
Decentralized Deadline-Aware Coflow Scheduling
for Datacenter Networks*

Shouxi Luo, Hongfang Yu, Lemin Li
Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education

University of Electronic Science and Technology of China, Chengdu, P. R. China

Abstract—This paper presents D2-CAS, a novel decentralized
coflow scheduling system, to minimize the rate of deadline
missed coflow for datacenter networks. To design D2-CAS,
we first formulate the deadline-missed coflow minimization
problem and show its connection with the well-known problem
of minimizing the late jobs in a concurrent open shop, which
is NP-hard in ordinary sense. Inspired by Moore-Hodgso’s
algorithm (MHA), the optimal solution for minimizing late jobs
on a single machine, we design an efficient coflow schedule
algorithm, CS-MHA, and further propose its decentralized
implementation, D2-CAS. Basically, each sender in D2-CAS
periodically runs a part of CS-MHA to get a local suggestion
for flow priority assignment, and then multiple senders of a
coflow negotiate for an orchestrated priority by leveraging their
common data receivers. Via delivering each coflow’s packets
with its negotiated priority, senders finally carry out efficient
deadline-aware coflow scheduling in a decentralized fashion.

To the best of our knowledge, this is the first paper that
theoretically investigates the deadline-aware coflow scheduling
problem, while D2-CAS is the first decentralized solution. Real
parameter driven simulations imply that, with the simple yet
efficient mechanism, D2-CAS greatly outperforms all existing
solutions on reducing the deadline-missed coflows (e.g., outper-
forms Varys more than 2×).

I. INTRODUCTION

Cluster computation applications, such as Hadoop, Spark,
and search query platforms, are widely employed to process
data- analytics and query in datacenters [1]–[5]. In these
applications, a job is divided into multiple computation- or
inquiry- stages, among which, a successive stage involves
a group of parallel flows to fetch its input data from the
previous stage’s output. The term coflow is used to abstract
such a group of parallel flows [3, 4], which share the common
performance goal—This is because only completing all flows
in the group can push forward a job’s process. Due to
the soft-real time nature of today’s latency-sensitive jobs
(e.g., web search, online retail, advertisement, etc.) [1]–[4],
the involved coflows carry widely varying strict deadlines.
That is to say, a coflow is useful and contributes to the
application goodput if, and only if, it completes within the
deadline. Accordingly, in the view of datacenter operators,
scheduling flows to maximize the number of coflows that
meet the deadline, becomes a crucial performance goal for
flow scheduling [3, 4].

Although numerous flow scheduling proposals [1, 2, 5]–
[12] have been proposed for DCNs over the past years,
they either aim at optimizing the average coflow completion

*This version corrects some errors in the version published in ICC’16.

times (e.g., [5, 6, 9]–[12]), a quite different objective from
deadline-aware scheduling, or reducing the deadline miss rate
at flow-level (e.g., [1, 2, 7, 8]), which are proven to be
inefficient for coflow-level optimizations [4, 9, 11]. To the
best of our knowledge, Varys [4] is the only existing scheme
designed for minimizing the missed deadlines for coflow.
However, it suffers from two problems. Firstly, the central-
ized design makes it hard to scale for today’s large-scale
datacenters [5, 9]. Secondly, as this paper will show, Varys
schedules coflows with a simple non-preemptive admission
control, which results in serious performance loss.

In this paper, we attempt to find a solution that is high
efficient and easy to scale up. To this end, we first look
into the theoretical problem—How to schedule coflows is
optimal for the minimization of missed deadlines? Theo-
retically, we realize that scheduling coflows to minimizing
their deadline misses is closely related to the well-known
problem of minimizing late jobs in a concurrent open shop,
which is strongly NP-hard in ordinary sense [13]. Motived by
this, we borrow ideas from concurrent open shop scheduling
for designing coflow scheduling schemes. More specially,
we propose CS-MHA, an efficient deadline-aware coflow
scheduling heuristics, based on Moore-Hodgso’s algorithm
(MHA) [14], which is known as the optimal algorithm for
the deadline-aware job scheduling on a single machine.

