
Minimizing Average Coflow Completion Time with
Decentralized Scheduling

Shouxi Luo∗, Hongfang Yu∗, Yangming Zhao∗, Bin Wu†, Sheng Wang∗, and Le Min Li∗
∗Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education

University of Electronic Science and Technology of China, Chengdu, P. R. China
†School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China

Abstract—In current data centers, an application (e.g. MapRe-
duce) usually generates a collection of parallel flows sharing a
common goal. These flows compose a coflow and only completing
them all is meaningful. Accordingly, minimizing the average
coflow completion time (CCT) becomes a critical objective for
flow scheduling. In this topic, the state-of-the-art centralized
method, Varys, achieves a good average CCT; but it has the
scalability problem. Alternatively, the only existing decentralized
method, Baraat, suffers from the head-of-line blocking problem.

To solve these problems, we propose D-CAS, a preemp-
tive, decentralized, coflow-aware scheduling system in this pa-
per. D-CAS pursues coflow-level minimum-remaining-time-first
(MRTF) principle by leveraging a simple negotiation mechanism
between each coflow’s data senders and receivers. As the MRTF
principle is inherently preemptive and proven to be a near-
optimal guideline to minimize average CCT, D-CAS avoids
the head-of-line blocking problem and gets good performances.
Through extensive simulations, we find that D-CAS achieves a
performance close to Varys (gap < 15%) and outperforms Baraat
significantly (about 1.4–4×).

I. INTRODUCTION

Today’s data centers widely employ cluster computation
frameworks (e.g. MapReduce, Dryad, CIEL, and Spark) to
deal with the increasing outsourcing demands. In these frame-
works, data-intensive jobs are divided into multiple suc-
cessive data-parallel computation stages; and a succeeding
computation stage cannot start until getting all its required
inputs, which is exactly the outputs of the previous stage.
Furthermore, the transmission of the intermediate data is not
a negligible phase in a job [1]–[3]. For example, some real
traces from Facebook show that, the data transferring phase
between successive stages accounts for 33% of the running
times of jobs in the system [1]. Accordingly, speed up the
data transfer between computation stages will accelerate the
job completion and increase the data center utilization [1]–[3].

The data transfer between successive stages, which often
involves a group of parallel flows, completes only when all
its flows finish. This makes the flow scheduling in data center
networks (DCNs) quite challenging since the semantics among
these flows needs to be considered. In this paper, we are to
speed up the completion of such data transfers coupled with

This work is supported in part by the 973 Program under Grant No.
2013CB329103, the 863 Program under Grant No. 2015AA011901, the
National Natural Science Foundation of China under Grant No. 61271171,
the Open Foundation of State Key Laboratory of Networking and Switching
Technology under Grant No. SKLNST-2014-1-09, and Huawei Research
Funding under Grant No. YB2013120161.

the concept of coflow [4], which is defined as a collection of
flows that share a common performance goal, e.g., minimizing
the completion time of the latest flow. Then, how to schedule
flows to minimize the average coflow completion time (CCT)
is the objective we pursue in the paper.

Many existing works [1]–[3] focus on minimizing average
CCT in DCNs. To the best of our knowledge, Varys [2]
and Baraat [3] are the state-of-the-art schemes in centralized
and decentralized manner, respectively. However, centralized
schemes like Varys have the scalability problem. On one
hand, it is difficult for the central controller to collect all
the real-time coflow information in a large scale network;
on the other, calculating scheduling schemes for the entire
network involves large-scale computing tasks. Moreover, as
the scheduling schemes need be executed by data senders, it’s
almost impossible to accurately synchronize them in real time.
Different from Varys, Baraat [3] is a FIFO-based decentralized
coflow scheduler which performs well in networks with homo-
geneous coflows. Due to its non-preemptive schedule policy,
Baraat endures the head-of-line blocking problem [2]. Despite
detecting large size coflows online and using fair sharing to
mitigate head-of-line blockings, it still gets bad performances
(even worse than the naive per-flow fair sharing) when coflows
are heterogeneous (detailed in Section II-C and Section V).

