; (d) and the ORTC-compressed

BST.

a b c d

Fig. 4. An example of how FFTA aggregates a prefix-permutable partition: (a) tabular form with non-prefix match field in binary format and action; (b) Modified-

BST with action marked; (c) Modified-BST with Modified-ORTC produced; (d) the trace of bit merging and the aggregated Modified-BST.
2. Pass-2: Employ a post-order traversal up the tree to

get the set of candidate nexthops for each node.

3. Pass-3: Assign nexthop to each prefix node in the tree

starting from the root and traversing through to the

leaves, remove any unnecessary nodes and leaves.

Intuitively, FFTA could built each prefix-permutable parti-

tion as a BST-alike tree, then run ORTC, respectively. To drive

ORTC, the to-be-aggregated rules (i.e., the tree) must be com-

plete [10], say, for any packet p belonging to the tree, there is

at least one rule in the table that p matches. Unfortunately,

prefix-permutable partitions are usually incomplete. Take the

toy partition shown in Fig. 4(a) as an example. We can build

it as a tree as Fig. 4(b) shows. It is obvious that there does not

exist any matched rules for packets with header 0001 and

1001. So, ORTC can not work on prefix-permutable partitions

directly. To deal with this, FFTA first splits the built tree into

the minimal list of complete subtrees, where each subtree is

complete and contains the maximal number of original rules.

We call such a subtree as a maximal complete subtree (MCS).

Then FFTA performs ORTC-like techniques on each MCS. Af-

ter that, FFTA employs a technique named bit merging [6] on

the aggregated rules to further compress the partition.

In a nutshell, FFTA aggregate a prefix-permutable parti-

tion by (1) constructing rules as a tree, (2) aggregating the

tree with a modification of ORTC, and 3) further compress-

ing these aggregated rules with bit merging. Fig. 4 shows a

complete example and the operations of each step follow.

Step-1, tree construction. Recall that (1) rules in the parti-

tion are able to be permuted into prefixes and (2) these ar-

tifactitious prefixes can be organized as a BST, whose each

node represents an artifactitious prefix. Denote the match

fields of n rules in the partition to be m1, m2, . . . , mn, respec-

tively. Then, the preimage of the lowest common ancestor
(LCA) of these artifactitious prefixes in that BST, must be m,

where m = ∑n
i=1 mi. The + operation of ternary string here

is defined as follows: for fixed length ternary string x and y,

x + y produces a new ternary string z, whose kth bit z[k] is ∗

if x[k] �= y[k], or x[k] otherwise.

WLOG, we suppose that rules in the partition satisfy

W(m1) ⊆ W(m2) ⊆ ���W(mn). Obviously, by expanding those
∗s at bit position W(m)�W(mi) to 0 and 1, we can build a BST

(called Modified-BST) for this partition. Take the toy parti-

tion shown in Fig. 4(a) as an example, its LCA is ∗∗∗1 and its

constructed Modified-BST is shown in Fig. 4(b).

Fig. 5 shows the pseudocode of how FFTA constructs the

Modified-BST. In the codes, node(rule, left = right = nil) de-

notes creating a node to store rule, and simultaneously letting

both its left and right children (denoted as left and right resp.)

be NULL(nil). Accordingly, given a node n, n.m, n.a, and n.z de-

note the match field(m), action(a), and priority(z) of the rule

stored in n, respectively.

To start the procedure of construction, FFTA first calcu-

lates the LCA’s match field, denoted as m (Line 2), then uses

it to create the root node. Initially, the root stores the fake

rule 〈m, nil, ∞〉 (Line 3). After that, FFTA pushes forward the

construction by successively appending rules into the tree in

nonincreasing order of their amounts of ∗s. When appending

a rule (see append-rule), FFTA first finds its corresponding

node (Line 10), then updates the node’s information if the

appended rule has the higher priority (Line 11–13). The node

finding is performed in a recursive manner (Line 22–26). Dur-

ing the finding, once a node does not exist, FFTA will expand

the last visited leaf node and create new nodes (Line 16–21).

Step-2, ORTC-based aggregation. After the Modified-BST is

built, FFTA needs to find out the minimal list of MCSs to ag-

gregate. Recall that the Pass-1 of ORTC is to push actions to

leaf nodes. According to the definition of completeness and



S. Luo et al. / Computer Networks 92 (2015) 72–88 77

Fig. 5. The procedure of constructing the Modified-BST for partition P.

Fig. 6. The pseudo-code of modified Pass-1 of ORTC.
MCS, it is easy to figure out the roots of all MCSs on such a

pushed Modified-BST though a post-order traversal. As well,

it is obvious that these MCSs must disjoint and their union is

just equivalent to the original Modified-BST. Indeed, they are

the minimal list of MCSs. Therefore, FFTA firstly pushes ac-

tions with Pass-1, then finds all MCSs, and finally runs Pass-2

and Pass-3 on each MCS, respectively.

It should be noted that the Pass-1 employed here is a lit-

tle different from the one described in [10]. There are two

reasons. First, in our Modified-BST, each node is either a leaf

node or an interior node with exactly two children. Thus

there is no need to create new leaf nodes in Pass-1. Second,

the priorities of rules in Modified-BST may differ from the or-

der specified by the node depths (the number of edges from

the node to the root). So, an action needs the leaf-pushing

only if it has a higher priority than its descendants. We call
such a Pass-1 as Modified Pass-1 and its pseudocode is shown

in Fig. 6.

Step-3, bit merging. To further compress the partition,

FFTA then performs bit merging on the output of Modified-

ORTC. Bit merging is first proposed by bit weaving [6] as

one of its building blocks. For each partition, bit merging

groups rules into chunks according to their actions. Within

each chuck, it repeatedly finds two rules that differ only in

one bit in their match fields, and replaces them with a single

rule where the differing bit in the match field is ∗. Consider
∗011 and ∗111 shown in Fig. 4(c) as an example, bit merging

will merge them into ∗∗11 as Fig. 4(d) shows. The detail of bit

merging is well discussed in [6]; we omit it in the paper.

