
Fast Parameter Synchronization for Distributed
Learning with Selective Multicast

Shouxi Luo1 Pingzhi Fan1 Ke Li1 Huanlai Xing1 Long Luo2 Hongfang Yu2
1Southwest Jiaotong University 2University of Electronic Science and Technology of China

Abstract—Recent advances in distributed machine learning
show theoretically and empirically that, for many models, pro-
vided workers would participate in the synchronizations eventu-
ally, 8) the training still converges, even if only ? workers take
part in each round of synchronization, and 88) a larger ? generally
leads to a faster rate of convergence. These findings shed light on
eliminating the bottleneck effects of parameter synchronization
in large-scale data-parallel distributed training, having motivated
several optimization designs.

In this paper, we focus on optimizing the parameter synchro-
nization for peer-to-peer distributed learning, in which workers
generally broadcast or multicast their updated parameters to
others for synchronization, and propose SELMCAST, an expres-
sive and Pareto-optimal multicast receiver selection algorithm,
to achieve the goal. Compared with the state-of-the-art design
that randomly selects exactly ? receivers for each worker’s
multicast in a bandwidth-agnostic way, SELMCAST chooses
receivers based on the global view of their available bandwidth
and loads, yielding two advantages. Firstly, it could optimize
the bottleneck sending rate, thus cutting down the time cost
of parameter synchronization. Secondly, when more than ?

receivers are with sufficient bandwidth, they would be selected
as many as possible, bringing benefits to the convergence of
training. Extensive evaluations show that SELMCAST is efficient
and always achieves near-optimal performance.

Index Terms—Distributed learning, receiver selection, param-
eter synchronization

I. INTRODUCTION

Over the past decade, machine learning techniques have
obtained huge success and have been widely employed for
various applications like email filtering, advertising recom-
mendation, speech recognition, machine translation, computer
vision, etc [1]–[4]. With the increasing popularity of machine
learning and rapid developments of new technologies, the
realistic quantities of training data for a learning task have
increased from GBs to TBs and PBs. Data-parallel distributed
training becomes the key to obtaining the resulting model over
such a massive of data within reasonable times [1]–[3].

In datacenter-based data-parallel distributed training, the
dataset is generally split then distributed among a group of
homogeneous high-performance servers (i.e., workers), each
of which holds a replica of the model and iteratively updates

The work of Shouxi Luo was supported by NSFC Project 62002300 and
China Postdoctoral Science Foundation Project 2019M663552. The work of
Pingzhi Fan was supported by NSFC Project 62020106001 and 111 Project
111-2-14. The work of Ke Li was supported by Project of Network and Data
Security Key Laboratory in Sichuan Province NDS2022-1. The work of Long
Luo was supported by NSFC Project 62102066.

Shouxi Luo is the corresponding author (sxluo@swjtu.edu.cn).

its model values with local training. To guarantee convergence,
these workers will synchronize their new resulting models
periodically, via various communication topologies like the
star (i.e., parameter server), tree, ring, and peer-to-peer [2].
These schemes have various different properties regarding
latency, traffic overheads, and reliability, thus having been
employed by various learning systems and training algorithms.

With the continued growth of the training scale, the volume
of traffic triggered by parameter synchronization is increasing
greatly. Moreover, the wide employment of new hardware
like GPU, FPGA, and TPU, has repeatedly accelerated the
computation a lot, while the upgrade of network infrastructure
is relatively complicated and slow [5]. As a result, the non-
trivial time it takes for the underlying network to complete
the parameter synchronization would dominate the time cost
of the entire training, becoming the bottleneck. Optimizing
the communication bottleneck involved in parameter synchro-
nization is crucial for the implementation and deployment of
large-scale distributed machine learning. Indeed, this is a hot
research topic, where a large number of works are involved [1],
[2], [6]. Recent advances show theoretically and empirically
that, for many models, provided workers would participate
in the synchronization eventually, 8) the training would still
converge, even if there are only ? workers taking part in each
round of synchronization, and 88) a larger value of ? in average
generally leads to a smaller round of training to converge [3],
[7]–[11]. These findings shed light on the optimization of pa-
rameter synchronization, having motivated the improvements
of serval learning algorithms and systems [3], [7]–[11].