Motivated by above discussions, we design D-CAS, a
preemptive, Decentralized, Coflow-Aware Scheduling system,
to minimize the average CCT. D-CAS schedules flows by
dynamically setting priorities to their packets. It is proved
that minimum-remaining-time-first (MRTF, i.e. scheduling the
coflow with the smallest ideally completion time first) is a
near-optimal guideline to pursue the minimum average CCT
[2] (namely SEBF in [2]). Accordingly, we design a local ne-
gotiation mechanism to derive flow priorities in D-CAS. In the
negotiation procedure, each coflow’s data senders periodically
announce their desired-priorities to the data receivers based on
their remaining coflow size. For the received desired-priorities,
the receiver gets feedback to senders to negotiate their flow
priorities. At last, every sender determines the updated priority
based on these feedbacks and its local information.

We implement a simulator (see Section V) to evaluate the
performance of D-CAS. Extensive simulations imply: D-CAS
improves the average CCT about 2–3× over per-flow fairness;
the performance improvement is close (gap < 15%) to that of
the state-of-the-art centralized scheme Varys, and outperforms

Coflow ID Flow ID Size

𝐴
𝑓𝐴1 1

𝑓𝐴2 3

𝐵
𝑓𝐵1 2

𝑓𝐵2 4

Bottleneck
𝑓𝐴1

𝑓𝐴2

𝑓𝐵1

𝑓𝐵2

𝑓𝐴1

𝑓𝐵1 𝑓A2

𝑓𝐵2

1
Bottleneck Bandwidth

2/3

1/4

4 7 9 10

time

1
Bottleneck Bandwidth

1 3 6 10

time𝑓𝐴1 𝑓𝐵1 𝑓A2 𝑓𝐵2

1
Bottleneck Bandwidth

1/2

42 8 10

time

𝑓𝐴1 𝑓𝐵1

𝑓A2 𝑓𝐵2

(b) Per-flow Fairness (d) Coflow-aware

(c) Per-flow Prioritization

(a)

𝐻1

𝐻2

𝐻3

Fig. 1. Motivating Example. (a) Four concurrent flows from two coflows
competing for a single bottleneck link; (b) Fair sharing, avg(CCT)=9.5; (c)
Smallest-flow-first, avg(CCT)=8; (d) Smallest-coflow-first, avg(CCT)=7.

the only existing decentralized scheme Baraat by 1.4–4×.
Roadmap We first briefly show the background and moti-

vation of our work in Section II. In Section III, we discuss the
design of D-CAS and give an overview, followed by system
details in Section IV. Extensive simulations are presented in
Section V and we conclude the paper in Section VI.

II. MOTIVATION

In this section, we present three key desirable properties for
minimizing average CCT in DCNs, which motivate our design
of D-CAS.

A. Why Coflow-aware Scheduling

Recall that the goal our scheduler pursues is to minimize the
average CCT, which is limited by the flow completing last. So,
conventional coflow-agnostic scheduling methods designed
to minimize the average flow completion time (FCT) (e.g.
pFabric [5] and PDQ [6]) cannot get the optimum solution.

Take the case shown in Fig. 1 as an example. There are
four concurrent flows belonging to two coflows (Coflow A:
fA1, fA2; Coflow B: fB1, fB2.). These flows arrive simulta-
neously and their demands are shown in Fig. 1a. With per-
flow fair sharing scheme, the scheduling result is shown in
Fig.1b. In this case, all the unfinished flows in the network
obtain the same bandwidth, and flows [fA1, fA2, fB1, fB2] will
complete at time [4, 9, 7, 10]. Hereby, coflow A and coflow
B complete at time 9 and 10, respectively. Their average CCT
is 9+10

2 = 9.5. Similarly, the smallest-flow-first scheme that
minimizes average FCT can only derive the average CCT
6+10

2 = 8 as Fig.1c shows. If the coflow-aware flow scheduling
scheme, such as smallest-coflow-first (i.e. the coflow with the
minimum total flow volume is scheduled first) is adopted, the
average CCT is only 4+10

2 = 7 as shown in Fig.1d. There is
a saving of ∼ 26% compared to fair sharing scheme and a
saving of ∼ 13% compared to flow level scheduling scheme.