Finally, by sorting aggregated rules in nondecreasing or-

der of their amounts of ∗s, FFTA gets the aggregated rules and

their priorities for this prefix-permutable partition.
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Fig. 7. An example of increasing the chances of successfully aggregations

with order rearrangements and aggregation-aware grouping.
4.2. Aggregation-aware Prefix-permutable partition making

Given a non-prefix flow table, there are many strate-

gies to split it into prefix-permutable partitions. FFTA em-

ploys an aggregation-aware way: by rearranging some order-

independent rules (i.e., rules with disjointed match fields)

and grouping “similar” rules into the same partition, it sig-

nificantly increases the chance of successfully aggregations.

Key idea. The intuition scheme for making prefix-

permutable partitions is greedily cutting the original table

into a list of consecutive partitions such that the concate-

nation of the partitions is the original table (Bit weaving [6]

uses this scheme). For example, following such a scheme, the

toy table shown in Fig. 7(a) will be split into 4 consecutive

partitions of [0111,∗101], [1∗0∗,1111], [∗011], and [1∗1∗,∗∗∗∗],

where no partition can be aggregated further. Obviously, in

this case, there is a chance to aggregate [0111,1111, ∗011], and

[∗1010, 1∗1∗]. However, they are grouped into distinct parti-

tions. Note that 1∗0∗, 1111, and ∗011 are disjointed; it is safe to

swap their orders/priorities. So, we can reorder them to split

the original table into another two prefix-permutable parti-

tions as Fig. 7(b) shows, which can be aggregated into 4 rules

as Fig. 7(c) shows.

Inspired by the example, FFTA reorders some disjointed

(i.e., order-independent) rules and groups those with the

“similar” match fields into the same partition to increase the

chances of successfully aggregations.

Similarity of rules. Given two match fields (i.e., two ternary

strings), we use H-distance to denote their degree of sim-

ilarity, which is defined as the number of their disjointed

symbols as Definition 2 shows. Such a definition is quite

similar to the definition of hamming distance. However, in

H-distance, symbols might be wildcards and the distance be-

tween a wildcard and any other symbol is defined as zero.

This distinguishes H-distance from hamming distance. Obvi-

ously, if two rules are aggregatable, the H-distance of their

match fields must not exceed 1.
Definition 2 (H-distance). For two equal length ternary

strings, x and y, the H-distance between them is the

number of positions at which the corresponding symbols

are disjointed, denoted as H(x, y). E.g., H(∗, 0) ≡ H(∗, 1) ≡
H(∗, ∗) ≡ H(1, 1) ≡ H(0, 0) ≡ 0, H(1, 0) ≡ 1.

Observation 2. Given two equal length ternary strings, x and

y, if they can be aggregated into one rule, then H(x, y) ≤ 1.

Observation 2 gives a necessary condition to check

whether two rules are aggregatable. It also implies that, if

adding a rule to a partition increases successfully aggrega-

tions, the added rule must can be aggregated with one of the

pre-existent rules.

Theorem 2. Given a set of ternary strings l and a ternary string

x, where l ∪ [x] are prefix-permutable and l can be minimized to

j rules, if l ∪ [x] can be aggregated to less than j + 1 rules, then

miny∈l H(x, y) ≤ 1.

Proof. Suppose miny∈l H(x, y) > 1, say, x is disjointed with

all ternary strings in l and there does not exist any ternary

string that x can be aggregated with. Then x must not increase

successfully aggregations of l. �

We further define HL(x, l) ≡ miny∈1 H(x, y) and denote it

as the distance between rule x and the rule set l. Accordingly,

Theorem 2 implies Guideline 1 for making partitions.

Guideline 1. For each rule, group it into the nearest partition

will increase the chance of successfully aggregation.

Making aggregation-aware partitions. As the disjointness

of non-prefix rules is ubiquitous [15], there are multiple

choices of making partitions with reordering. To guarantee

the semantics of the flow table unchanged, the reordering

should not change the relative orders of ri and rj if their

match fields intersect. Thereafter, we define mi ∧ mj to be

the intersecting region (i.e., the common region) of mi and

mj, e.g., 1000 ∧ 1001 = ∅ and 10 ∗ 1 ∧ 101∗ = 1011. Accord-

ingly, if mi ∧ mj �= ∅ and zi < zj, the indexes of their parti-

tions, denoted as π (ri) and π (rj), should satisfy: π (ri) ≤ π (rj).

In consideration of the order-dependency relationships be-

tween rules can be built as a directed acyclic graph (DAG),

FFTA makes prefix-permutable partitions by repeatedly check-

ing rules in a topological ordering of their DAG and grouping

rules into partitions following Guideline 1.

The pseudocode of how FFTA makes partitions is shown in

Fig. 8. It is analogous to the algorithm of topological sorting

described by Kahn [25]. At each turn, FFTA picks an “inde-

pendent” rule (a node with no incoming edges) ri from the

DAG (Line 7). If there is no feasible prefix-permutable par-

titions for ri, or the minimal distance between ri and par-

titions is larger than a pre-defined threshold (Line 32–34),

FFTA creates a new prefix-permutable partition for ri (Line 9).

Otherwise, FFTA assigns ri to the nearest partition (Line 13).

After ri’s partition is established, FFTA immediately updates

the smallest feasible partition indexes for all ri’s successor in

the DAG (Line 17). This guarantees that the requirements of

π (ri) ≤ π (rj) will be satisfied to all rj whose match field in-

tersects with ri and zi < zj.

As an example, consider the toy table shown in Fig. 7(a).

Its DAG is as Fig. 7(d) shows (the “catch-all” rule ∗∗∗∗ is
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Fig. 8. The pseudocode of making prefix-permutable partitions in an aggregation-aware fashion.
omitted in the DAG). With mkPartition, FFTA will split it into

two prefix-permutable partitions as Fig. 7(b) shows.

5. Incremental update incorporation with online-iFFTA

In most cases (more than 97% in our analysis), iFFTA

can easily incorporates an update (i.e., insertion, deletion, or

modification of a rule) to the aggregated table by (1) locat-

ing the involved partition, and (2) recomputing the affected

regions. Unfortunately, as some rules might have been re-

ordered when split into prefix-permutable partitions, a few

insertions will involve the re-aggregation of multiple parti-

tions if the inserted rules happen to introduce newly depen-

dencies to the reordered rules. For this problem, iFFTA first

computes the position that causes the minimal violations of
dependency for the insertion, then installs a virtual rule for

each violation to avoid the heavy re-aggregation. In the fol-

lowing, we will describe how iFFTA handles insertions, dele-

tions, and modifications in detail.