To make a practical and scalable solution, we further de-
sign D2-CAS, Decentralized, Deadline-driven, Coflow-Aware
Schedule system, to carry out CS-MHA schedules in decen-
tralized fashions. Basically, on handling these time-sensitive
coflows, each sender in D2-CAS periodically runs a part of
CS-MHA, i.e., the Moore-Hodgso’s algorithm, to compute a
desired priority for every coflow that it hosts; then multiple
senders of a coflow determine a final priority value for
this coflow (i.e., all the involved flows) by using a simple,
robust negotiation plane among them and their common data
receivers; finally, each sender let packets belonging to this
coflow carry the negotiated priority when delivering.

It is worth noting that, such a scheduling mechanism
by design shares the same workflow with that of D-CAS,
the state-of-the-art decentralized solution for average coflow
completion time optimization [9, 11], except for how desired
priorities are generated on sender—This is the key to achieve
efficient deadline-aware coflow scheduling or average coflow
completion optimization. With this compatible design, data-
center operators can easily upgrade a D-CAS enabled system
to handle deadline-sensitive coflows by leveraging the MHA-

https://doi.org/10.1109/ICC.2016.7511251

based policy to generate the desired priority.
We develop a flow-level simulator based on that of

Varys [4, 15] to evaluate the performance of D2-CAS. Our
results from traces (generated with real parameters [4]) driven
simulations imply that, following the simple yet theoreti-
cal scheduling proposal, even as a decentralized solution,
D2-CAS significantly outperform centralized Varys, the state-
of-the-art deadline-aware coflow scheduler.

In summary, we mainly make two contributions:
• We show that coflow scheduling can be simplified to the

well-known concurrent open shop scheduling on mini-
mizing the number of missed deadlines. Such a finding
greatly extends that of prior art [4, 11] and brings the-
oretical insights for scheduling latency-sensitive coflow.

• We propose an efficient deadline-aware coflow schedul-
ing algorithm, CS-MHA, based on the findings of cur-
rent open shop scheduling, and further design a prac-
tical coflow scheduling system, D2-CAS, to implement
CS-MHA in decentralized fashions. Trace-driven simu-
lations indicate that D2-CAS would let about 17× more
coflows meet their deadline compared with the case of
no schedule scheme employed, and reduce the missed
deadlines more than 2× compared with Varys.

The rest of the paper proceeds as follows. Section II
formulates the deadline-aware coflow scheduling problem
and shows its connection with the concurrent job schedul-
ing. Then, Section III sketches the design of D2-CAS, and
Section IV evaluates its performance. At last, Section V
summarizes the paper.

II. PROBLEM STATEMENT AND THEORETICAL ANALYSIS

In this section, we present the formal model of minimizing
the missed deadlines for a given set of coflows, and show that
such a schedule problem can be simplified to the well-known
NP-hard problem of minimizing the number of late jobs in a
concurrent open shop (or customer order scheduling) [13].

A. Problem Formulation

In our analysis, for simplicity, we abstract the entire data
center network fabric as a non-blocking switch [4, 9, 16]
interconnecting all hosts, and each port (both ingress and
egress) has one unit capacity. Corresponding, bandwidth
competition only occurs at these ingress ports or egress ports.

Consider a data center with m hosts serving n coflows,
labeled as D(1), D(2), . . . , D(n), respectively. Without loss
of generality, we suppose that each coflow involves m ×m
parallel flows between these hosts, and denote d(k)

i,j to be the
size of flow from host i to host j belonging to coflow D(k).
Following the notations of [11], if there are several flows from
host i to host j belonging to coflow k, d(k)

i,j stands for their
total volume; and if the coflow involves no flow from host
i to host j, d(k)

i,j is set as 0. For coflow k, it has a deadline,
Lk, implying the date by which it should be finished.

We further denote coflow k’s traffic rate from host i to j at
time t as r(k)

i,j (t), and its completion time as Ck, and introduce
a binary variable xk to denote whether this coflow completes

within its deadline; then, for these coflows, maximizing the
number of coflow meeting its deadline is to pursue the
object of Equation (1), while subjecting to the constraint of
bandwidth capacity at ingresses and egresses, as mathematical
program {(1), (2a), (2b), (2c), (2d), (2e)} says.