In a word, the coflow-aware scheduling policy can bring
benefits to the average CCT in DCNs.

B. Why Decentralized Scheduling

Intuitively, if all the coflow information is available, we can
schedule all the coflows following the MRTF policy, which
is proved to be the best scheduling principle to pursue the
average CCT [2].

However, above thought is not practical in real settings. At
first, current data centers have hundreds of thousands of hosts
and millions of concurrent flows [7], it is difficult to collect
all flow information (such as the sources, destinations and
remaining size), to calculate a global scheduling scheme, and
to enforce it to all flows in real time. Accordingly, the delay of
the centralized scheduling is too long for the pervasive small
coflows since these coflows may complete within a few RTTs
[3]. Second, the centralized scheduling system also have other
problems such as fault-tolerance.

Accordingly, the decentralized scheduling is preferred in a
system to improve the average CCT in DCNs.

C. Why Preemptive Scheduling

To minimize the average CCT in the network, we should
pursue the MRTF principle in a decentralized manner. In other
words, on every host, the smaller coflows should be scheduled
before the larger ones. In an online system, we cannot suppose
the smaller coflows would arrive earlier than the larger ones.
Therefore, the preemptive scheduling scheme is necessary for
D-CAS. Otherwise, the system may suffer from the head-of-
line problem, i.e. small coflows arriving later being blocked
by the early large coflows.

Take the only existing decentralized coflow-aware (namely
task-aware in [3]) scheduling system, Baraat, as an example.
Baraat is a non-preemptive system and solves the head-of-
line blocking problem by deploying a limited multiplexing
(LM) scheme on switches. LM would dynamically change the
level of multiplexing and let the lower priority flows to be
served when the current coflow is detected as large. Due to
its non-preemptive property, there are two major shortcomings
in Baraat. First, LM scheme performs badly when the coflow
sizes are heterogeneous. In some cases, it may be even worse
than the naive fair sharing scheme (see the simulation results
in Fig. 3). Second, with the increasing of multiplexing level,
the performance of Baraat is approaching that of fair sharing
scheme, which is demonstrated to be unsuitable for minimizing
average completion time [2, 5, 6].

Hereby, preemption is a necessary property to minimize the
average CCT in DCNs.

III. D-CAS OVERVIEW

Motivated by above discussions, we design D-CAS, a
coflow-aware, decentralized, preemptive, and starvation-free
system, to minimize the average CCT for data-incentive
DCNs. In D-CAS, each source host (i.e. the data sender) de-
termines the priority of its flows based on its local information
and feedbacks from the receivers. To clearly present D-CAS,
we first give some key definitions in Section III-A, then show
the key idea of our design in Section III-B. In the end, we
show the overall framework of D-CAS in Section III-C.

A. Key Definitions

Coflow: It is a set of flows that are for the same purpose. We
say a coflow is the parent coflow of all its flows. The length
of a coflow is defined as the volume of its largest flow, while
the width is the number of flows in it. By summing up the
volume of all its flows, we get the size of this coflow.

Subcoflow: A subcoflow S consists of all the flows in the
same coflow C that stem from the same source host. For
simplicity, we call C is the parent coflow of subcoflow S.
Thus, a subcoflow can be identified by the tuple of its parent
coflow and source host. Similarly, the size of a subcoflow is
the volume of all its flows.

Priority: In D-CAS, each host dynamically sets priorities to
packets to realize flow scheduling. As D-CAS schedules small
coflows before large coflows, we design the priority number as
a tuple 〈T, P 〉. We call the two items, T and P , as main priority
and secondary priority, respectively. Also, we say, 〈T1, P1〉 is
a higher priority than 〈T2, P2〉, iff T1 < T2 or T1 = T2 and
P1 < P2.