In this paper, we focus on accelerating the parameter syn-
chronization for peer-to-peer distributed learning, following
the works of Orpheus [3], Malt [11], and SFB [10], and
propose SELMCAST an expressive and Pareto-optimal mul-
ticast receiver selection algorithm to achieve the goal. More
specifically, in a naive peer-to-peer distributed training, to
drive a round of synchronization, each worker would broadcast
its new local model, or the model update, or the sufficient
factor of the model update to all other workers [3], [10]. As
a result, the synchronization of = workers would yield O(=

2
)

traffic volumes. For this issue, Orpheus [3], the state-of-the-art
proposal, lets each worker only deliver model updates to ? (out
of = � 1) randomly selected receivers in a bandwidth-agnostic
way. Such a design does reduce the total traffic volume and
guarantees eventual convergence. However, it still suffers from
two serious problems. Firstly, since the completion of model

synchronization is dominated by the slowest receiver, this
bandwidth-agnostic random selection might not remove the
bottleneck, thus bringing no improvement to the synchroniza-
tion with a high probability. Secondly, a larger proportion of
receivers involved in the synchronization generally leads to a
fewer rounds of training to converge [7], [8]; while Orpheus
misses this opportunity of optimization since it only chooses ?

receivers even if more receivers are with sufficient bandwidth.
As a comparison, SELMCAST picks receivers based on the

global view of their available bandwidth and loads heuristi-
cally. Despite that the original selection problem is hard in
theory, powered by insights stemming from a model-based
analysis of the problem, SELMCAST is efficient to achieve
Pareto-optimal selections efficiently. Extensive evaluations
imply that it makes near-optimal selections, outperforming
Orpheus significantly, in terms of both the completion time
of synchronization and the number of selected receivers.

In summary, the contributions of this paper are four-fold:
1) A thorough analysis of the drawbacks of random

bandwidth-agnostic multicast receiver selection (§II-B).
2) A pair of expressive mixed-integer and integer pro-

grammings that describe the optimal receiver selection
problem and motivate our algorithm designs (§III-B).

3) SELMCAST, an O(=
3
) bandwidth-aware receiver selec-

tion algorithm that constructs Pareto-optimal multicast
topologies for parameter synchronization (§III-C).

4) Extensive evaluations, showing that SELMCAST is ef-
fective, efficient, and near-optimal (§IV).

Next, we first overview the background and motivation
in §II, then formulate the problem, analyze it, and propose
SELMCAST to solve in §III. After that, performance eval-
uation and related work discussion follow in §IV and §V,
respectively. Finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Distributed Data-Parallel Training

Nowadays, distributed data-parallel (DDP) training is
widely employed by machine learning algorithms to train
models over massive amounts of data within reasonable times.
In DDP training, the dataset is split across a group of workers,
based on which, these workers train their local replicas of
the model iteratively in parallel. To guarantee convergence,
workers synchronize their updated local models periodically,
e.g., in every : epochs of local training. Regarding the
implementation of model synchronization, there are four types
of basic communication topology designs widely used by
DDP training algorithms today, namely, stars (i.e., parameter
server), trees, rings, and peer-to-peer, respectively [2].

These designs have different properties in terms of latency,
traffic overheads, reliability, etc., targetting for various appli-
cation scenarios. Among them, the peer-to-peer architecture is
fully decentralized, in which workers communicate with each
other directly, thus eliminating the single point of failure and
bottleneck. Currently, peer-to-peer parameter synchronization
has been supported by many distributed machine learning

Fig. 1: The probability that a given worker happens to obtain
the balanced load (i.e., < = ?) is small; it decreases drastically
then increases slowly, with the growth of ?.

frameworks like TensorFlow, Pytorch, MXNet, MALT, Or-
pheus, and used by numerous training algorithms [3], [10],
[11]. Thus, in this paper, we focus on optimizing the parameter
synchronization for peer-to-peer distributed learning.