Maximize
n∑
k=1

xk (1)

subject to,

xk =

{
1 Ck ≤ Lk
0 Ck > Lk

(2a)

∀(k, i, j) :

∫ Ck

0

r
(k)
i,j (t)dt = d

(k)
i,j (2b)

∀(t, i) :

n∑
k=1

m∑
j=1

r
(k)
i,j (t) ≤ 1 (2c)

∀(t, j) :

n∑
k=1

m∑
i=1

r
(k)
i,j (t) ≤ 1 (2d)

∀(k, i, j, t) : 0 ≤ r(k)
i,j (t) ≤ 1 (2e)

B. Connection with Concurrent Open Shop Scheduling

Intuitively, coflow scheduling is quite similar to the well-
known concurrent open shop scheduling problem [13, 17,
18].1 For instance, we can treat the job in concurrent open
shop scheduling as a specified type of coflow whose demand
matrix is diagonal (i.e., d(k)

i,j = 0 when i 6= j). Indeed,
recent literature has shown their close connections if the
objective is to optimize the average completion time [4, 11].
In this part, we go further by showing how to construct an
open shop scheduling problem for each coflow scheduling on
minimizing their missed deadlines in common sense.

We start by considering the schedule of a single coflow.
Given a coflow, D(k), for example, let ρ(D(k)) (or ρk for
short) denote its maximum total loads on hosts, which can
be calculated by Equation (3). In this paper, we assume that
coexisting flows preempt the network bandwidth according to
their priorities [8, 11], and flow senders perform ideally TCP-
alike rate controls [11].2 Consequently, as no other coflow
exists, the coflow must be finished at time ρ(D(k)). By letting
g

(k)
i =

∑m
j=1 d

(k)
i,j and g(k)

i+m =
∑m
j=1 d

(k)
j,i , we get ρ(D(k)) =

maxi=1,...,2m g
(k)
i , which is exactly the case of scheduling

one concurrent job on 2m machines, where g(k)
i stands for

its task on machine i.

ρ(D(k))=max

max
i

m∑
j=1

d
(k)
i,j

,max
j

{
m∑
i=1

d
(k)
i,j

} (3)

1Definition of Concurrent Open Shop Scheduling: Suppose that there are
m machines with each capable of processing one operation type. We have n
jobs; each job involves multiple types of operations, which can be processed
in parallel. The objective of job scheduling can be minimizing their total job
completion times, or minimizing the number of late jobs when each job has
a hard deadline (or due date) [13, 17, 18].

2This assumption is only used for theoretical analysis. Our proposed
solutions, CS-MHA and D2-CAS, do not require it to be hold anymore.

Then, let’s consider the schedule of two coflows, saying
D(s) and D(t). For ease of description, we use the “+”
operation of coflow defined by literature [11] to represent the
“merging” of coflows in this paper. For example, D(s) +D(t)

will produce another coflow D(u), whose demands from host
i to host j (i.e., d(u)

i,j) is defined by d(s)
i,j +d

(t)
i,j . When treating

D(s) and D(t) together as a “big” coflow, D(u), we obtain
the similar conclusion for it—D(u) must be able to complete
at ρ(D(u)) as well. That is to say, following a certain
schedule, both D(s) and D(t) can be finished within ρ(D(u))
simultaneously, i.e., max{Cs, Ct} = ρ(D(s) + D(t)). By
substituting D(s) +D(t) into Equation (3), we further obtain
max{Cs, Ct} = maxi=1,...,2m (g

(s)
i + g

(t)
i) as Equation (4)

shows, which is exactly the case of scheduling two concurrent
jobs on 2m machines, where g(k)

i stands for the task of job
k on machine i.

max{Cs, Ct} = ρ(D(s) +D(t))

=max

max
i

m∑
j=1

(d
(s)
i,j +d

(t)
i,j)

,max
j

{
m∑
i=1

(d
(s)
i,j +d

(t)
i,j)

}
=max

max
i

m∑
j=1

d
(s)
i,j +

m∑
j=1

d
(t)
i,j

,max
j

{
m∑
i=1

d
(s)
i,j +

m∑
i=1

d
(t)
i,j

}
= max
i=1,...,2m

(g
(s)
i + g

(t)
i)

(4)

Note that, we can treat any number of coflows as a single
“big” coflow. That is to say, following the same approach
proposed above, we obtain the way to construct relevant
concurrent open job scheduling for every coflow scheduling.
Accordingly, for the specific problem of scheduling n coflows
to minimize the missed deadlines, by letting g(k)

i as job k’s
task on machine i, we reduce it to the problem of scheduling
n jobs on 2m machines to minimize the number of late jobs.
After solving this late job minimization problem, we will get
a set of admitted jobs and their permutation order towards
optimal scheduling. Finally, by setting each coflow’s flow
priority according to this permutation order, we can carry
out good deadline driven coflow scheduling as well.

