
Eliminating Communication Bottlenecks in Cross-Device
Federated Learning with In-Network Processing at the Edge

Shouxi Luo1 Pingzhi Fan1 Huanlai Xing1 Long Luo2 Hongfang Yu2
1Southwest Jiaotong University 2University of Electronic Science and Technology of China

Abstract—Nowadays, cross-device federated learning (FL) is
the key to achieving personalization services for mobile users and
has been widely employed by companies like Google, Microsoft,
and Alibaba in production. With the explosive increase of
participants, the central FL server, which acts as the manager and
aggregator of cross-device model training, would get overloaded,
becoming the system bottlenecks. Inspired by the emerging wave
of edge computing, an interesting question is: could edge clouds
help cross-device FL systems overcome the bottleneck?

This article provides a cautiously optimistic answer by propos-
ing INP, an FL-specific In-Network Processing framework, along
with the novel Model Download Protocol of MDP and Model
Upload Protocol of MUP. With MDP and MUP, edge cloud nodes
along the paths in INP can easily eliminate duplicated model
downloads and pre-aggregate associated gradient uploads for
the central FL server, thus alleviating its bottleneck effect, and
further accelerating the entire training progress significantly.

Index Terms—Federated learning, in-network processing, edge
computing, transport protocol

I. INTRODUCTION

By sharing the models rather than the raw privacy-sensitive
data, cross-device Federated Learning (FL), an emerging dis-
tributed machine learning approach that enables end devices
like mobile phones to train models cooperatively, has been
widely deployed in production for personalization services
like on-device item ranking, next-word prediction, content sug-
gestions for on-device keyboards, and real-time e-commerce
recommendations [1]–[5]. Generically, FL models are trained
iteratively: in each round, a set of dynamically selected end
devices (EDs) first download the current model from the
central FL server (FLS) to launch the on-device training, then
upload their local gradients back to the FLS, which would
aggregate received gradients to obtain the new model [1].
Obviously, with the increase in the number of EDs, the
central FLS would become the bottleneck of the entire FL
system. Optimizing the performance of FL systems, especially
removing the bottleneck effects of FLS, becomes the key to
support very large-scale federated learning tasks [3].

This work. To enhance the performance of FLS, in this article,
we analyze the benefits of deploying in-network processing
nodes at edge clouds to provide cache and aggregation services
for large-scale cross-device federated learning, and propose

The work of Shouxi Luo was supported by NSFC Project 62002300 and
China Postdoctoral Science Foundation Project 2019M663552. The work of
Pingzhi Fan was supported by NSFC Project 62020106001 and 111 Project
111-2-14. The work of Long Luo was supported by NSFC Project 62102066.

Shouxi Luo is the corresponding author (sxluo@swjtu.edu.cn).

the FL-specific In-Network Processing framework of INP. We
find that using edge nodes for in-network model caching and
gradient aggregation brings a lot of benefits to FL systems.
Nevertheless, a pair of new domain-specific transport protocols
breaking the conventional wisdom of end-to-end transport
semantics are required, as existing protocols like the raw TCP
and UDP could not provide the needed features.

To fill the gap, we further propose the Model Download
Protocol (MDP) and Model Upload Protocol (MUP) along
with INP. Consider that multiple EDs residing in the same
region are performing the same FL task. By configuring edge
cloud nodes to cache recently downloaded model chunks for
possible subsequent duplicated requests from other EDs, and
pre-aggregate the gradient uploads from different EDs in a
short time interval, INP together with MDP and MUP is able
to reduce both the traffic load of FLS and the time needed by
model download and gradient upload, for an FL task involving
< EDs, from the magnitudes of $ (<) to $ (1) at most.