B. Basic Ideas for Coflow-aware Scheduling

Though it is NP-hard to get the minimum average CCT for
a given set of coflows, MRTF is still a good guideline for our
scheduling since it will lead to a near-optimal solution [2]. In
a decentralized scenario, each host only has the information
of its own flows; it does not have the global view of coflows
or the entire network. Therefore, each host can only schedule
its flows following the “subcoflow-level” minimum-remaining-
time-first (SL-MRTF) principle to approach MRTF. Following
SL-MRTF, all the flows in a subcoflow get the same priority.
Each packet carries its priority number set independently by
its subcoflow sender, and switches send the packet with the
highest priority when transmitting (similar to pFabric [5]).

Ideally, the SL-MRTF scheme can get a good performance
if every coflow only has exactly one subcoflow (i.e. exactly
follows the MRTF principle). Unfortunately this is not the case
in current DCNs, where flows in each coflow are originated
from different hosts, and hence involve multiple subcoflows.
Once these multiple subcoflows have different remaining sizes,
SL-MRTF may degrade since it is not exactly following the
“coflow-level” MRTF principle. Revisit the case shown in
Fig.1 as an example. In this case, both A and B contains two
single-flow subcoflows; SL-MRTF degenerates to smallest-
flow-first and becomes coflow-agnostic. To alleviate this effect,
we introduce a feedback scheme into D-CAS. It works as fol-
lows: for each subcoflow, its data sender announces a desired-
priority presenting its ideally remaining time to all the sub-
coflow’s data receivers; when receiving a desired-priority mes-
sage, the data receiver uses all the received desired-priorities
from the same coflow to compute a feedback-priority, and
sends it back to the announcer. Following this, the subparts of
a coflow (i.e. subcoflows) can negotiate their priorities without
any third-party controller. When all receivers choose the lowest
priority to relay, D-CAS approaches “coflow-level” MRTF in
a decentralized manner.

1R1 2R2

S2 S3S1S1

At a receiver

1R1 2R2

S2 S3S1S1

4 4 2 12

1R1 2R2

S2 S3S1S1

x x y
y y

1, p1 1, p2 1, p34 2 1

getDesiredPriority(�)

� = Ψ 4,2

� = Ψ 4,2,1

p1 = Φ �, �

p3 = Φ �

Data
receiver

Data
sender

updatePriority(�)

p2 = Φ �, �

(a) Announce desired-priority

1R1 2R2

S2 S3S1S1

At a receiver

1R1 2R2

S2 S3S1S1

4 4 2 12

1R1 2R2

S2 S3S1S1

x x y
y y

1, p1 1, p2 1, p34 2 1

getDesiredPriority(�)

� = Ψ 4,2

� = Ψ 4,2,1

p1 = Φ �, �

p3 = Φ �

Data
receiver

Data
sender

updatePriority(�)

p2 = Φ �, �

(b) Get priority feedbacks then update
Fig. 2. Framework overview: how a coflow’s subcoflows (S1, S2, S3)
negotiate with the help of its own data receivers (R1, R2).

In addition, when a subcoflow is smaller than a predefined
threshold, we do not schedule it according to the SL-MRTF
principle any more. In this case, we believe FIFO is a better
choice since the feedback delay is too long for these subflows
that may complete in a few RTTs. On the other hand, the
simulation of [3] also shows, the FIFO policy can achieve a
good performance for minimizing the average CCT when the
flow size (i.e. coflow length) is distributed in a small range.

C. D-CAS in a Nutshell

Based on the analysis in previous subsection, the design
of D-CAS can be summarized as follows: if a subcoflow’s
remaining volume is smaller than a threshold, schedule it
using FIFO policy like Baraat; otherwise, schedule its flows
using the negotiated priority. We design the control plane
for priority negotiating as Fig.2 shows. Note that, the shown
control procedure is just for a single coflow. That is to say,
each host will launch such a procedure for every subcoflow to
determine its flow priority. For each data sender, it periodically
announces the desired-priority to the data receivers based on
the subcoflow’s remaining size. See the example in Fig.2(a),
the desired-priorities of the three data senders are 4, 2 and 1,
respectively, based on their remaining sizes.