At this point, we have sketched the connection between
coflow scheduling and concurrent open shop scheduling on
minimizing the number of missed deadline, and introduced a
simple mechanism to construct solutions for coflow schedul-
ing from that of the dual concurrent open shop scheduling.
However, it should be noted that further research needs to be
done to answer whether they are equivalent or not.

C. Computational Analysis

Lots of studies have attempted to design efficient schedule
schemes for minimizing the number of late jobs [13, 14, 17].
They imply that, in the case of single machine scheduling,
one can find an optimal solution in O(n log n) time by using
the Moore-Hodgso’s algorithm [14]; however, once there are
more than one machine, the problem is strongly NP-hard in
the ordinary sense [13, 17]. As is known, today’s data center

generally involves hundreds of thousands of machines [19].
Thus, in ordinary sense, minimizing the number of missed
deadlines for coflow is also strongly NP-hard.

It is worth noting that, if there is only one bottleneck port
or the coflow loads on ports are in agreeable conditions [13],3

the capacity constraints on multiple ports can be reduced into
a single one; then Moore-Hodgso’s algorithm is able to find
the optimal schedule scheme for these cases as well.

III. TOWARDS PRACTICAL SOLUTIONS

Inspired by the findings of concurrent open shop schedul-
ing, we design CS-MHA, an efficient deadline-aware coflow
schedule heuristics, and further proposed its decentralized
implementation, D2-CAS (Decentralized, Deadline-driven,
Coflow-Aware Scheduling system). In rough, D2-CAS (or
CS-MHA) decomposes the m-hosts coflow scheduling prob-
lem into m independent single host schedule problems and
employs Moore-Hodgso’s algorithm for the schedule on each
host. To erase the inconsistent of scheduling decisions be-
tween hosts, D2-CAS leverages a simple negotiation mecha-
nism to orchestrate the decisions for each coflow.

In the following, we firstly present the design of the
schedule algorithm, CS-MHA, in Section III-A, then discuss
how D2-CAS enforces this strategy in decentralized fashions
in Section III-B.

A. Schedule Algorithm Design: CS-MHA

Local Schedule on Each Port. For the schedule on each
port/host, CS-MHA computes the schedule orders (stand-
ing for coflows’ flow priorities) by using the optimal
Moore-Hodgso’s algorithm. For simplicity, we use MHA to
denote this local schedule strategy on each port.

Suppose that there are n coflows on port i (an ingress or
egress). MHA first sorts coflows in order of non-decreasing
deadline (denote the order as Ui), and initializes the scheduled
coflow set Si = ∅, the excluded coflow set Ei = ∅, and
maximum load λi = 0. Then, MHA repeatedly picks an un-
scheduled coflow D(k) from Ui, adds it into Si, and updates
λi = λi + g

(k)
i . If λi does not exceed this coflow’s deadline,

Lk, MHA continues to schedule the next unscheduled coflow;
otherwise, MHA needs to remove the coflow with the heaviest
load on this port (denoted as k̄ = arg maxk∈Si{g

(k)
i }) from

Si, let λi = λi − g(k̄)
i , and add it into the excluded set Ei,

before handling the next unscheduled coflow.
After all coflows are checked, MHA has found the admitted

coflow set Si for port i. If port i happens to be the only
bottleneck port, or coflow loads on ports are agreeable, by
simply assigning decreasing flow priorities to coflows in Si in
increasing order of their deadlines, one can obtain the optimal
result of minimizing missed deadlines.