Novelty. Distinguished from the alternative idea of using edge
servers as local parameter servers for cross-device FL [3],
[6], both the cache of model and the aggregation of gradients
in INP can be implemented as specific types of in-network
processing services [7] upon existing Network Function Vir-
tualization (NFV) platforms [8], providing best-effort service
for cross-device FL traffic at the edge. As Section II-B will
show, such a design is easy-to-manage, generic, future-proof,
and achieves very fine-grained resource usage. Although a lot
of recent papers have put forward the vision of enhancing the
performance of mobile/IoT applications by deploying NFV-
enabled services in edge clouds, they mainly focus on the
abstracted coarse-grained resource allocation problem, without
considering the detail of how functions could be implemented
and supported by the underlying network [9], [10]. Indeed, as
this article will show, by using the domain-specific transport
protocols of MDP and MUP, INP would achieve very flexible
resource allocation at the granularity of per-packet. For in-
network model cache, the well-known data-centric network
architecture of NDN (Named Data Networking) meets the
requirements naturally. However, NDN has not been supported
by today’s Internet yet because of its clean-slate, incompatible
design [11]. Instead, INP only relies on widely-deployed
techniques thus is readily-deployable.

Contributions. Our main contributions are four-fold:
• A thorough analysis that identifies the benefits and chal-



lenges of applying edge-cloud-based in-network process-
ing for large-scale cross-device FL and sheds light on
future directions.

• INP, an FL-specified In-Network Processing framework
enabling cross-device FL systems highly scalable, and
accelerating training processes significantly.

• MDP and MUP, two UDP-based domain-specific transport
protocols achieving efficient model downloads and gra-
dient uploads for FL, by using the in-network cache and
aggregation services provided by edge boxes in INP.

• A simulation-based case study confirming the significant
benefits of MDP, MUP, and INP.

Next, we first introduce the background and motivation
of employing in-network processing for cross-device FL in
Section II, then propose our INP framework together with its
model download and upload protocols in Section III and IV,
respectively. A case study of INP’s performance follows in
Section V. Finally, Section VI concludes the article.

II. BACKGROUND AND MOTIVATION

FL applications today can be broadly categorized into two
kinds, namely cross-device FL and cross-silo FL, respecting
whether the participating clients are resource-limited devices
(e.g., mobile phones, vehicles), or source-abundant clusters
(e.g., private clusters own by financial or medical organi-
zations), respectively [5]. In this article, we focus on the
optimization of cross-device FL systems, in which a large
number of end devices are dynamically selected to train a
global model iteratively over wireless connections, with the
assistance of a centralized FLS as Figure 1 shows.

In the following, we first overview the communication
patterns involved in cross-device FL (§II-A), then discuss why
in-network processing at the edge is more promising than the
alternative idea of edge-based hierarchical FLS (§II-B), and
finally review why existing in-network aggregation solutions
designed for intra-datacenter distributed machine learning
could not solve the problem we focus on (§II-C).

A. Communication Patterns in Cross-Device FL

A cross-device FL system generally involves one logical
central parameter server (i.e., FLS) and a lot of dynamically
available clients (i.e., EDs); the iterative training is conducted
in rounds and each round is made of three phases namely
selection, configuration, and reporting as Figure 1 sketches. To
drive a round of training, the FLS first selects a set of EDs as
the participant training clients from those checked in recently
(i.e., selection); then, these selected EDs download the new
model from the FLS to start the training (i.e., configuration);
once completing their local training, EDs upload their local
gradients to the FLS (i.e., reporting), based on which, the FLS
will obtain the updated global model via aggregations [1].

Obviously, with the number of participants scaling up, the
central FLS becomes the bottleneck of the entire training. To
handle this problem, today’s FL systems in production have to
only select a few hundred out of tens of thousands of available

devices for each round of training, resulting in slow conver-
gence [1]. With the emerging and widespread employment of
edge clouds, one promising optimization for cross-device FL
is to employ nodes at the edge to cache the downloaded model
for the elimination of duplicated fetching, and pre-aggregate
multiple correlative gradient upload requests, from a group of
nearby EDs within a short interval, so that both the traffic
and computation loads on the FLS can be greatly reduced.
Indeed, such an optimization design could be treated as a
specific in-network processing service customized for cross-
device FL [7], yielding two levels of advantages:

• Making FL systems highly scalable. With edge-based
in-network processing, not only the traffic load on the
FLS, for both the model download and gradient upload
would be greatly reduced, but also parts of the aggre-
gation computation originally conducted by the FLS, are
offloaded and distributed to edge nodes. This makes FL
systems easy to adopt a large number of devices in each
round of training.