On getting the desired-priority message, each data receiver
replies a feedback that is derived by a predefined function
Ψ(·) and the received messages. As shown in Fig.2(b), R1

and R2 get feedbacks to the senders with x = Ψ([4, 2]) and
y = Ψ([4, 2, 1]), respectively. At last, when the data sender
collects feedbacks from data receivers, it gets the negotiated
priority by computing Φ([x, y]). Then the sender updates the
subcoflow’s priority based on the negotiated priority or some
local schemes like preventing starvation.

All relevant technical details such as the design of function
Ψ(·) and Φ(·) will be discussed in the following section.

IV. DESIGN DETAILS

In this section, we show what operations each sender and
receiver should perform in detail, and discuss how to design
the functions that D-CAS uses to determine the flow priority.

Sender In D-CAS, each sender periodically (δ-interval)
detects subcoflow information and updates data transfers’
priorities, as Pseudocode 1 shows. For each subcoflow S

whose parent coflow is c, if its remaining size (rem in Line 4)
on the sender is less than the predefined thresholdV olume

(e.g. set it as BDP, i.e. bandwidth delay production), its flows
will be sent with priority value 〈0, cp〉, where cp is the parent
coflow’s ID representing its arrival order (same to the Task-ID
in [3]). Otherwise, S is identified as a large subcoflow and the
main priority of its flows should be set to 1. If this subcoflow
has not received any service during the last T -interval (T � δ),
its secondary priority will be set to be 0 to prevent starvation
(Line 8). In this case, all the un-served subcoflows share the
network using per-flow fairness mechanism. If not, the priority
negotiation is launched for the secondary priority. To this end,
each sender announces its desired priority to the receivers and
waits several RTTs (Line 11). Regularly, the sender uses the
received feedbacks to calculate the secondary priority with
Ψ(·) (Line 15). However, if all the feedbacks get lost due
to the network congestion or failure, the sender just sets the
secondary priority to its desired priority (Line 17).

Pseudocode 1 Coflow-aware Flow Scheduling in Sender
1: procedure SCHEDULE(Subcoflows S) . recall every-δ
2: for all S ∈ S do
3: c← S.coflowID

4: rem← getLocalRemSize(S)

5: d← getDesiredPriority(S)

6: if rem < thresholdV olume then
7: p← 〈0, getCoflowPriorityV alue(c)〉 . FIFO
8: else if S.waitT ime() > T then
9: p← 〈1, 0〉 . Starvation-free

10: else
11: Announce d to all S’s data receivers.
12: Waiting several RTTs.
13: M ← getFeedbackPrioritySet(c)

14: if M is not empty then
15: p← 〈1,Φ(M)〉
16: else
17: p← 〈1, d〉
18: end if
19: end if
20: Update the priority of S’s data transfers to p.
21: end for
22: end procedure

Receiver In D-CAS, each receiver maintains a cache for
the latest desired-priority of each subcoflow. When receiving
a desired-priority, it operations as Pseudocode 2 shows: (i)
get (Line 3) and update the cache (Line 4); (ii) derive the
feedback using its cached desired-priority information from
the same coflow (Line 5), and (iii) send it back (Line 6).

Design of Ψ(·) and Φ(·) It is obvious that the system effective-
ness is heavily impacted by the two functions, Ψ(·) and Φ(·).
They are used to calculate the feedbacks by the receivers and
to calculate the new priority by the senders, respectively. As
to pursue the MRTF, the subcoflow with the larger remaining
time should be set a lower priority (i.e. a larger priority value).
Hereby, when a receiver gets multiple desired-priorities, the
subcoflow with the largest remaining time is more likely to be

Pseudocode 2 Reply Feedbacks in Receiver
1: procedure REPLY(msg m) . message from the sender

. m stores the subcoflow’s desired priority and information
2: c← m.coflowID

3: B ← getCachedMsgs(c)

4: Update B using m and remove expired messages.
5: p← Ψ(B.desiredPriorityV alues())

6: Send the feedback-priority of c (p) to m.src.
7: end procedure

the bottleneck of their parent coflow. Therefore, receiver can
simply send back the largest priority value to the senders as
the feedback. Formally, Ψ([p1, p2, . . .]) = max(p1, p2, . . .). For
the similar reason, Φ(·) should also return the largest received
priority value for each sender.