Global Orchestration. In practice, coflow loads are generally
disagreeable on ports [4]; consequently, different ports would

3{g(k)i } is agreeable means: for any port pair 〈i1, i2〉 and coflow ID pair
〈k1, k2〉, if g(k1)

ii
≤ g(k2)

i1
then g(k1)

i2
≤ g(k2)

i2
.

have various admitted sets. A straightforward solution for this
is to use ∩∀iSi as the global admitted coflow set, and deny
all the coflows in set ∪∀iEi. However, such a strategy is
conservative; the inconsistency between admitted sets might
result in a coflow being denied even if it can meet the
deadline—Because the reject of a prior coflow has released
sufficient bandwidth for this coflow. As a remedy, we can
let some “denied” coflows (i.e., those in ∪∀iEi) use the
remaining bandwidth, which might get finished within their
deadlines. In this paper, we simply let coflows in ∪∀iEi pre-
empt the residual bandwidth in increasing order of max∀i g

(k)
i

Lk+ε ,
the Minimum Bandwidth required on the Bottleneck port,
i.e., MinBB for short, where ε is a tiny constant avoiding
the divide-by-zero error. The design idea is, if a coflow has a
smaller MinBB, it is more likely to catch up with its deadline
by using the residual bandwidth. Finally, the entire process of
how a set of coflows are scheduled is as Algorithm 1 sketches,
which is 2m-approximation as Theorem 1 shows.

Algorithm 1 CS-MHA: Centralized Scheduling Based on MHA
Input: number of coflows n; number of hosts m; flow
demands d(k)

i,j ∈ R≥0 for all k ∈ N , i ∈M and j ∈M
Output: permutation order (i.e., priority) of coflows π :
{1, . . . , n} 7→ N . N is the set of coflow IDs

1: g
(k)
i ←

∑
j∈M d

(k)
i,j for all k ∈ N and i ∈M . Ingress

2: g
(k)
j+m ←

∑
i∈M d

(k)
i,j for all k ∈ N and j ∈M . Egress

3: S ← ∅; E ← ∅
4: for i← 1, 2, . . . , 2m do
5: Compute Si, Ei with MHA(Moore-Hodgso’s algorithm [14])
6: S ← S ∩ Si; E ← S ∪ Ei
7: end for
8: Sort S in increasing order of Lk and denote the list as P

9: Sort E in increasing order of max∀i g
(k)
i

Lk+ε and append them
to the right of P

10: π(i)← P [i] for i← 1, 2, . . . , |P |

Theorem 1. Algorithm 1 (CS-MHA) is 2m-approximation.

Proof. Denote Ê to be the set of missed deadlines in the
schedule constructed by Algorithm 1, and opt to be the
optimum result. Obviously, for any port i, |Ei| ≤ opt and
Ê ⊆ ∪2m

i=1Ei; namely, |Ê| ≤ | ∪2m
i=1 Ei| ≤

∑2m
i=1 |Ei| ≤

2m× opt. Thus, we obtain |Ê|opt ≤ 2m.

It is worth noting that, this theoretical bound is loose as
the analysis does not take the effect of the remedy shown in
Line 9 into account. Numerical results indicate that such a
schedule strategy obtains very good results.

B. Decentralized Implementation: D2-CAS
Recent studies have reported that today’s large-scale DCNs

prefer decentralized coflow schedule systems [5, 9, 11].
Accordingly, we design D2-CAS to implement CS-MHA in
a decentralized fashion.

In CS-MHA, by directly setting a coflow’s priority with
the interval to its deadline or its MinBB, we can avoid the

sort operations for S and E (Line 8-10). Such a scheme
also decouples the process of inter-coflow scheduling, so that
each coflow can schedule its own flows individually. For the
convenience of description, we design the flow priority of
each coflow as a tuple 〈P1, P2〉, where P1 is 0 or 1, denoting
whether that coflow belongs to set E or not, and P2 is a
positive real number denoting the interval to deadline or the
MinBB, depending on the value of P1.4 Consequently, data
senders only need to set the flow priority of coflow k with
tuple 〈0, Lk〉 if it is in set S, or 〈1, max∀i g

(k)
i

Lk+ε 〉 otherwise.
Inspired by D-CAS [9], the state-of-the-art decentralized

coflow scheduling system for average completion time opti-
mization, we design a similar robust negotiation mechanism
within each coflow’s data senders and receivers, to 1) test
whether a coflow belongs to set E = ∩∀iEi, and 2) compute
max∀i g

(k)
i in decentralized fashions. Note that, in practice,

it is hard for the data receiver to compute its Si and Ei,
because receivers could not figure out how many data it will
get for each coflow in advance.5 Consequently, D2-CAS does
not take the constraint on receivers into account when making
schedule decisions as well.