• Accelerating the training significantly. With the cache
and aggregation services provided by edge nodes, it
would take less time for EDs to download the model
and upload their local gradients. As the delivery of data
generally takes a non-trivial proportion or even dominates
the entire time cost of each round of training, reducing
the time on delivery would accelerate the training speed.
Moreover, to avoid negative impacts on the user expe-
rience, EDs only train models when they are idle and
would abort the training once conditions are no longer
met [1]. Thus, the availability of an ED is perishable
and the time slot might be short. Accordingly, reduced
communication time costs, along with a scaleable FLS,
would enable more EDs to contribute to each round of
training, accelerating the entire training progress in turn.

B. Why In-Network Processing Instead of Hierarchical FLS

Compared with performing in-network processing at the
edge, a very related alternative design is to deploy regional
parameter servers at the edge, which together with the central
FLS aggregate devices’ gradients hierarchically (i.e., Hierar-
chical FLS) [3], [6]. We argue that in-network processing is
more attractive in three aspects as Table I summarizes.

More specifically, in terms of applicability, hierarchical FLS
is an FLS-specific solution. FL applications owned by different
companies and organizations are generally built upon their
own specific versions of FL systems. To support them all,
hierarchial FLS has to deploy FLSes at the edge for each
FL system separately and explicitly. In practice, these edge
FLSes generally run inside virtual machines (VMs) or Linux
containers with pre-configured resources; accordingly, edge
cloud resources are allocated in a very coarse manner, at the
granularity of VMs or containers. Moreover, in hierarchical
FLS, all the deployed edge FLSes together with the central
FLS form a distributed system, thus complicated gradient
synchronization protocols are needed [3].



«
The i-th round of training

FLS

ED1

ED2

EDn

Training

EDs check in; 
FLS selects participants

Selected EDs download 
the model to train

EDs upload gradients
to FLS for aggregation

Training

Training

Training

1 2 3Selection Configuration ReportingEnd Devices (EDs) train models cooperatively, with the help of FLS.

Central FLS in Clouds

Fig. 1: The workflow and communication patterns of cross-device Federated Learning (FL) [1].

TABLE I: In-Network Processing vs. Hierarchical FLS.

Solution Applicability Resource allocation Manageability
Hierarchical FLS FLS-specific, requiring case-by-case designs and deployments Coarse-grained, per-VM or per-container Complicated

In-Network Processing FLS-agnostic, generic and future-proof Fine-grained, per-packet Easy

In contrast, as we will show through this article, in-network
processing can be implemented as an optional edge service that
provides best-effort in-network model caching and gradient
aggregating for FL tasks. Indeed, in-network processing is an
FLS-agnostic solution: in practice, the most common model
aggregation strategy is to compute a weighted average of the
gradients [3]; by implementing this function as a network
service, in-network processing based solution is generic and
able to support present and future FL algorithms. Also, there
is no need to deploy and run separate software instances
for different FL systems. For each FL training job, the in-
network processing instance can determine the cache or ag-
gregation operation of each packet solely, resulting in packet-
level resource allocation. Moreover, as an optional network
service, the management of in-network processing is simple
and decoupled from those of the supported FL systems.

C. Related Solutions and Their Limitations

Indeed, INP is not the first proposal that accelerates dis-
tributed model training with in-network processing. Recently,
researchers apply a similar idea named in-network aggrega-
tion for intra-DataCenter Distributed Machine Learning (DC-
DML), by configuring dataplane-programmable Top-of-Rack
(ToR) switches in the path as aggregators [12]–[14]. However,
since the workflow, underlying network, and available inter-
mediate processing nodes of cross-device FL are quite distinct
from those of DC-DML [12]–[16], the solutions they prefer
differ in many design aspects significantly.