About getDesiredPriority(·) This function is used to derive
the desired priority of each subcoflow by every sender. To
pursue the MRTF principle, the subcoflow with larger remain-
ing completion time should have the larger priority value.
Therefore, the senders in D-CAS heuristically set this value
as RemainingSubcoflowSize

NICLineRate , i.e. the time to complete the entire
subcoflow if it occupies all the bandwidth.

It is worth noting that D-CAS can also be changed
to be other existing system by adopting different Ψ(·),
Φ(·), and getDesiredPriority(·). For example, if we set
getDesiredPriority(·) ≡ 1 and Ψ(·) = Φ(·) = max(·), D-CAS
degenerates to be a per-flow fair-sharing system.

V. SIMULATION

We implement a Python-based simulator to evaluate the
performance of D-CAS by comparing it with Varys, Baraat,
and the per-flow fairness mechanism. Our simulator shares the
similar design with that of Varys [8], and performs a detailed
replay of the similar coflow traces as well. Extensive sim-
ulation results demonstrate: 1) D-CAS improves the average
CCT about 2–3× over per-flow fairness; 2) D-CAS achieves a
performance very close to Varys–the performance gap between
D-CAS and Varys is less than 15%; 3) D-CAS outperforms
Baraat by about 4× when coflows are heterogeneous, and
about 1.4× when coflows are homogeneous.

A. Methodology

Setup The coflow traces we used are synthesized with the
same trace generator as Varys [2, 8]. Similarly to the setting
of Varys, all the coflows are categorized to be four types in
terms of their length (the size of the largest flow in bytes for a
coflow) and width (the number of parallel flows in a coflow):
Narrow&Short, Narrow&Long, Wide&Short and Wide&Long,
where a coflow is considered to be short if its length is less
than 10MB, and narrow if it involves at most 50 flows.

By defaults, coflows are assumed to arrive in a Poisson
process with parameter λ, and each above type of coflows
constitutes 52%, 16%, 15%, 17% of the coflow stream, re-
spectively (according to the statistics reported by [2]). Without

declaration, simulation results are based on 400 coflows served
by an 80-hosts cluster with following settings:
1). All the flows in a coflow arrive at the same time [1, 2],

and the upper bound of flow volume (i.e. the upper bound
of coflow length) is 500 MB.

2). The network model (i.e. the entire datacenter fabric) is
abstracted out as one non-blocking switch [2, 5] intercon-
necting all the machines, and we only focus on its ingress
and egress ports (e.g., machine NICs); both the ingress
and egress are set with the capacity of 1 Gbps.

3). The arrival rate of coflow is set to λ = NetworkThroughput
MeanOfCoflowSize ,

this is to make the network neither be overloaded or under-
loaded since E(NetworkLoad)= λ×MeanOfCoflowSize

NetworkThroughtput =

1 with such a setting.
4). For D-CAS, we use T = 1 second, δ = 100 milliseconds,

expiredT ime = 2 seconds, and thresholdV olume = 1 MB.
5). For Varys, since it only reschedules flows when a coflow

arrives and completes, it cannot fully utilize the network
resource [2]. To solve this, we let Varys reschedule flows
on flow arrival and completion in our simulation.

6). For Baraat, we set its threshold of large-coflow identifying
to be 80th percentile of the coflow size. In fact, we
repeat the tests multi-times and observe that the results
are insensitive to the threshold setting in our simulation.

Metrics We use the improvement in average CCT as our
primary metric and the improvement factor is defined as

Factor of Improvement =
Current Duration

Modified Duration
.

In all tests, we use the duration of per-flow fair sharing as a
baseline, since per-flow fair sharing represents the operation
of current transport protocols (e.g. TCP, DCTCP) in DCNs.