Algorithm 2 D2-CAS: Decentralized Scheduling Based on MHA
Operations on Sender i . called every-δ

1: Get Ui, the set of unexpired coflows on this sender
2: Update Lk, the interval to coflow k’s deadline, and d(k)

i,j ,
the size of k’s untransmitted data on this sender,for k∈Ui

3: Compute Si and Ei for Ui with MHA
4: Announce 〈0, Lk〉, coflow k’s desired-priority (i.e.,
pd

(k)
i), to all k’s receivers, for k ∈ Si

5: Announce 〈1, max∀i g
(k)
i

Lk+ε 〉, coflow k’s desired-priority

(i.e., pd(k)
i), to all k’s receivers, for k ∈ Ei

6: Wait two RTTs, and denote M (k)
i as the set of coflow

k’s feedbacks; add pd(k)
i into M (k)

i , for k ∈ Ui
7: Update the priority of coflow k’s data transfers to

maxM
(k)
i , for k ∈ Ui

Operations on Receiver j . called on getting pd(k)
i

8: Use pd(k)
i to update B(k)

j , the bucket of received desired
priorities this receiver cached for coflow k

9: Remove expired messages from B
(k)
j

10: Send maxB
(k)
j , coflow k’s feedback-priority, to sender i

D2-CAS shares the same system framework and workflow
with D-CAS. The operations data senders and receivers
performing are sketched by Algorithm 2. Roughly, each
data sender schedules a coflow by periodically adjusting

4In practice, it is easy to convert such tuple-style priorities to single-value
priorities that data center switches support [5, 8], by using f(〈P1, P2〉) =
P1×Mp+P2, where Mp is a big positive number larger than the maximum
of P2. If switches have limited priority queues [8], we can design mapping
schemes to convert tuple-style priorities into the supported priority queues.
We leave this to further work.

5Similar to prior work [4, 8], we assume that a flow’s information such
as total size and remaining size is available at its sender.

its flow priority to a negotiated value. At each turn, the
sender firstly computes its local Si and Ei based on the
latest information of unexpired coflows (Line 1-3). For each
unexpired coflow on it, the sender generates a desired-priority
and announces this value to all the coflow’s data receivers
(Line 4-5). On getting coflow k’s desired-priority message
from host i, the receiver will choose the maximum desired-
priority announced by the same coflow recently, and sends
it back to sender i (Line 8-10). Finally, for coflow k, the
sender computes the maximum priority value among desired-
priority and feedbacks, and uses this maximum priority value
to deliver k’s data (Line 7). Note that, as tuple 〈1, x〉 is always
larger than tuple 〈0, y〉 (the larger value the lower priority
here), once a coflow is assigned into set Ei at a sender, all
other colleague senders will know this by using such a max(·)
driven negotiation.

About System Overhead. The operation on each receiver is
quite simple; so we mainly focus on sender operations here.
Obviously, to perform deadline-aware coflow scheduling, a
sender will recall MHA and announce the computed results
to coflow receivers, every δ-interval. Recall that, the worst-
case time complexity of MHA is O(n log n), where n is the
number of coflows held by the sender. Such a computation
task is quite easy for today’s hardware. As for the com-
munication overhead, each sender only needs to announce
the desired priority computed by MHA to the hosts that are
fetching (coflow) data from it. Compared with these coflow
data transfers, such a priority information only occupies a
few bytes, very trivial in today’s data center networks.

IV. PERFORMANCE EVALUATION

In common with recent literature [4, 9], we develop a
flow-level simulator to evaluate the performance of D2-CAS
by performing a detailed replay of coflow traces generated
with real-world parameters [4, 15]. The preliminary numerical
results implies: D2-CAS would let about 17× more coflows
meet their deadline compared with per-flow fair-sharing, and
reduces the missed deadlines about 2× compared with Varys.