B. Drawback of State-of-the-art
In peer-to-peer parameter synchronization, the communica-

tion overhead grows quadratically with the number of training
workers, as each worker would broadcast its updated model
values to all other nodes [2], [11]. Motivated by the fact that
the training of many models is able to tolerate some levels of
partial and staleness parameter synchronization, proposals like
Orpheus [3], Malt [11], and partial SFB [10] let each worker
send its new model to only a subset of the receivers, making
the traffic overheads controllable. This partial broadcast (a.k.a.,
multicast) does reduce the amount of traffic; however, the
completion time of synchronization might not change, because
the selection of receivers does not take the available bandwidth
of each worker into account. Take the design adopted by
the state-of-the-art Orpheus [3] as an example. Suppose that
there are = workers training a model with data parallelism. At
each round of synchronization, each worker in Orpheus would
deliver its model to other ? (1 ? =�1) randomly selected
receivers, unaware of their available link capacities.

In theory, given a worker, the probability that it is selected as
the receivers of < transfers can be calculated by Equation (1).

%A (<) = ⇠
<

=�1

⇣
?

= � 1

⌘
<
⇣
1 � ?

= � 1

⌘
=�1�<

(1)

If the randomization of receivers is conducted perfectly, each
worker will be selected as the receivers of ? multicast transfers
on average. Numerically, the probability that a given worker
happens to be involved in other ? transfers is small; and the
value first decreases drastically then increases slowly, with the
growth of ?. As the instance of = = 200 in Figure 1 shows,
when ? = 1, %A (< = ?) = %A (1) ⇡ 0.37; and once ? is in the
range of [18, 181], the probability of achieving the balanced
load for a given worker is less than 0.1. These results imply
that, even if all workers have the same link capacity, random
receiver selection would lead to serious load imbalance. Even
worse, in production, there might be other applications hosted
in the same cluster thus the available link capacities that
each worker could use are highly skewed. This mismatching

between the selection of receivers and the available bandwidth
makes the time costs of model synchronization unoptimized
with very high probabilities.

Another drawback of random selection is that it only selects
? receivers even if there are abundant workers with sufficient
bandwidth. Recent studies show that the increase of the
proportion of workers generally yields a faster convergence
of the training. Thus, there is room for improvement.

III. SELECTIVE MULTICAST

SELMCAST is a multicast receiver selection algorithm run-
ning at a centralized manager that helps distributed training
workers determine the communication topologies for the mul-
ticast of their parameters. In practice, the involved multicast
might be implemented at either Layer 3 (i.e., L3 for short) or
Layer 7 (i.e., L7 for short) [1], [12]. Accordingly, SELMCAST
should be expressive to support both L3 and L7 multicast
implementations at the same time. During the training, the
manager collects the available bandwidth of each worker,
based on which, SELMCAST computes Pareto-optimal multi-
cast topologies for each worker to control the synchronization.
Once selected by SELMCAST, workers will launch either real
multicast (L3) or unicast (L7) transfers to conduct the delivery,
according to the underlying network [12], [13].

A. Design Overview

As load-agnostic, the random multicast adopted by [3] is
likely to meet with load imbalance with high probability. The
core idea of SELMCAST is to choose receivers for parameter
multicast transfers carefully, such that it would take less time
for the synchronization to complete. We not only control the
minimum number of receives for each multicast, but also
ensure that each worker always multicast its parameter to
all other workers at least one time in every : rounds of
synchronization, such that eventual (global) synchronization
is ensured. Moreover, to accelerate the convergence, we let
more workers participate in the multicast, in case their joins
would not postpone the multicast’s completion.

B. Problem Analysis

Math Formulation. Given the non-blocking design of modern
data center networks [12], [14], [15], we abstract the entire
data center network out as one big switch, in which con-
gestions only occur at ingresses and egresses. Without loss
of generality, we assume that the training task involves =

workers and denote the remaining bandwidth of the abstract
switch on ingress 8 and egress 9 that the distributed training
could use as 1

�

8
and 1

⇢

9
, respectively. To perform parameter

synchronization, the 8-th sender would deliver its newest model
to at least ?8 other workers. Let the binary variable of G8, 9

denote whether the 9-th worker is selected as the receiver of
worker 8 in this round of synchronization, or not; then, we
have constraints (2) and (3).’