Take ATP, the state-of-the-art in-network aggregation based
solution designed for DC-DML [12], as an example. Since

DC-DML systems are networked with high-throughput low-
latency links and use the same set of workers for each round of
training, ATP directly employs the arrival of a model chunk’s
new value as the acknowledgment of the associated gradient
upload triggered in the previous round; on the contrary,
gradient uploads in cross-device FL would not always be
followed by model downloads, as the participants of each
round change dynamically. Likewise, ATP employs Layer 3
multicast to deliver the new model; while cross-device FL
prefers to implement Layer 7 based cache at the edge cloud
since Layer 3 multicast is unavailable in the involved network.
Moreover, the congestion control of ATP relies on ECN, but
many devices in cross-device FL might do not enable ECN. As
well, ATP only supports simple resource allocations since its
aggregation logic is implemented in specific P4-programmable
hardware for line-rate processing; instead, cross-device FL
is faced with slow and high-latency connections, thus any
advanced schemes that can be implemented in software would
work. A promising design is to implement INP’s cache and
aggregation services upon existing NFV platforms [8].

III. INP FRAMEWORK

As Figure 2 shows, a typical INP-enhanced cross-device
FL system involves three types of elements, namely FL Server
(FLS), End Device (ED), and Edge Box (EB), respectively, in
which the EB acts as an optional cache and aggregation box
residing between the other two. To start a round of training,
FLS first selects a group of EDs to pull the new model, using
the cache service provided by EBs. When completing the
training, EDs push their local gradients to the FLS, through



with 
Edge Box (EB)

Data channel

Data channel

without 
Edge Box (EB)

FLS

EDs

Traffic: MDP, MUP

Fig. 2: The framework of INP.

the optional aggregation services provided by EBs. Once
getting sufficient gradients, the FLS generates the final global
aggregated model and move to the next round of training.

Inside INP, participant elements set up two types of chan-
nels, i.e., control channel and data channel, for the involved
data transmissions, respecting whether their transfers can be
optimized/accelerated by the EBs of INP, or not. Basically,
the control channel is employed for the exchange of signal
messages like the join, leave, and select of EDs, and such
a feature is already supported by modern commercial FL
systems [1], [2], while the data channel is used for the delivery
of model and gradient values, with the assistance of EBs.

To get the best advantage from EBs for data channels, INP
employs two novel transport protocols, namely MDP (Model
Download Protocol) and MUP (Model Upload Protocol), to
achieve efficient and reliable model downloads and gradient
uploads, respectively. Both protocols are built upon UDP thus
easy to deploy. Model and gradient values in INP are split into
chunks, each of which, along with the MDP or MUP header,
is encapsulated in a single UDP packet. Such a design not
only enables INP traffic safe to go through today’s wide-area
networks made up of a lot of middleboxes, but also makes
the proposed MDP and MUP easy to deploy at end devices like
smartphones, since they can be implemented at the application
layer without touching the network stack.

EBs in INP are designed to act as transparent proxies
between EDs and the central FLS. For FL systems involving a
huge amount of EDs across multiple regions, a group of EBs
could be deployed and configured to work hierarchically, such
that the load of the central FLS could be further reduced.

IV. INP PROTOCOLS

Now, we present how INP protocols achieve efficient model
downloads and gradient uploads, by using EBs as cache nodes
and in-network aggregators, respectively. In production, the
functions of both the cache and aggregation involved by EBs
are easy to implement as software, thus EBs can be built upon
today’s NFV systems [7], [8]. To be practical, INP protocols
are designed to work gracefully without EBs.

A. MDP
As Figure 3 shows, MDP is a “request-reply” based protocol:

to download the model, the ED first sends a request (or req for
short) to the FLS; on getting a req, the FLS replies with the

MDP

MUP

without EB with EB

1 req
2cwnd

FLSED

1 chunk
2

cache 
miss

1
1

chunk

req
req

cache
cache 

hit

1
req

chunk

FLSEBED1 ED2

FLSED

1

1

ack

chunk
2cwnd

2

1 chunk
cache 

aggregate
chunk

1
req

ack

FLSEBED1 ED2

ack

chunk

ack

Fig. 3: The workflows of MDP and MUP.

desired chunk(s) of the model value. Like the reliable design
of TCP, in case a sent request is considered as lost, the ED
would resend; to make efficient use of the available bandwidth,
the ED also maintains an Additive Increase Multiplicative
Decrease (AIMD) congestion window (i.e., cwnd) like that of
TCP [17] to control the number of in-flight requests.