A. Setup

We use the generator (named CustomTraceProducer
in [15]) and real parameters provided by Varys [4] to syn-
thesize coflow traces. Without declaration, all tests are based
on 400 coflows served by a cluster with 80 hosts, in which,
both the ingress and egress of the DCN fabric are set with
the capacity of 1 Gpbs. Coflows are assumed to arrive in a
Poisson process with parameter λ, while all flows in a coflow
are assumed to arrive simultaneously. To avoid overloading
nor underloading the network, λ is set as NetworkThroughput

MeanOfCoflowSize

by defaults (Under this setting, E(NetworkLoad) = 1) [9].
In common with prior work [4, 8], for each coflow k, we
set its deadline constraint to be (1 + z) × ρk, where ρk is
its minimum completion time in an empty network, and z is
a randomly real number following an uniform distribution
U [0, 2x] [4], or an exponential distribution Exp(x) [8].
Unless otherwise specified, the mean value of z is set as

CS-MHA D2 -CAS Varys FS
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f c
of

lo
w

s
th

at
 m

ee
t t

he
ir

de
ad

lin
es Uniform Exponential

Fig. 1. D2-CAS let more coflows meet deadlines than Varys [4] and FS, the
default per-flow fair-sharing scheme.

1. For each set of test parameters, we generate 20 trials to
calculate its average and [min, max] range (See errorbars in
the result figures).

B. Results

Fig. 1 shows that, under both uniform and exponential
deadline distributions, D2-CAS always increases the pro-
portion of coflows that meet the deadline to 80%, which
outperforms the result of the per-flow fair sharing scheme
about 17×, and reduces the missed deadlines about 2×
compared with Varys—About 40% coflows miss their dead-
lines with Varys, while less than 20% coflows miss with
D2-CAS. The per-flow fairness performs poorly because it
overlooks deadline requirements of flows when scheduling;
in such cases, coflows with tight deadlines could not get
finished in time. As for Varys, despite it admits and schedules
coflows according to their deadlines, its naive non-preemptive
schedule would works badly—Because the coflow size is
heavy-tailed in practice [4, 10], the admission of a large
coflow would result in many deadline-sensitive small coflows
being denied.

Besides, we also observe the close performance between
D2-CAS and CS-MHA. In the test, CS-MHA performs online
coflow scheduling with a centralized controller. On each
coflow arrival, the controller calls Algorithm 1 to get a
new priority assignment for all unexpired coflows; then
senders uses the new priorities to delivery data. The small
performance gap between CS-MHA and D2-CAS suggests
that neglecting the coflow loads on the receiver when making
scheduling has a little effect on the schedule effectiveness.

To investigate the impact of network load and deadline
requirement on schedule results, we vary the network load
from 0.4 to 1.4 by controlling λ,6 and vary the mean of
the uniform/exponential distribution (i.e., x) from 0.25 to 5.
Fig. 2 and Fig. 3 show how the percentage of deadline-met
coflows changes. As expected, less percentage of coflows
will meet their deadlines when the network is overloaded;
while more coflows will meet their deadlines when the
deadline distribution parameter x has a larger value. When the
network is underloaded, each coflow gets more bandwidth;
they are more likely to meet the deadline. Similarly, with the

6Note that, a coflow will automatically expire after its deadline; so the
system’s coflow queue always has a limited length even if the network load
computed by λ is larger than 1.

0.4 0.6 0.8 1.0 1.2 1.4
Work load (Uniform deadlines)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f c
of

lo
w

s
th

at
 m

ee
t t

he
ir

de
ad

lin
es

D2 -CAS
Varys

FS

0.4 0.6 0.8 1.0 1.2 1.4
Work load (Exponential deadlines)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f c
of

lo
w

s
th

at
 m

ee
t t

he
ir

de
ad

lin
es

D2 -CAS
Varys

FS

Fig. 2. Impact of network loads.

0 1 2 3 4 5
Coflow deadline Dk =(1 +U[0,2x])×ρk

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f c
of

lo
w

s
th

at
 m

ee
t t

he
ir

de
ad

lin
es

D2 -CAS
Varys
FS

0 1 2 3 4 5
Coflow deadline Dk =(1 +Exp(x))×ρk

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f c
of

lo
w

s
th

at
 m

ee
t t

he
ir

de
ad

lin
es

D2 -CAS
Varys
FS

Fig. 3. Impact of deadline distributions.

mean value x increasing, coflows get looser deadlines; then
more coflows can meet their deadlines.