B. Results

We investigate the performance of D-CAS under different
network loads, cluster/network scales and coflow types.
The Performance of D-CAS Fig. 3 shows the detailed im-
provements of Baraat, D-CAS, and Varys w.r.t. per-flow fair-
sharing, respectively. It implies that both D-CAS and Varys
greatly reduce the average and 95th percentile CCT across
all coflow types. For example, the improvement factors of
D-CAS on average CCTs are 38.502 (Narrow&Short), 26.162

(Narrow&Long), 9.625 (Wide&Short), 2.145 (Wide&Long)
and 3.036 (ALL), while that of Varys are 39.278 (Nar-
row&Short), 30.578 (Narrow&Long), 9.972 (Wide&Short),
2.363 (Wide&Long) and 3.361 (ALL). We note that, the
performances of D-CAS and Varys are very close, and the gap
between their improvements is less than 10%. This is due to the
fact that the simple negotiation mechanism in D-CAS helps
each coflow using its maximum-subcoflow-remaining-size1 as
its priority. Thus the coflow with the smaller remaining size
on all its senders would be more likely to use the network.
This makes the scheduling scheme in D-CAS approach the
MRTF policy.

1When all hosts have the same NICLineRates, getDesiredPriority(·)
is equivalent to getLocalRemSize(·).

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

C
D

F

Coflow completion time (Seconds)

Baraat

D-CAS

Varys

Fair-sharing

Fig. 4. CCT distributions for different scheduling schemes in the simulation.

The results also show the bad performance of Baraat on
scheduling heterogeneous coflows. Baraat only speeds up the
completion of long (both Narrow&Long and Wide&Long)
coflows a little, while degrading the completion of short
coflows. Worsely, it is inferior to the baseline on the overall
average CCT. This is because, the FIFO policy Baraat using
leads to serious head-of-line blocking problem and its limited
multiplexing (LM) scheme cannot solve this problem abso-
lutely, especially when facing heterogeneous coflows.

Fig. 4 shows the CDFs of CCT under different scheduling
schemes. It implies that, though the preemptive schemes like
D-CAS and Varys reduce the average CCT, they prolong the
CCT tails. Conversely, non-preemptive schemes like Baraat
can cut the long tails of CCT, but enlarge the average CCT.

Impact of Network Load To study the impact of network
load (E(NetworkLoad) = λ×MeanOfCoflowSize

NetworkThroughtput), we vary
the arrival rate of coflows and investigate the performance of
different scheduling scheme. Fig.5(a) shows these simulation
results. It indicates: 1) regardless of the network load, the
improvement factor of D-CAS is always close to that of Varys
and outperforms Baraat a lot; 2) the improvement factors of
D-CAS and Varys slightly increase with the network load,
while that of Baraat is stable. This is because, the heavier
the network load is, the larger optimization space there is for
preemptive scheduling schemes.

Impact of Cluster/Network Scale To explore the impact
of cluster/network scale, we investigate their improvement
factors under different sizes of clusters. The result in Fig.5(b)
shows both the improvement factors of D-CAS and Varys
grow with the network size (coincides with the simulation
results in Varys [2]), while that of Baraat is relatively stable.
Such a phenomenon is mainly caused by the setting that we
always adjust λ to make E(NetworkLoad) = 1 in simulations.
Under such a setting, the NetworkThroughtput would grow
linearly with the cluster size and there will be more concurrent
coflows in a larger cluster. Accordingly, preemptive coflow-
aware scheduling methods like D-CAS and Varys get more
optimization spaces than non-preemptive methods like per-
flow fairness and Baraat.