5.1. Insertion

When inserting a new rule ri to the original table To, we

denote π o to be the old partition scheme before the update,

and π to be the new partition scheme after the update, re-

spectively. For original rules in To, we further define I(ri) to

be the set of rules that cover ri, and I (ri) to be the set of rules

that ri covers, i.e., I(ri)≡{r j∈ T o|z j < zi, mi ∧ m j �= ∅}, I (ri) ≡
{rj ∈ To|zi < zj, mi ∧ mj �= ∅}. Obviously, to not change the ta-

ble’s semantics, the new partition index of r should satisfy
i
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In Eqs. (1) and (2) as Section 4.2 discussed.

max
r j∈I(ri)

π(r j) ≤ π(ri), If I(ri) �= ∅ (1)

min
r j∈I(ri)

π(r j) ≥ π(ri), If I(ri) �= ∅ (2)

In the case that I(ri) and I (ri) are non-empty, we further

define π o(ri) to be shorthand for max
r j∈I(ri)

π o(r j) and π o (ri)

to be shorthand for minr j∈I(ri)
π o(r j). Accordingly, there are 6

cases for ri’s insertion:

C1. I(ri) = ∅ and I(ri) = ∅;

C2. I(ri) �= ∅ and I(ri) = ∅;

C3. I(ri) = ∅ and I (ri) �= ∅;

C4. I(ri) �= ∅ and I (ri) �= ∅ and π o(ri) < π o(ri);

C5. I(ri) �= ∅ and I (ri) �= ∅ and π o(ri) = π o(ri);

C6. I(ri) �= ∅ and I (ri) �= ∅ and π o(ri) > π o(ri).

In C1, ri is disjointed with all existing rules; it is safe to

directly insert ri to any positions in the aggregated table. In

C2, rules that intersect with ri all have higher priorities than

ri; it is safe to directly insert ri to any positions after π o(ri)
in the aggregated table. In C3, rules that intersect with ri all

have lower priorities than ri; it is safe to directly insert ri to

any positions before π o (ri) in the aggregated table. In C4, the

partition indexes of rules covering ri are smaller than that of

rules covered by ri; it is safe to directly insert ri to any posi-

tions between partition π o(ri) and partition π o (ri).

Obviously, in C1–C4, iFFTA can simply make a new prefix-

permutable partition for ri, and directly inserts this parti-

tion into one of the possible positions. However, the cases

of C5 and C6 are more complicated. To incorporate ri with-

out changing table semantics, some aggregated rules might

be re-aggregated.

In C5, π o(ri) = π o(ri). Let Po(ri) be the set of old orig-

inal rules in this partition, i.e., Po(ri) ≡ {r j ∈ T o|π o(r j) =
π o(ri)}. Obviously, iFFTA can incorporate ri by making a re-

aggregation of {ri} ∪ Po(ri). The re-aggregation involves two

parts: updating the aggregated Modified-BST and rerunning

bit merging for the modified rules (i.e., only the modified

chunks). If there exists a host node for ri in Po(ri)’s Modified-

BST, it means that {ri} ∪ Po(ri) is still prefix-permutable. In

such a case, the update of Modified-BST is analogous to the

update of aggregated prefix rules; techniques designed for

the updates of prefix rules (e.g., SMALTA [11] and FIFA [12])

can be used. In this paper, iFFTA adopts another simpler

method—rerun Modified-ORTC for the subtree rooted from

ri’s node. Otherwise, it indicates that {ri} ∪ Po(ri) is not prefix-

permutable, or the Modified-BST must be reconstructed. Ac-

cordingly, iFFTA treats {ri} ∪ Po(ri) as a virtual flow table then

makes a snapshot aggregation with FFTA.

In C6, the rule to be inserted (i.e., ri) introduces new order-

dependencies to some reordered rules, and these newly

introduced dependency requirements are violated in π o.

Roughly, there are two possible solutions.

The first and the naive solution is to treat {ri} ∪ {r j ∈
T o|π o(ri) ≤ π o(r j) ≤ π o(ri)} as a virtual table, then make a

snapshot aggregation of it with FFTA. However, using such a

solution, a lot of partitions will be repartitioned and reaggre-

gated even if their rules are disjointed with r .
i
The second solution is to add virtual rules to remedy de-

pendency violations introduced by the insertion. This design

is motivated by Observation 3, which indicates: the impact of

a violation of order-dependency can be offset by constructing

and inserting a virtual rule before the violated rule.

Observation 3. Given two rules ri: 〈mi, ai, zi〉 and rj: 〈mj, aj,

zj〉, where zi < zj and mi ∧ mj �= ∅, {ri, rj} is equivalent to {〈mk,

ai, zk〉, 〈mj, aj, zi〉, 〈mi, ai, zj〉} where mk =mi ∧ m j and zk =
zi − 1.

Suppose the rule to be inserted (i.e., ri) were incorporated

into a partition whose old index is p. Then, for each rule in

set {r j ∈ I(ri)|π o(r j) > p}, we need to construct and insert a

virtual rule before or in the front of partition p. And for each

rule in set {rj ∈ I (ri)|π
o(rj) < p}, we need to construct and

insert a virtual rule before or in the front of that rule’s par-

tition. Therefore, the total number of virtual rules that need

be added is |{r j ∈ I(ri)|π o(r j) > p}| + |{rj ∈ I (ri)|π
o(rj) < p}|,

which is a function of p. We denote the function as f(p). Ac-

cordingly, by computing arg minp f (p), we can easily find the

“optimal” partition for a given insertion. In addition, it should

be noted that the insertion of ri must fall into the case of C5,

as well the insertion of virtual rules must fall into the case of

C3 or C4. So, in essence, this solution is to degrade a type-C6

insertion to a type-C5 with the cost of adding min pf(p) virtual

rules. It is applicable to the case in which min pf(p) is small.

As both solutions have their own strengths and weak-

nesses, iFFTA makes a combination use of them. Once a type-

C6 insertion comes, if its min f(p) is smaller than a threshold

(e.g., 10), iFFT employs the second solution; otherwise, iFFTA

employs the first naive solution.

5.2. Deletion

As the deletion of rules would not introduce new depen-

dency requirements, its operation is quite simple by contrast

with the insertion. When deleting ri from its aggregated par-

tition, iFFTA first locates ri’s host node in the Modified-BST,

then updates the involved subtree and reruns bit merging for

the modified rules. In a few causes, a rule deletion will make

an original MCS incomplete. Then iFFTA will update the en-

tire MCS and break it into multiple nano MCSs.