9: 9<8
G8, 9 � ?8 , 88 (2)

G8, 9 2 {0, 1}, 88, 9 < 8 (3)

Moreover, to guarantee convergence, each worker should
synchronize with all other workers at least once every :

rounds. Let ⇡ be the set of worker pairs out of model delivery
in the last : � 1 rounds. For (8, 9) 2 ⇡, the corresponding G8, 9

would be enforced to 1 at this round, as (4) shows.

G8, 9 = 1, (8, 9) 2 ⇡ (4)

Obviously, the delivery of each worker’s model is a typical
one-to-many transfer that can be carried out with techniques
like L3 IP multicast [12]. If the underlying network does
not support IP multicast, workers could alternatively launch
a group of concurrent unicast transfers for all sender-receiver
pairs to achieve the multicast at the application layer (i.e.,
L7). Note that, like the case of coflow [14], a parameter
synchronization is treated as done if and only if all the selected
deliveries have finished. As all workers are training exactly the
same model, just enforcing all involved transfers to send data
at the same rate would not harm the completion of the entire
synchronization. Let H be the rate of model delivery; to avoid
congestions, we would have constraints (5) and (6). Here, the
value of �8 is either 1 or

Õ
9: 9<8 G8, 9 (� ?8 � 1), as (7) denotes,

respecting whether L3 multicast is employed or not.

0 < H�8 1
�

8
, 88 (5)’

8:8< 9

G8, 9 H 1
⇢

9
, 8 9 (6)

�8 =

(
1 if multicast at Layer 3Õ

9: 9<8 G8, 9 if multicast at Layer 7
(7)

Given that all workers train the same model synchronously,
pursuing the objective of maximizing the minimum multicast
rate among all workers, as the non-linear programming of (8)
shows, leads to the minimum time cost of synchronization.

Maximize {H : (2) ^ (3) ^ (4) ^ (5) ^ (6) ^ (7)} (8)

For the acceleration of convergence, once the maximum
delivery rate is obtained, saying H

⇤ for instance, the training
task would prefer more receivers to participate in the synchro-
nization. To this end, we maximize the number of receivers,
as the integer programming of (11) formulates.

�8
1
�

8

H
⇤
, 88 (9)

’
8:8< 9

G8, 9

1
⇢

9

H
⇤
, 8 9 (10)

Maximize
8>><
>>:

’
(8, 9):8< 9

G8, 9 : (2) ^ (3) ^ (4) ^ (7) ^ (9) ^ (10)
9>>=
>>;

(11)

Reformulation and Hardness. Now, we show that Prob-
lem (8) can be equivalently reformated as mixed-integer pro-
gramming, which is generally NP-hard in theory.

Let I be the value of 1
H

; then, the constraints of (5) and (6)
can be equivalently reformated to (12) and (13), respectively.

I �
1
1
�

8

�8 , 88 (12)

I �
1
1
⇢

9

’
8:8< 9

G8, 9 , 8 9 (13)

Following this, the model of (8) can be rewritten as the mixed-
integer linear programming problem of (14). To obtain effi-
cient and effective topology, next, we design Pareto-optimal
heuristic algorithms based on the problem structure.

Minimize {I : (2) ^ (3) ^ (4) ^ (7) ^ (12) ^ (13)} (14)

C. Algorithm Design

Insight. For the above problem, if the constraint of (12) is
relaxed, the optimization objective can be rewritten as

Minimize max
9

1
1
⇢

9

’
8:8< 9

G8, 9 (15)

which gives us the guideline of selecting receivers for each
multicast request in a weighted load-balanced way, yielding
SELMCAST. In short, SELMCAST involves two passes: it first
selects receivers to meet the minimum scale requirement of
each multicast (i.e., Basic Selection); then, to make full use
of available link capacities, it extends each request’s receiver
set, provided that including these receivers would not increase
their completion times (i.e., Pareto Improvement).