Basically, compared with TCP, besides relying on UDP
rather than raw IP, MDP mainly has four differences, making it
outstanding for the download of chunked model values. First,
as signal and management messages in INP are delivered
via the separated control channels, MDP does not require
handshakes to establish or close data channel connections for
chunks. Second, for each download task, MDP only needs
a one-way, rather than bidirectional, connection. Third, a
download task completes only when all its involved values are
fetched, thus MDP does not require severe in-order delivery;
such a characteristic can be employed to optimize the involved
congestion controls. As for the loss of packets, like the design
of PUSH protocol [18], EDs would treat an MDP request or
reply as lost, on receiving the replies of AHEADREPLYNUM
(e.g., 3) requests sent after it. Fourth and most important, MDP
is designed to leverage EBs on the way as cache nodes, so that
multiple download requests of the same chunk from nearby
EDs can be accelerated by their shared EB.

The workflow of EB-assisted MDP is as the upper right of
Figure 3 shows. On receiving a request, the EB checks whether
it holds the desired chunk; if so (i.e., cache hit), it replies
directly, otherwise (i.e., cache miss), forwards the request to
the FLS, and caches the corresponding reply when it goes
by. Essentially, the EB works as a transparent cache proxy
for MDP; thus, it is the duty of MDP to deal with the loss of
packets. In practice, to achieve high performance, the cache
needed by MDP is generally implemented in memories, which



are with limited volume sizes. For the management of cache,
the well-known algorithm of Time-aware Least Recently Used
(TLRU) is a promising candidate.

Note that, the EB would also work as the aggregator for
gradient uploads as §IV-B will show. To know the proportion
of EDs whose gradient uploads have been aggregated, the
EB would count and record the number of EDs that have
downloaded each model in each round as well.

B. MUP
Very similar to the design of MDP, MUP is a “send-ack”

based protocol designed for the upload of gradients as Figure 3
shows. When local gradients are ready, the ED should split
gradients into chunks; then, each chunk, together with its index
(for serialization) and weight (for weighted aggregation, with
the initial value of 1) will be packed as the payload of a UDP
datagram then sent to the FLS. On getting a gradient chunk,
the FLS sends an acknowledgment packet (or ack for short)
immediately. Also, by measuring the arrival of acks, like the
design of MDP, the ED adjusts its cwnd, learns the possible
loss of data packets and resends.

As Figure 3 shows, when there exists an EB in the path, it
would work as an aggregator. More specifically, on receiving
a piece of gradient chunk, besides generating the acknowledg-
ment, this EB would cache it, or update the cached weighted
average value of the gradients, in which the value of the carried
weight represents the total number of EDs this gradient chunk
is computed from. Once the EB has received most or all
the possible gradients that would go through this EB, or the
time starting from the caching/creation of this gradient chunk
exceeds a pre-defined timeout threshold, the EB would act as
a specified ED and sends the aggregated gradient values, along
with the updated weight value, to the final FLS. By default,
the value of the weight represents the number of EDs that
the aggregated gradient chunk is computed from. In case an
aggregated chunk does not get acknowledged, the EB would
conduct retransmissions just like an ED.

Recall that, the EB also maintains these unsent and un-
acknowledged aggregated chunks in the memory. When the
memory runs out, like the case of MDP, the EB will proactively
evict some unreported gradient chunks from the memory and
send them to the FLS, in the First-In-First-Out (FIFO) manner.
In the worst case, due to the delay or loss of acknowledgment,
there might be no chunk that could be evicted. Then, the EB
can just let incoming MUP packets bypass the aggregation.

V. PERFORMANCE STUDY

Basically, the direct and significant benefit of INP is the
ability to reduce the involved traffic load on FLS for both the
download of models and upload of gradients with in-network
cache and aggregation at the edge, thus reducing the time costs
and supporting more numbers of EDs in turn. Now, let’s verify
the above advantages, by comparing the performance of EB-
assisted INP with that of EB-disabled INP. In short, packet-
level detailed simulations imply that, for an FL task involving
< EDs, INP equipped with MDP and MUP is able to reduce

(a) Impact of the number of EDs
on the traffic load of FLS.