In addition, if the to-be-deleted rule has caused virtual

rules, all its virtual rules would be remove simultaneously.

5.3. Modification

For the modification of a rule, iFFTA treats it as an inser-

tion followed by a deletion. This is also the way how com-

mercial switches implement rule modifications [26].

6. Complexity analysis

The computation of FFTA mainly consists two com-

putationally stages: (1) splitting the original table into

prefix-permutable partitions, and (2) aggregating each

prefix-permutable partition with Modified-ORTC and bit

merging.

Let w be the number of bits within the match field. Both

the calculation of mi ∧ mj and the test of W(x) ⊆ W(y) ∨ W(y)

⊆ W(x) can be performed within O(w). Consequently, both
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Fig. 9. The aggregation of rule 0011 and 1011 mixes their counters and con-

ceals the death of either sub-flow that falls into 0011 or 1011.
the time complexity of constructing a dependency graph for

n rules and making a topological sorting for an n-rule DAG

would not exceed O(wn2). So, the worst-cast time complex-

ity of splitting an n-rule table into prefix-permutable parti-

tions with mkPartition is O(wn2). For each prefix-permutable

partition, FFTA first constructs it as a Modified-BST, then

uses the Modified-ORTC to aggregate. Obviously, for a par-

tition with m rules, the number of nodes in the Modified-

BST would not exceed wm. Again, since the complexity of the

ORTC algorithm is linear in the number of nodes in the tree

[10], the worst-cast time complexity of our ORTC-based ag-

gregation is also O(wm). After Modified-ORTC, FFTA further

employs bit merging to merge rules that sharing the same

action. The complexity of bit merging is proven to be wk2 ln 3,

where k is the number of rules in the input [6]. So, the worst-

case time complexity of FFTA on the aggregation of each

partition is O(wm) + O( maxk≤m wk2 ln 3) = O(wm2 ln 3). Ac-

cordingly, the worst-case time complexity of FFTA on aggre-

gating a table with n rules is O(wn2) + O( maxm≤n m2 ln 3) =
O(wn2 ln 3).

As iFFTA degenerates into FFTA in the worst case, its

worst-case time complexity is O(wn2 ln 3) as well.

7. Discussion

7.1. About implementation

As both FFTA and iFFTA are software-based schemes, it

is easy to implement flow table aggregation as an optimal

service (FTAaaS, Flow Table Aggregation as a Service) on the

controller2. In practice, table aggregation is not needed by

all switches and all the time. Actually, only when a switch’s

flow table is running out of space, it prefers the aggregation

of rules. So, the controller can enable FTAaaS for the switches

that have limited TCAMs spaces; FFTA as well as iFFTA is

called only when table aggregation is needed.

7.2. Limitation of usage

In the initially OpenFlow design [28], switches might fol-

low the reactive flow programming model, in which a con-

troller responding to traffic installs microflows matching ev-

ery supported OpenFlow field for active flows. With this

model, the number of flow coexisting on a switch is deter-

mined by the flow arrival and duration patterns. Accordingly,

rules in a flow table are volatile and the effect of table ag-

gregation is limited. In such a case, to make efficient use

of the table, the controller can dynamically adapt the time-

out setting of each flow entry with respect to flow patterns.

Approaches like AHTM [29] follow this direction and might

help. Indeed, recent study has proved that reactive program-

ming of microflows is impractical for use outside of small de-

ployments; while proactive population of flow tables which

uses wildcard rules to cover the header space of all possible

packets is preferred [27]. In this case, FFTA and iFFTA can help

switches reduce the number of rules.
2 If switches have local controllers [27], the aggregation can also be im-

plemented at each switch.
7.3. Impact on OpenFlow protocol

Both FFTA and iFFTA deal with standard forwarding en-

tries and require no modification of the Flow Table structure

nor OpenFlow Protocol. However, as table aggregation is to

merge rules together, an implicit side-effect is that the coun-

ters of multiple original rules are mixed up in the aggregated

table. In the following, we sketch two typical impacts caused

by aggregation and propose possible remedies.

Counters. In OpenFlow, each rule in the table (i.e., flow

entry) has counters, which store the amounts of received

packets and received bytes [1]. The statistical results might

trigger the change of forwarding rules, like adding rules for

firewall checking, or modifying some next-hops for load bal-

ancing. If table aggregation is employed, the controller only

knows the aggregated count values, which might mislead the

adjusting control.

Idle timeout. In some cases, a rule in the flow table might

be assigned with an idle_timeout, indicating the maximum

amount of idle time before it is expired by the switch [1]. In

cases like flow based routing, if two rules are merged, the

aggregated rule is unaware of whether a sub-flow is expired;

then the death of that flow would be concealed, as the toy

example in Fig. 9 shows.

Essentially, the side-effect of aggregation is caused be-

cause the mix of rule statistics has negative impacts on the

evolution of network configuration. Note that, in practice, the

forwarding rules in a table is generally generated by high

level applications like routing, firewall, load balancer, mon-

itoring, and so forth. According to the role of traffic statistics,

each application might implicitly indicate whether its rules

are aggregatable or not. For example, a rule that has an idle

timeout setting or whose counter would immediately trig-

ger firewall checking (or other stateful forwarding), should

not be aggregated. By splitting each unaggregatable rule into

a separate partition, FFTA and iFFTA can handle this easily.

In other cases like load balance routing, rule aggregation is

acceptable but the statistics of original rules need to be esti-

mated. In SDN, the global knowledge of the network and fine-

grained programmability of switches provide more flexible

ways to make traffic monitoring and composition estimation.

Lots of measurement systems and approaches are suggested

by recent literatures [2,30–33]. With the help of these mea-

surement systems and the global knowledge of aggregated

statistics, the controller is able to infer the detail statistics of

original rules from the aggregated statistics. However, the de-

sign of such an orchestrated system is still an open problem;

we leave it as our future work.
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Table 1

The information of forwarding tables in Stanford University Backbone Network.