0
.0

4
0

1
.6

0
4

0
.0

4
4

1
.7

5
7

0
.7

0
9

0
.0

4
0

1
.6

0
3

0
.0

4
3

1
.7

5
3

0
.7

0
7

3
8

.5
0

2

2
6

.1
6

2

9
.6

2
5

2
.1

4
5

3
.0

3
6

4
0

.4
6

4

2
7

.0
0

1

9
.9

4
6

2
.1

4
5

3
.0

4
3

3
9

.2
7

8

3
0

.5
7

8

9
.9

7
2

2
.3

6
3

3
.3

6
1

4
1

.3
0

1

3
1

.7
7

2

1
0

.3
0

2

2
.3

6
5

3
.3

7
0

0

10

20

30

40

Narrow & Short Narrow & Long Wide & Short Wide & Long ALL

Fa
ct

o
r

o
f

Im
p

ro
ve

m
e

n
t

Coflow Types

Baraat (Average) Baraat (95th Percentile) D-CAS (Average) D-CAS (95th Percentile) Varys (Average) Varys (95th Percentile)

Fig. 3. Improvements of Baraat, D-CAS, and Varys w.r.t. the default per-flow fairness mechanism in the average and 95th percentile.

0

1

2

3

4

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fa
ct

o
r

o
f

Im
p

ro
ve

m
en

t

Cluster/Network Load

Baraat

D-CAS

Varys

(a) Impact of network load

0

1

2

3

4

5

30 40 50 60 70 80 90 100 110

Fa
ct

o
r

o
f

Im
p

ro
ve

m
en

t

Number of Hosts

Baraat

D-CAS

Varys

(b) Impact of cluster/network scale

1
.4

5

1
.5

5
 2
.0

5

2
.0

7

2
.0

3

2
.2

8
 2
.8

6

2
.9

8

2
.1

5

2
.3

6
 2
.9

2

3
.3

9

0

1

2

3

4

Narrow
& Short

Narrow
& Long

Wide &
Short

Wide &
Long

Fa
ct

o
r

o
f

Im
p

ro
ve

m
en

t

Baraat D-CAS Varys

(c) Impact of coflow type

Fig. 5. Improvements in the average CCT under different settings. Note that all the factor of improvements use per-flow fairness as baseline.

Impact of Coflow Type: We now study the impact of
coflow types. To highlight the comparison, we investigate the
performance of different scheduling schemes when there is
only one type of coflows in the network. In each simulation,
we also hold E(NetworkLoad) = 1. From the results shown
in Fig.5(c), we make two important observations. First, Baraat
outperforms per-flow fairness in all the four cases. This is
because the FIFO scheduling policy gets a good performance
when coflows are homogeneous. Second, all three coflow-
aware scheduling schemes perform better when the coflow is
longer and wider, and their increments of improvement factors
are more sensitive to coflow width than coflow length. This
is due to the fact that, the larger width coflows have, the
more likely they may interleave with each other, in which
condition, the performance of coflow-agnostic per-flow fair
sharing mechanism falls increasingly further behind as it is
coflow-agnostic.

Besides, we also observe that: 1) D-CAS always outper-
forms Baraat, about 4× when coflows are heterogeneous,
and about 1.4× when coflows are homogeneous; 2) D-CAS
achieves a performance very close to that of Varys, their
performance gap is always less than 15% in simulations.

VI. CONCLUSION

We proposed a decentralized flow scheduling system -
D-CAS to minimize the average CCT in DCNs. Differ-

ent from the state-of-the-art decentralized scheduling system
Baraat, which is a non-preemptive system and pursues the
FIFO-based policy, D-CAS is a preemptive system and pur-
sues the MRTF principle. Accordingly, it avoids the head-of-
line blocking problem and achieves a much smaller average
CCT. Our numerical results demonstrated the superior perfor-
mance of D-CAS over Baraat and is close to the state-of-the-
art centralized scheduling method Varys.

REFERENCES

[1] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Man-
aging data transfers in computer clusters with orchestra.” in Proc. ACM
SIGCOMM, 2011, pp. 98–109.

[2] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with
varys,” in Proc. ACM SIGCOMM, 2014, pp. 443–454.

[3] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in Proc. ACM SIG-
COMM, 2014, pp. 431–442.

[4] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks (HotNets). ACM, 2012, pp. 31–36.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
Proc. ACM SIGCOMM, 2013, pp. 435–446.

[6] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in Proc. ACM SIGCOMM, 2012, pp. 127–138.

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible data
center network,” in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[8] M. Chowdhury, “Flow-level simulator for coflow scheduling used in
varys,” https://github.com/coflow/coflowsim.