All these results confirm the significant improvements of
D2-CAS over Varys and the per-flow fairness scheme under
various settings. Specifically, the number of coflows that miss
their deadlines under the schedule of D2-CAS is always less
than half of that of Varys.

V. CONCLUSION

This paper has shown the connection between coflow
scheduling and concurrent job scheduling on minimizing
the missed deadlines, and sketched the design of D2-CAS,
an efficient, decentralized, deadline-aware coflow scheduling
solution. Preliminary simulations imply that, even as a de-
centralized solution, D2-CAS is effect on letting more time-
sensitive coflows meet their deadlines than centralized Varys.

Acknowledgements. This work was supported in part by the
973 Program under Grant No. 2013CB329103, the 863 Pro-
gram under Grant No. 2015AA015702 and 2015AA016102,
the National Natural Science Foundation of China under
Grant No. 61271171, 61271165, and 61571098, the Ministry
of Education - China Mobile Research Fund under Grant
No. MCM20130131, and the China Postdoctoral Science
Foundation under Grant No. 2015M570778, .

REFERENCES

[1] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in SIGCOMM,
Aug. 2011, pp. 50–61.

[2] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware Datacenter
TCP (D2TCP),” in SIGCOMM, Aug. 2012, pp. 115–126.

[3] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. 11th ACM HotNets, 2012, pp. 31–36.

[4] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in SIGCOMM, Aug. 2014, pp. 443–454.

[5] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentral-
ized task-aware scheduling for data center networks,” in SIGCOMM,
Aug. 2014, pp. 431–442.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra.” in
SIGCOMM, Aug. 2011, pp. 98–109.

[7] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in SIGCOMM, Aug. 2012, pp. 127–138.

[8] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,”
in SIGCOMM, Aug. 2013, pp. 435–446.

[9] S. Luo, H. Yu, Y. Zhao, B. Wu, S. Wang, and L. Li, “Minimizing
Average Coflow Completion Time with Decentralized Scheduling,” in
IEEE ICC, June 2015, pp. 307–312.

[10] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in SIGCOMM, Aug. 2015, pp. 393–406.

[11] S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li, “Towards
Practical and Near-optimal Coflow Scheduling for Data Center Net-
works,” IEEE Transactions on Parallel and Distributed Systems, doi:
10.1109/TPDS.2016.2525767 .

[12] Y. Gao, H. Yu, S. Luo, and S. Yu, “Information-agnostic coflow
scheduling with optimal demotion thresholds,” in IEEE ICC, May 2016.

[13] B. Lin and A. Kononov, “Customer order scheduling to minimize the
number of late jobs,” European Journal of Operational Research, vol.
183, no. 2, pp. 944 – 948, 2007.

[14] J. M. Moore, “An n job, one machine sequencing algorithm for
minimizing the number of late jobs,” Management Science, vol. 15,
no. 1, pp. 102–109, 1968.

[15] M. Chowdhury, “Flow-level simulator for coflow scheduling used in
varys,” https://github.com/coflow/coflowsim.

[16] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, Aug. 2008, pp. 63–74.

[17] T. A. Roemer, “A note on the complexity of the concurrent open shop
problem,” J. of Scheduling, vol. 9, no. 4, pp. 389–396, Aug. 2006.

[18] M. Mastrolilli et al., “Minimizing the sum of weighted completion
times in a concurrent open shop,” Operations Research Letters, vol. 38,
no. 5, pp. 390–395, Sep. 2010.

[19] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in SIGCOMM, Aug. 2009, pp. 51–62.

https://github.com/coflow/coflowsim

	Introduction
	Problem Statement and Theoretical Analysis
	Problem Formulation
	Connection with Concurrent Open Shop Scheduling
	Computational Analysis

	Towards Practical Solutions
	Schedule Algorithm Design: CS-MHA
	Decentralized Implementation: D2-CAS

	Performance Evaluation
	Setup
	Results

	Conclusion
	References