Table bbra,bbrb boza,bozb coza,cozb goza,gozb poza,pozb roza,rozb soza,sozb yoza,yozb

Original size 1825,1620 1614,1453 184909,183376 1767,1669 1489,1434 1567,1483 184682,180944 4746,2592

AN(Action Num.) 61,40 25,26 42,41 20,20 18,17 17,15 48,39 77,48

MCS Num. 18,18 11,11 60022,60015 11,11 12,12 11,11 60015,60013 13,12

Aggregated size 691,662 180,156 47973,47947 147,130 103,88 97,85 47991,47956 184,115

Agg. ratio 37.9%,40.9% 11.2%,10.7% 25.9%,26.2% 8.3%,7.8% 6.9%,6.1% 6.2%,5.7% 26.0%,26.5% 3.9%,4.4%
8. Performance evaluation

In this section, we use prefix rules from Stanford Univer-

sity Backbone Network [16] and synthetic non-prefix rules

from ClassBench [17] (with real parameters) to evaluate the

effectiveness and efficiency of FFTA and iFFTA. Extensive ex-

perimental results demonstrate that:

1. On the aggregation of prefix-permutable partitions,

FFTA is about 200 × faster than bit weaving, while us-

ing much less memories and sharing the same com-

pression ratio.

2. On incorporating an update to its prefix-permutable

partition, iFFTA is about 3 × faster than FFTA with an

acceptable loss of compression ratio.

3. On the aggregation of entire flow tables, FFTA is signif-

icant better than bit weaving on the average compres-

sion ratio with the improvement up to 48%.

4. On incorporating updates into tables, by using the

order-independences of rules, iFFTA greatly simplifies

the revision and computation of the aggregated table—

more than half of insertions can be directly incorpo-

rated without any recomputation/modification of the

aggregated rules, and all other updates can be incor-

porated with the recomputation of only one prefix-

permutable partition per update.

8.1. Methodology

Implementation. As bit weaving is the best reported non-

prefix aggregation scheme at current, we mainly use it as the

baseline in the paper. To simplify the comparison, neither bit

weaving nor our solution uses other optimal schemes like

Redundancy Removal [6]. In tests, all algorithms are imple-

mented in Python, where the implementation of bit weav-

ing directly uses the code released by its authors [34] as the

core (also written in Python). All experiments are carried out

by Python 3.2.3 on a PC running 64-bit Ubuntu 12.04 server

with 6G memory and a single Intel i7-930 CPU. All algorithms

only use a single processor core.

Data sets. We use two types of rules in the tests: one

is from Stanford University Backbone Network [16] and the

other is from ClassBench [17] (with real parameters).

Firstly, as both bit weaving and our solution build on

the aggregation of a single prefix-permutable partition, where

rules in the partition can be simultaneously permuted into

prefix format, we directly use publicly available prefix rules

to synthesize prefix-permutable partitions to test their perfor-

mances on the aggregation of partitions. These prefix rules

are collected from Stanford University Backbone Network

[16], in which 14 operational zone Cisco routers connect
2 backbone routes (named bbra and bbrb) via 10 Ethernet

switches, and the 2 backbone routes connect Stanford to the

outside world in turn. Recall that our prefix-permutable par-

titions are usually incomplete, we ignore the default route

(i.e., the all-∗ entry) in each input prefix table. Table 1 details

the information of the 16 routing tables, where Original Size,

AN, and MCS Num. denote the amounts of original rules, ac-

tions, and maximal complete subtrees (MCS) for each table,

respectively.

We synthesize prefix-permutable partitions by randomly

selecting prefix rules from one of the tables shown in Table 1.

Similarly, we synthesize incremental updates by randomly

choosing a group of rules from a given partition to insert,

or to delete. Previous statistics have shown that the size of

prefix-permutable partitions ranges from several to hundreds

in today’s non-prefix classifiers [6]. In common with this, we

let the size of synthetic partitions ranges from 10 to 300 with

step 10 in our experiments. For each partition size, we ran-

domly generate 20 partitions. We use all the 16 routing ta-

bles as the input table to drive the tests. Their results im-

ply the consistent observations and the figures shown in the

Section 8.2 are the cases of using bbrb’s table.

Secondly, to evaluate FFTA and iFFTA on the aggregation

of entire flow tables, we further run simulations on synthetic

tables/classifiers from ClassBench [17]. Classbench provides

12 parameter files (acl 1-5, fw 1-5, ipc 1-2) abstracted from

12 real filter sets, which fall into 3 types of formats: ac-

cess control list (ACL), firewall (FW), and IP chain (IPC). To

study the impacts of classifier size, we suppose that a ta-

ble/classifier would involve 100, 500, or 1K original rules. For

each parameter file and each table size, we generate 20 ta-

bles. The action type of each rule in a table is randomly se-

lected from 1, 2, . . . , AN. In our tests, AN is set with 1, 2, and

4. To stress test the sensitivity of our algorithms to the num-

ber of actions, we also test the case where each rule has a

unique action (i.e., AN = ∞). For each non-wildcard rule, we

transfer it into wildcard rule(s) by encoding its port num-

ber ranges into the minimum prefixes [35]. We just use the

four fields of source IP, destination IP, source port, and des-

tination port as the rule’s match fields here. Finally, we get

the synthetic flow table by (1) removing all duplicated rules,

and (2) sorting remaining rules according to the weights of

their matching fields. In this paper, the weight of a length-

K ternary string x is defined as
∑K−1

j=0 eval(x[ j]) × 3 j, where

eval(0) = 0, eval(1) = 1, and eval( ∗ ) = 2.

Metrics. Let T be an original non-prefix table and A(T) be

its aggregated table with aggregation algorithm A employed.

Then the Compression ratio of A on T is defined as |A(T)|
|T | ,

where |A(T)| and |T| denote their numbers of rules, respec-

tively. Further, for another aggregation algorithm A†, the im-

provement ratio of A† over A on T is defined by |A(T)|−|A†(T)
|A(T)| .
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Fig. 10. FFTA outperforms bit weaving at the running time and memory without loss of aggregation effectiveness. Besides, our accelerated version of bit merging

does not increase the demands of memory.

Fig. 11. iFFTA is about 3 × faster than FFTA on incorporating updates.
8.2. On Prefix-permutable partitions

As Section 3 has shown, the core of FFTA is the aggrega-

tion of each prefix-permutable partition. So, we firstly evalu-

ate the effectiveness and efficiency of FFTA and iFFTA on ag-

gregating prefix-permutable partitions comprehensively.