(b) Impact of the number of EDs
on the time of model download.

(c) Impact of the number of EDs
on the traffic load of the FLS.

(d) Impact of the number of EDs
on the time of gradient upload.

Fig. 4: INP greatly reduces the traffic load (in terms of the
total volume) of FLS and the time needed by EDs for both
the model download and gradient uploads, nearly from the
magnitudes of $ (<) to $ (1), for a task involving < EDs.

both the traffic load of FLS and the time needed by model
download and gradient upload up to < times.

Methodology. Consider a simplified case in which multiple
EDs are training a model with the size of 10MB through
100Mbps connections jointly. We assume that INP splits this
model into chunks with the size of 1KB; and if enabled, the
EB at the edge can perform in-network cache and aggregation
for the passing model download and gradient upload requests,
simultaneously. The arrival time of each download or upload
request is generated according to min(- , 5), where - follows
the exponential distribution of ⇢G?(1). To study the perfor-
mance of INP under various numbers of participant EDs and
allocated in-network processing memory sizes, we implement
an ns3-alike discrete event-driven simulator in Python 3 based
on [18], which precisely simulates the behavior of INP with
and without the EB, respectively. By default, there are 20
EDs and the EB has sufficient memory for both the cache
and aggregation. For each parameter setting, we conduct 40
trials to compute their mean values and standard deviations.

Case study. As Figure 4a shows, provided the EB has
sufficient memory for cache, while the traffic load of FLS
without the assistance of EB grows linearly with the increase
in the number of involved EDs, the load only increases a little
by using the cache service provided by EB. Basically, the
slightly increased traffic amount is reasonable respecting the
current design of INP: when multiple EDs are downloading
the same model in a very short time before the fetched
model chunk arrives, EB simply forwards all these download
requests to the FLS, even if they are querying the same



(a) Impact of the cache size on the
traffic load of FLS.

(b) Impact of the cache size on
the time of model download.

(c) Impact of the cache size on the
traffic load of FLS.

(d) Impact of the cache size on
the time of gradient upload.

Fig. 5: Compared with EB-assisted model downloads (MDP),
the performances of EB-assisted gradient uploads (MUP) are
more sensitive to the size of allocated cache memory.

chunk. Such increased traffic can be reduced with advanced
optimizations like hanging duplicated requests up, which are
left as future work. Regarding the in-network aggregation of
gradient uploads, as Figure 4c shows, with aggregation, the
traffic load of FLS remains unchanged. Notably, it is obvious
from Figures 4b and 4d that for both model download and
gradient upload, the completion times under the assistance of
EB grow with the number of EDs, and keep consistent after
exceeding 5s. This is mainly due to the test settings: basically,
a download is considered as completed when all EDs have held
the model, and an upload is treated as completed when the
FLS has received all ED gradients, whereas the arrival time of
each download and upload request is min(- , 5) seconds and -
follows ⇢G?(1). All these results indicate that EB helps MDP
and MUP achieve near-optimal performance on the download
of model and upload of gradients.

Impact of cache size. Note that, both the cache and ag-
gregation needed by INP would occupy the memory of EB
for chunk caching. Hence, we also want to know how the
performance would change in case the EB runs out of memory.
Figure 5 shows the impacts of allocated memory volumes,
normalized by the model size of 10MB, on the performance of
INP. Without surprise, for both the model download and gra-
dient upload, fewer memory sizes yield worse performances,
in terms of both the traffic volume of FLS and completion
time. And interestingly, compared with gradient uploads, the
performance of model downloads is less sensitive to the size
of allocated memory. For instance, in the studied case, for
model downloading, just 2MB cache memory can eliminate
more than 60% of FLS’s traffic, saving about 50% of the time,
while the reduced traffic volume and time cost for gradient

upload are less than 30% and 20%, respectively. Currently,
EBs manage their memories for model cache and gradient
aggregation following the simple TLRU and FIFO strategies,
respectively. There is room for optimization and we leave the
design of advanced algorithms as future work.