Basic Selection. Algorithm 1 shows the design of how
SELMCAST selects receivers to satisfy the basic requirements
of receiver number for each parameter multicast request.
Suppose that multicast 8 needs @ receivers more (Line 4).
Motivated by (15), Algorithm 1 first computes the load of each
egress, provided the corresponding receiver was selected as the
receiver (Line 5). Then, it selects the @-lightest loaded egresses
as receivers and updates the corresponding G8, 9 (Line 6). Note
that, to guarantee convergence, each multicast request might
have some pre-determined receivers (i.e. these specified by ⇡,
Line 1). In consideration of that the more determined receivers
a multicast has, the less flexibility it would have in selecting
their receivers, Algorithm 1 processes multicast requests in
non-increasing order of their determined receivers (Line 2,3).

Pareto Improvement. It is obvious that the selections made
by Algorithm 1 are not Pareto-optimal thus do not guarantee
work-conservation. In other words, there is still remaining
bandwidth that could admit more receivers. To address this
issue, we further design Algorithm 2. Basically, it first com-
putes the global bottleneck sending rate that transfers (either
multicast or unicast depending on the underlying network)
would obtain under per-flow fair sharing (Line 1-4). Here, n
is a small value that avoids the error of zero denominators in
Line 4. Then, to ensure that the selection of extension receivers
would not hurt the completion of all requests, it repeatedly
admits a new receiver, provided there is enough remaining

Algorithm 1 SELMCAST: Basic Selection

Inputs: demand: {?8}, ⇡; bandwidth:{1⇢
8
}

Output: selection: {G8, 9 : 8 < 9}

1: G8, 9 1 if (8, 9) 2 ⇡ else 0, for all allowable (8, 9)

2: ! sort multicasts in non-increasing of their
Õ

9: 9<8 G8, 9s
3: for each 8 2 ! do
4: @ ?8 �

Õ
9: 9<8 G8, 9 ù need @ receivers more

5: ; 9
1+

Õ
8:8< 9 G8, 9

1
⇢
9

for each 9 2 { 9 : G8, 9 = 0 ^ 9 < 8}

6: G8, 9 1 for the @-lightest loaded receivers acc. to ; 9s
7: return {G8, 9 : 8 < 9}

Algorithm 2 SELMCAST: Pareto Improvement

Inputs: selection: {G8, 9 : 8 < 9}; bandwidth: {1�
8
}, {1⇢

8
}

number of rounds without multicast: {28, 9 : 8 < 9}

Output: selection: {G8, 9 : 8 < 9}

1: A1 + inf ù bottleneck rate
2: for 8 1, · · · , = do ù find the global bottleneck rate
3: calculate �8 (7) with {G8, 9 : 8 < 9}

4: A1 min(A1 ,
1
�
8

�8
,

1
⇢
8

max(n ,
Õ

;:;<8 G;,8)
)

5: ⌧ sort {(8, 9) : G8, 9 =0} in non-increasing of their 28, 9s
6: for each (8, 9) 2 ⌧ do ù perform pareto improvements
7: Let �⇤

8
be the new value of �8 provided G8, 9 1

8: if �⇤
8

1
�
8

A1
and

Õ
;:;< 9

G;, 9
1
⇢
9

A1
then

9: G8, 9 1 ù select a new receiver if possible
10: Update the value of �8 (7)
11: return {G8, 9 : 8 < 9}

bandwidth on both the involved ingress and egress (Line 8).
Given the fact that some worker pairs might have not been
selected to synchronize for rounds of training, Algorithm 2
checks worker pairs in non-increasing order of the number of
their un-selected rounds (Line 6-10).

Finally, after the receiver sets of all multicast tasks are
determined, training workers launch either multicast or unicast
transfers to carry out the delivery, and these transfers would
share the network bandwidth fairly. Regarding their time
complexities, Algorithms 1 and 2 could be implemented as
O(=

3
) and O(=

2 ln =), respectively.