Snapshot aggregation. Fig. 10 shows the performance of

FFTA on the snapshot aggregation of prefix-permutable par-

titions. The label with a ∗ denotes the case where bit merging

is disabled, e.g., FFTA∗ and Bitweaving∗. The gap between the

curves of FFTA and FFTA∗ shown in Fig. 10 indicates: though

the worst-case time complexity of bit merging is O(wn2 ln 3),
its average running time grows linearly with the partition

size in practice. Accordingly, the average running time of

FFTA is quite natural and logical to grow linearly with the par-

tition size, because its prefix-based aggregation technique,

Modified-ORTC, is O(wm) (refer to Section 6). So does bit

weaving—its prefix-based aggregation technique, weighted

one-dimensional prefix list minimization algorithm (a dynamic

programming algorithm), is O(wm) as well [5]. However,

FFTA has a much smaller constant factor. Extensive results

imply that FFTA is about 200 × faster than bit weaving on av-

erage. For instance, FFTA costs less than 21 ms to aggregate a

partition with 300 rules while bit weaving needs about 3.5 s

to aggregate a partition with 240 rules. Recall that, both bit

weaving and FFTA split each flow table into prefix-permutable

partitions to perform aggregation. When excluding the vari-

ance of their time costs on making partitions, FFTA would be

about 200 × faster than bit weaving on the aggregation of

entire tables as well.
From Fig. 10(b), we observe that FFTA costs much less

memories than bit weaving, where the two y-axiss denote the

peak usage of physical memory and the virtual memory, re-

spectively. In tests, once the partition size is larger than 250,

the process of bit weaving is always put in to Disk Sleep state

and becomes a zombie process. So we only test partitions

with no more than 240 rules for bit weaving.

Fig. 10 (c) shows the average compression ratios of FFTA

and bit weaving on partitions. It implies that FFTA achieves

the same compression ratio with bit weaving on a given

partition. This is because FFTA’s Modified-ORTC shares the

same compression ratio with the weighted one-dimensional

prefix list minimization algorithm that bit weaving uses; they

both aggregate the prefix-permutable rules into the mini-

mized number of prefix rules (refer to [24] for details).

Incremental update. To evaluate the performance of FFTA

and iFFTA on incorporating updates to an aggregated parti-

tion, we randomly select 50 rules from a synthetic partition,

then add them to the remainder partition, or delete them

from the original partition one by one. Fig. 11 shows the re-

sults of the case where the original partition is made up of

the bbrb’s first 75 prefixes and last 75 prefixes.

Fig. 11 (a) shows the average computing time of FFTA and

iFFTA on incorporating updates. It indicates that (1) iFFTA is

about 3 × faster than FFTA, and (2) iFFTA as well as FFTA has

the similar time complexity on insertion and deletion. For

example, iFFTA costs less than 2.5 ms on incorporating an

update while FFTA needs about 7.5 ms. The results also im-

ply that, though iFFTA shares the same worst-case time com-

plexity with FFTA (refer to Section 6), it is more efficient in
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Table 2

The impact of table property on aggregation effectiveness.

Orig. table size (avg.) Compression ratio of FFTA (avg.)

AN = 1 AN = 2 AN = 4 AN = ∞
100 500 1K 100 500 1K 100 500 1K 100 500 1K 100 500 1K

acl1 136 655 1266 .885 .672 .642 .944 .810 .781 .969 .876 .856 .997 .944 .930

acl2 222 981 1882 .845 .642 .645 .880 .727 .736 .907 .778 .784 .922 .821 .835

acl3 182 894 1718 .973 .920 .896 .981 .944 .930 .988 .958 .950 .991 .973 .967

acl4 172 829 1651 .970 .927 .881 .984 .951 .917 .989 .967 .939 .996 .980 .961

acl5 124 592 1123 .949 .880 .804 .964 .923 .861 .974 .945 .893 .983 .968 .924

fw1 348 1450 3006 .840 .775 .757 .888 .823 .811 .921 .853 .837 .951 .883 .866

fw2 180 856 1788 .705 .751 .859 .798 .814 .908 .840 .850 .934 .891 .889 .962

fw3 239 1199 2354 .748 .783 .776 .840 .848 .837 .896 .883 .875 .942 .921 .906

fw4 588 2735 4638 .912 .816 .752 .947 .870 .815 .959 .899 .848 .975 .931 .889

fw5 239 1054 2074 .791 .760 .772 .879 .847 .851 .919 .889 .896 .978 .937 .943

ipc1 140 660 1318 .894 .831 .778 .933 .904 .868 .948 .938 .914 .972 .977 .962

ipc2 85 310 662 .491 .418 .411 .626 .548 .538 .687 .625 .609 .782 .703 .693
practice. This is because iFFTA only recomputes the affected

regions for each update, while FFTA performs a fresh snap-

shot aggregation of the entire partition.

We also count the change of aggregated rules for the in-

corporation of each original update. Their distributions are

shown in Fig. 11(b). The results imply that there is very little

difference between iFFTA and FFTA. We also test the loss of

compressibility for iFFTA (i.e., the improvement ratio of FFTA

over iFFTA), which assesses how much additional compres-

sion would be achieved if we make a fresh snapshot aggre-

gation for each update. The observations from various parti-

tions indicate that the loss of compressibility is always small.

However, the relationship of the curves of insertion and dele-

tion is tightly related to the test instance. The one shown in

Fig. 11(c) is the result of the test case we mentioned before.

Further, we rerun the experiments with all other 15 pre-

fix tables and with different synthetic strategies; the results

imply the consistent conclusions. In addition, the snapshot

compression ratio of each prefix table with the default rule

excluded is shown in Table 1 as well.

8.3. On flow tables

As the above subsection has shown, FFTA shares the same

compression ratio with bit weaving on the snapshot aggre-

gation of prefix-permutable partitions. In this subsection, we

further investigate how the proposed aggregation-aware re-

ordering scheme helps each partition’s aggregation, and how

it impacts the incorporation of updates.

Impact of table property. Table 2 shows the effectiveness

of FFTA on the aggregation of synthesized tables from Class-

Bench [17], where each value denotes the average compres-

sion ratio of the 20 test cases (recall that, we synthesize 20

tables for each parameter file and each scale value). The 2nd–

4th columns show the average amounts of rules in each syn-

thetic table. Because of the range encoding, the table sizes

are generally larger than the parameter value that we use to

drive ClassBench’s generator (i.e., 100, 500, 5K). For example,

a “100-rule” table generated with acl2, will expand to about

200 wildcard rules. However, there is a notable exception of

ipc2, the amount of whose encoded wildcard rule is less than

the scale parameter. This is because many rules generated

with ipc2 only differ in the protocol and additional fields (i.e.,
the 5th and 6th fields). When only the first four fields are

considered, ipc2 contains a lot of duplicated rules, which are

removed.