VI. CONCLUSIONS

In conclusion, we design INP, an In-Network Processing
framework, along with the novel Model Download Protocol
(MDP) and Model Upload Protocol (MUP), to accelerate the
data deliveries involved in large-scale cross-device FL sys-
tems. The key of INP is to let Edge Boxes (EBs) residing
between the selected training End Devices (EDs) and the FL
Server (FLS) act as the cache node for model downloads and
aggregator for gradient uploads. A packet-level case study of
the performance indicates that INP could successfully reduce
both the traffic load of FLS and the needed times of model
downloads and gradient uploads, for a training task involving
< EDs, from the magnitudes of $ (<) to $ (1) at most.

REFERENCES

[1] K. Bonawitz, H. Eichner, W. Grieskamp et al., “Towards federated
learning at scale: System design,” Proceedings of Machine Learning
and Systems, vol. 1, pp. 374–388, 2019.

[2] C. Niu, F. Wu, S. Tang et al., “Billion-scale federated learning on mobile
clients: A submodel design with tunable privacy,” in 26th MobiCom.
ACM, 2020.

[3] Y. Shi, K. Yang, T. Jiang et al., “Communication-efficient edge ai:
Algorithms and systems,” IEEE Commun. Surveys Tuts., vol. 22, no. 4,
pp. 2167–2191, 2020.

[4] Y. Zhan, P. Li, Z. Qu et al., “A learning-based incentive mechanism for
federated learning,” IEEE Internet of Things Journal, vol. 7, no. 7, pp.
6360–6368, 2020.

[5] P. Kairouz, H. B. McMahan, B. Avent et al., “Advances and open
problems in federated learning,” CoRR, vol. abs/1912.04977, 2019.

[6] L. Liu, J. Zhang, S. H. Song et al., “Client-edge-cloud hierarchical
federated learning,” in IEEE ICC, 2020.

[7] R. Stoenescu, V. Olteanu, M. Popovici et al., “In-net: In-network
processing for the masses,” in 10th EuroSys, 2015.

[8] A. Panda, S. Han, K. Jang et al., “Netbricks: Taking the v out of NFV,”
in 12th USENIX OSDI, Nov. 2016, pp. 203–216.

[9] Y.-Y. Shih, H.-P. Lin, A.-C. Pang et al., “An nfv-based service framework
for iot applications in edge computing environments,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 4, pp. 1419–1434, 2019.

[10] P. Jin, X. Fei, Q. Zhang et al., “Latency-aware vnf chain deployment
with efficient resource reuse at network edge,” in IEEE INFOCOM,
2020, pp. 267–276.

[11] L. Zhang, A. Afanasyev, J. Burke et al., “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014.

[12] C. Lao, Y. Le, K. Mahajan et al., “ATP: In-network aggregation for
multi-tenant learning,” in 18th USENIX NSDI, Apr. 2021.

[13] A. Sapio, M. Canini, C.-Y. Ho et al., “Scaling distributed machine
learning with in-network aggregation,” in 18th USENIX NSDI, Apr.
2021, pp. 785–808.

[14] N. Gebara, M. Ghobadi, and P. Costa, “In-network aggregation for
shared machine learning clusters,” in Proceedings of Machine Learning
and Systems, vol. 3, 2021, pp. 829–844.

[15] S. Luo, P. Fan, K. Li et al., “Fast parameter synchronization for
distributed learning with selective multicast,” in IEEE ICC, 2022.

[16] S. Luo, H. Yu, K. Li et al., “Efficient file dissemination in data center
networks with priority-based adaptive multicast,” IEEE J. Sel. Areas
Commun., vol. 38, no. 6, pp. 1161–1175, 2020.

[17] M. Polese, F. Chiariotti, E. Bonetto et al., “A survey on recent advances
in transport layer protocols,” IEEE Commun. Surveys Tuts., vol. 21,
no. 4, pp. 3584–3608, 2019.

[18] S. Luo, T. Ma, W. Shan et al., “Efficient multisource data delivery in
edge cloud with rateless parallel push,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 10 495–10 510, 2020.