IV. PERFORMANCE EVALUATION

In this section, we evaluate SELMCAST through simu-
lations. Extensive results indicate that SELMCAST is near-
optimal and scaleable. With optimized designs, it not only
reduces the completion time of parameter synchronization
but also increases the number of receivers very efficiently.
outperforming the state-of-the-art Orpheus significantly (e.g.,
up to about 1.67⇥ and 33%, respectively, in some cases), and
approximating the Optimal tightly (e.g., almost overlapped).

A. Methodology

Metrics and Baselines. In tests, we mainly use Orpheus, i.e.,
selecting receivers randomly [3], and Optimal, i.e., selecting

receivers following the results of model (14) and (11), as
baselines. Since

Õ
9: 9<8 G8, 9 � ?8 , when solving (14) for L7

multicast, we directly let �8 be ?8 for simplification without
hurting optimality. For each scheme, it is assessed by the
quality of the multicast topology it conducts, in terms of the
time normalized by the ideal completion time that the involved
synchronization would take to complete (primary), and the
number of selected receivers per multicast task (secondary).
Consistent with today’s network design, we assume that con-
current transfers share link capacities fairly. And when the
multicast is implemented at the network layer (i.e., L3), its
throughput is determined by the slowest receiver. Besides, we
also test the computation time to study its scalability.

Network and Workload. In tests, we consider that = ho-
mogeneous workers, networked with an abstract non-blocking
switch [12], [15], are training a model collectively. Besides
the training, there might be other services hosted on the
same cluster and the shared network bandwidth is managed
proportionally. Accordingly, we assume that the available
bandwidth of each egress and ingress on the switch that the
train can use is 1+_G and `(1+_G), respectively. Here, G is a
random value following the uniform distribution of * [�1; 1];
_ (0 _ < 1) and ` (` > 0) are two turnable parameters,
controlling the bound of bandwidth variation, and the relative
bandwidth of the ingress over that of the ingress, respectively.
Regarding the workload, we assume that each worker would
multicast the model with the size of 1 unit to other ? workers.
By default, _ = 0.5, ` = 1, = = 200, and ? = 0.3=. When
the multicast is implemented at L3, congestions would mainly
occur at egresses. To study the algorithm performances under
the situation that ingresses also become the bottlenecks, we
also set ` = 1

?
for L3 multicast in some tests.

Simulator. We develop a flow-level simulator with Python 3,
which precisely simulates the aforementioned synchronization
process under the schedules of Orpheus, Optimal, and SELM-
CAST. When performing Optimal, the simulator employs the
off-the-shelf commercial Gurobi solver [16] for model solving.
For each parameter setting, we conduct 10 trials to compute
and report the minimum, medium, and maximum values.

B. Performance

Figure 2 shows the computation time costs, normalized
synchronization completion times, and average receiver num-
bers achieved by the schedules of SELMCAST, Orpheus, and
Optimal, respectively, where the scale of the training cluster
increases from 50 to 200 workers. These tests are conducted
upon a Ubuntu PC equipped with one AMD Ryzen 5 (3500X
6-Core) CPU Processor and two 8G DDR4 RAM cards. Both
SELMCAST and Orpheus only use a single core while the
Gurobi-powered Optimal will take over all available cores
for parallel computation. To ensure that Optimal would finish
within a reasonable time, its time limit of model solving is set
to 60 seconds. As Figures 2a and 2b show, the computation
time costs of Optimal grow super-linearly for both L3 and
L7 multicast tasks. For instance, in the case of selecting L3

50 75 100 125 150 175 200
Cluster Scale (n)

0

20

40

60

C
om

p
u
ta

ti
on

T
im

e
(s

)

L3 Multicast

SelMcast

Orpheus

Optimal

(a) Efficiency (L3)

50 75 100 125 150 175 200
Cluster Scale (n)

0.0

0.2

0.4

0.6

0.8

C
om

p
u
ta

ti
on

T
im

e
(s

)