From the results, we find that a table’s compression ra-

tio is closely related with its type, size, and possible action

numbers. In most cases, FFTA will get a better aggregation on

the table with a larger size, or with less action numbers. We

think, it is mainly because both the raise of flow table size

and the reduction of possible action number might increase

the chance of successfully aggregation (i.e., there are more

redundancies). But fw2 is a notable exception, on which we

get a worse compression ratio with the table size growing.

We argue that, on fw2’s tables, the increase of successfully

aggregation is slower than the increment of table size. An-

other observation is that, FFTA always gets successfully ag-

gregations in tests, even when each rule is assigned with a

unique action (i.e., AN = ∞). We think there are two reasons.

Firstly, if the original rule from ClassBench specifies a non-

wildcard port range, it creates multiple wildcard rules after

range encoding. As these children rules share the same ac-

tion, there are chances for aggregation. Secondly, the match

fields of rules may intersect. Once a rule is completely cov-

ered by other rules in the same partition, it will be removed

during the aggregation.

Effectiveness of aggregation-aware reordering. Previous lit-

eratures [36,37] have shown that order-independent rules

in a table might have non-deterministic orders in prac-

tice. To evaluate the effectiveness of the aggregation-aware

partition-making scheme used in FFTA, we randomly shuf-

fle the order-independent rules in each synthetic table, and

compare the compression ratio of FFTA against bit weaving—

which does not reorder any rule when making partitions.

Table 3 shows the average improvement ratio of FFTA on ta-

bles with varied parameters. It indicates that FFTA always

gets a better average compression ratio than bit weaving.

We also observe that the improvement ratio generally grows

with the flow table size increasing or with the action num-

ber decreasing. This implies that the proposed aggregation-

aware scheme is more effective on tables with more redun-

dancy. Take ipc2’s tables as an example, with the table scale

parameter increases from 500 to 1K, the average improve-

ment ratio of the table with 4 types of actions also increases

from 17.6% to 26.9%. Again, with the action number decrease
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Table 3

The effectiveness of FFTA’s aggregation-aware partition-making scheme: the (avg.) improvement ratio over bit

weaving.

AN = 1 AN = 2 AN = 4 AN = ∞
100 500 1K 100 500 1K 100 500 1K 100 500 1K

acl1 .081 .251 .315 .042 .138 .188 .024 .088 .119 .002 .040 .057

acl2 .094 .268 .293 .086 .203 .213 .066 .165 .174 .062 .137 .132

acl3 .020 .068 .091 .015 .048 .062 .009 .038 .045 .008 .025 .031

acl4 .024 .063 .104 .013 .044 .075 .009 .029 .054 .004 .019 .037

acl5 .045 .112 .188 .033 .073 .133 .025 .052 .103 .017 .031 .074

fw1 .111 .197 .225 .079 .157 .175 .057 .132 .151 .037 .106 .126

fw2 .207 .190 .077 .149 .144 .055 .117 .119 .045 .086 .094 .033

fw3 .139 .184 .202 .086 .127 .146 .056 .097 .110 .036 .065 .082

fw4 .074 .171 .232 .046 .122 .173 .035 .094 .142 .023 .066 .104

fw5 .103 .202 .201 .059 .126 .129 .044 .088 .086 .011 .047 .043

ipc1 .078 .144 .194 .055 .081 .116 .047 .052 .075 .026 .023 .035

ipc2 .255 .395 .486 .155 .250 .344 .092 .176 .269 .053 .105 .183

Table 4

The impact of reordering on updates: statistics of insertion.

100 500 1K

C1–C4 C5 C6 avg max C1–C4 C5 C6 avg max C1–C4 C5 C6 avg max

acl1 .962 .017 .021 1.6 3 .910 .067 .023 1.8 7 .896 .086 .018 2.6 9

acl2 .981 .016 .002 2.0 2 .916 .078 .006 1.8 5 .894 .097 .009 1.4 3

acl3 .986 .006 .008 1.0 1 .972 .007 .021 2.6 24 .961 .020 .019 1.6 8

acl4 .988 .006 .006 3.5 5 .973 .009 .018 1.6 5 .951 .023 .027 2.1 20

acl5 .992 .008 .000 .0 0 .951 .035 .014 1.6 4 .910 .070 .020 1.3 3

fw1 .955 .038 .007 2.6 7 .939 .056 .005 4.4 27 .938 .057 .006 9.5 33

fw2 .899 .089 .012 1.0 1 .904 .089 .007 1.6 5 .972 .023 .005 1.1 2

fw3 .939 .054 .007 1.2 2 .922 .072 .006 8.5 22 .919 .076 .005 9.7 23

fw4 .982 .015 .003 4.8 16 .966 .029 .005 2.5 12 .949 .047 .004 5.2 78

fw5 .938 .058 .004 5.0 5 .930 .068 .002 3.4 5 .909 .086 .004 2.0 5

ipc1 .964 .025 .011 1.3 2 .925 .058 .017 2.0 8 .896 .082 .022 1.9 10

ipc2 .659 .341 .000 .0 0 .482 .516 .002 1.0 1 .557 .438 .005 1.1 2
to 2, the improvement ratio increases to 34.4%. However, fw2

is a notable “exception”, on which the average improvement

ratio decreases with the table size growing. Recall that, fw2’s

compression ratio decreases with its table size growing (see

Table 2). That is to say, the compressibility of fw2 decreases

on lager tables. Consequently, it is quite natural and logical

for the reduction of fw2’s improvement ratio.

Essentially, our aggregation-aware reordering scheme is

still heuristic. It does not guarantee to outperform the non-

reorder scheme used by bit weaving. For example, on the ag-

gregation of acl2’s tables with 2 actions, the improvement ra-

tio is less than 0 (≈ −0.04) in the worst-case as Fig. 12 shows.

We investigate all the tests and find this happens only in

rare cases (ratio < 0.5%) and the improvement ratio is always

lager than −0.1. That is to say, the proposed aggregation-

aware scheme gets significant improvements in most cases.

In practice, the controller can simply run both schemes for

each snapshot aggregation and choose the aggregated table

that wins.

Impact on updates. As discussed in Section 5, FFTA im-

proves the aggregation effectiveness with the risky of com-

plicating the insertion updates. To study the impacts, we ran-

domly pick out 10% wildcard rules from each table, and insert

them back to the remaining tables which have been aggre-

gated by FFTA. Table 4 shows the statistics of the composition

of these insertions. Obviously, most of the insertions fall into

C1–C4 (ipc2: ≈ 50%, all others: ≈ 90%). It means that most
of inserted rules can be directly incorporated into the ag-

gregated table without any re-aggregation. When perform-

ing such insertions, the mainly computation is to find a feasi-

ble position and the time complexity does not exceed O(wn).

Also, once a rule is directly inserted, its deletion will not

cause any re-aggregation; the deletion operation can be per-

formed in O(1). Moreover, less than 3% of insertions belong

to C6. For these type-C6 insertions, we further investigate

the amounts of virtual rules that will be added when using

the second solution (i.e., add virtual rules) for their incorpo-

rations. The columns labeled avg and max in Table 4 show the

average and maximum requirements of virtual rules, respec-

tively. Results indicate that most of insertions in C6 cause less

than 10 virtual rules. That is to say, the price of FFTA’s reorder-

enabled partition-making scheme is quite small in practice.

9. Related work

Prefix aggregation. The issue of prefix aggregation have re-

ceived considerable attentions from the research community

over the last few years. Draves et al. [10] designed an offline

algorithm called ORTC to generate the compressed IP rout-

ing table, which is proved to be optimal (means the num-

ber of entries in the generated table is minimized). Based

on ORTC, online algorithms like SMALTA [11] and FIFA [12],

are present to achieve fast incremental updates of aggre-

gated tables with a sacrifice of compression effectiveness or
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Fig. 12. A case study of the improvement ratio.
recomputing time. Although the aggregation of prefix rules

is different from that of flow table, its techniques inspire our

design. In addition, we employ a variant of ORTC on the ag-

gregation of each prefix-permutable partition.

Non-prefix aggregation. The problem studied here is more

similar to the aggregation of TCAM/non-prefix rules. McGeer

and Yalagandula [4] formulated the TCAM rulesets minimiza-

tion into a Boolean optimization problem. But their algo-

rithms are either inefficient or unpractical for flow table ag-

gregation. Liu et al. designed TCAM razor [5] and bit weaving

[6] for non-prefix classifier aggregation. TCAM razor com-

presses multi-field classifiers by constructing a series of in-

termediate one-dimensional prefix classifiers. The method it

employs only produces prefix classifiers and may miss some

opportunities for compression. Bit weaving is excellent for

offline aggregation, but impractical for dynamic networks,

since a global, inefficient recomputing (re-aggregate a whole

partition or even the whole flow table) is needed once a

rule is updated. Our FFTA shares the similar basic idea and

achieves the same compression ratio on the aggregation of

each partition with bit weaving, but FFTA is more efficient

(about 200 × faster with less memory usage) and friendlier

to table updates. Moreover, FFTA significantly outperforms

bit weaving on the aggregation of whole tables by making

partition in an aggregation-aware manner.

Also, there are considerable literatures [38–42] focusing

on designing range encoding schemes to transfer range based

firewall or ACL rules into wildcard rules supported by TCAMs.

In current OpenFlow [1], match fields are limited to be wild-

cards, so FFTA and iFFTA proposed for flow table aggrega-

tion do not face the problem of range encoding. Nonethe-

less, some high level applications like firewall might prefer to

express their forwarding policies with range based rules. In

these cases, the controller needs to pre-encode these ranges

into wildcard rules, then calls FFTA and iFFTA if needed. It

should be noted that, when performing the range encoding,

these proposed approaches that require the modification of

TCAM hardware [40,42], can not help.

Flow table evolution. In OpenFlow 1.0 [1], the first and the

most widely supported version, each switch is abstracted as

a single table of match-action rules. Such a simple model

helps the OpenFlow protocol be popular quickly, as exist-

ing switches can support it with little change. However, this

model is costly in use because a single table needs to store ev-

ery combination of headers. Accordingly, the Multiple Match
Table (MMT) model [1,2], as well as Reconfigurable Match Ta-

ble (RMT) model [43] and P4 language [3], is introduced to

make efficient use of switch resources. In essence, the build-

ing block of MMT as well as RMT is still a set of narrower sin-

gle tables. So, if needed, the controller can also employ FFTA

and iFFTA to aggregate them.

Others. More recently, Palette [8] and One Big Switch ab-

straction [9] have proposed the schemes of decomposing a

flow table into subtables and distributing them among the

paths to reduce the demands of flow table space for each

switch. CacheFlow [7] uses rule caching techniques to virtu-

alize the physical TCAMs to get the illusion of an infinite rule

table. Similar to CacheFlow, AHTM (Adaptive Hard Timeout

Method) [29] makes efficient utilization of the physical flow

table by optimizing the timeouts of rules. While orthogonal

to our work, all those works may be benefited since fewer

rules would need to be distributed or cached.

10. Conclusion

Flow table aggregation is a promising direction in re-

ducing the requirements of TCAMs for SDN switches as it

requires no modification to switch hardware or OpenFlow

protocol. In this paper, we proposed FFTA and iFFTA to

provide practical flow table aggregations. FFTA is a snap-

shot aggregation technique sharing the same high-level idea

with the state-of-the-art scheme. However, because of the

two major improvements it made, FFTA significantly outper-

forms the state-of-the-art scheme on both efficiency (about

200 × faster) and effectiveness (up to 48% improvements

of the average aggregation ratio). Based on FFTA, iFFTA is

designed to efficiently incorporate incremental updates to

the aggregated tables. By using the order-independences of

rules, iFFTA greatly simplifies the update—more than half

of insertions can be directly incorporated without any re-

computation/modification of the aggregated rules, and all

other updates can be incorporated with the recomputation

of only one prefix-permutable partition per update. On incor-

porating an update to its aggregated partition, by using the

well-designed structural information of the aggregated rules,

iFFTA further accelerates the recomputation/update about

3 × (compared with recalling FFTA) with an acceptable loss

of effectiveness. Accordingly, FFTA and iFFA can cooperate on

aggregating flow table; controllers should implement table

aggregation as an optimal service.
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