L7 Multicast

SelMcast

Orpheus

Optimal

(b) Efficiency (L7)

50 75 100 125 150 175 200
Cluster Scale (n)

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

C
om

p
le

ti
on

T
im

e

L3 Multicast

SelMcast

Orpheus

Optimal

(c) Completion time (L3)

50 75 100 125 150 175 200
Cluster Scale (n)

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

C
om

p
le

ti
on

T
im

e

L7 Multicast

SelMcast

Orpheus

Optimal

(d) Completion time (L7)

50 75 100 125 150 175 200
Cluster Scale (n)

20

30

40

50

60

A
ve

ra
ge

R
ec

ei
ve

r
N

u
m

b
er L3 Multicast

SelMcast

Orpheus

Optimal

(e) Average receiver number (L3)

50 75 100 125 150 175 200
Cluster Scale (n)

20

40

60

80

A
ve

ra
ge

R
ec

ei
ve

r
N

u
m

b
er L7 Multicast

SelMcast

Orpheus

Optimal

(f) Average receiver number (L7)

Fig. 2: SELMCAST is very efficient to achieve near-optimal
performances, in terms of both the normalized completion
times and average selected receiver numbers. Note that the
results of SELMCAST generally overlap with those of Optimal.

multicast receivers for 200 workers, the medium computation
time of Optimal is larger than 27 seconds. Results also show
that 8) the math model of selecting receivers for L7 multicast
is much simpler to solve than that of L3 multicast, and 88) the
speed of Optimal highly depends on the problem instance,
reaching the limit of 60 seconds in some cases. By contrast,
both SELMCAST and Orpheus are very fast, finishing the
computations within tens of milliseconds with a single core.

Regarding the completion times of selective parameter syn-
chronization, as Figures 2c and 2d show, despite the achieved
performance gain decreasing slightly with the increase of
cluster scale, SELMCAST always outperforms Orpheus sig-
nificantly. Take the instance when = = 100 as an example,
compared with Orpheus, SELMCAST reduces the normalized
completion time of synchronization from about 1.7 to 1.02
and 1.64 to 1.33 for L3 and L7 multicast, respectively, by
using bandwidth-aware receiver selection. To understand the
impact of ?/= on the selection, we vary its value from 0.1 to
0.5. As Figure 3 shows, although the normalized completion
time achieved by Orpheus drops first, it finally approximates
about 1.5 for both L3 and L7 multicast. As a comparison,
SELMCAST is able to achieve consistently high performance.

As for the average number of finally selected receivers,
SELMCAST outperforms Orpheus about 1.3⇥ on selecting
receivers for L7 multicast (Figure 2f); while all schemes
would select exactly ? receivers to meet the requirements thus
yielding no performance gains when L3 multicast is employed

0.1 0.2 0.3 0.4 0.5
p/n

1.0

1.5

2.0

N
or

m
al

iz
ed

C
om

p
le

ti
on

T
im

e

L3 Multicast

SelMcast

Orpheus

Optimal

(a) Completion time (L3)

0.1 0.2 0.3 0.4 0.5
p/n

1.5

2.0

2.5

N
or

m
al

iz
ed

C
om

p
le

ti
on

T
im

e

L7 Multicast

SelMcast

Orpheus

Optimal

(b) Completion time (L7)

Fig. 3: SELMCAST achieves consistent normalized completion
times under different ? values, while the results of Orpheus
decrease and approach 1.5, for both L3 and L7 multicast.

Orpheus SelMcast Optimal

60

65

70

75

80

A
ve

ra
ge

R
ec

ei
ve

r
N

u
m

b
er

L3 Multicast (µ = 1
p)

Fig. 4: When ` = 1
?

, SELMCAST would select about 33%
more receivers per worker than Orpheus for L3 multicast.

(Figure 2e). It is reasonable, since in the case of L3 multicast,
network congestions generally occur at egresses hence there is
no more worker with sufficient bandwidth to select. To verify
this, we return the tests by reducing the value of ` from 1
to 1

?
, in which ingresses would be the bottleneck as well. As

expected, compared with Orpheus, about 33% more receivers
are selected by SELMCAST in this instance (Figures 4).

Noteworthily, in all these tests, the results of SELMCAST
and Optimal almost overlap, implying that SELMCAST is able
to achieve near-optimal receiver selections for both L3 and L7
multicast very efficiently.

V. RELATED WORK

In this section, we briefly overview the recent proposals
sharing the idea of partial parameter synchronization and refer
the readers to [1], [2] for comprehensive surveys.

P-Reduce [7] and Prague [8] achieve partial parameter syn-
chronization by executing the AllReduce collective operations
on a selected set of workers. Similarly, Dutta et al. [9] system-
atically analyze the benefits of partial synchronization schemes
named :-sync SGD, :-batch-sync SGD, :-async SGD, and :-
batch-async SGD, for parameter server based distributed train-
ing. And Hegedűs et. al. [17] further study the performance
of Gossip-based partial synchronization. Different from these
works, SELMCAST mainly focuses on optimizing peer-to-peer
distributed machine learning. Its design is motivated by the
recent work of Orpheus [3], which selects receivers randomly
and is the follow-up work of [10] in turn.

Besides the level of participating workers, the idea of
partial synchronization could be implemented at the level of
parameters as well. For example, papers like [18] show that
only delivering the top-: model gradients works well for many

training tasks; BTP finds that many algorithms are robust
to random gradients drops with bounded amounts [19], and
DGT [20] further shows that providing different reliabilities
to gradients respecting their contributions would release the
power of partial synchronization more refined. Based on
these observations, more generally, Poco proposes to achieve
selective partial completion for collective flows globally [15].

VI. CONCLUSION

This paper proposes SELMCAST, an expressive bandwidth-
aware multicast receiver selection algorithm to manage the
communication topology of parameter synchronization for
peer-to-peer datacenter distributed learning. SELMCAST is
Pareto-optimal and supports both L3 or L7 multicast-based
parameter synchronization by design, Extensive simulations
indicate that SELMCAST is efficient to achieve near-optimal
performance very efficient.

REFERENCES

[1] S. Shi, Z. Tang et al., “A quantitative survey of communication opti-
mizations in distributed deep learning,” IEEE Network, vol. 35, no. 3,
pp. 230–237, 2021.

[2] J. Verbraeken, M. Wolting et al., “A survey on distributed machine
learning,” ACM Computing Surveys, vol. 53, no. 2, Mar. 2020.

[3] P. Xie, J. K. Kim et al., “Orpheus: Efficient distributed machine learning
via system and algorithm co-design,” in ACM Symposium on Cloud
Computing, 2018, p. 1–13.

[4] S. Luo, P. Fan et al., “Eliminating communication bottlenecks in cross-
device federated learning with in-network processing at the edge,” in
IEEE ICC, 2022.

[5] A. Sapio, M. Canini et al., “Scaling distributed machine learning with
in-network aggregation,” in USENIX NSDI, Apr. 2021, pp. 785–808.

[6] L. Luo, Y. Zhang et al., “Fast synchronization of model updates for
collaborative learning in micro-clouds,” in IEEE HPCC, 2021.

[7] X. Miao, X. Nie et al., “Heterogeneity-aware distributed machine
learning training via partial reduce,” in SIGMOD/PODS, Jun 2021.

[8] Q. Luo, J. He et al., “Prague: High-performance heterogeneity-aware
asynchronous decentralized training,” in 25th ASPLOS, Mar 2020.

[9] S. Dutta, J. Wang, and G. Joshi, “Slow and stale gradients can win the
race,” IEEE Journal on Selected Areas in Information Theory, vol. 2,
no. 3, pp. 1012–1024, 2021.

[10] P. Xie, J. K. Kim et al., “Lighter-communication distributed machine
learning via sufficient factor broadcasting,” in 32nd Conference on
Uncertainty in Artificial Intelligence (UAI’16), 2016, p. 795–804.

[11] H. Li, A. Kadav et al., “Malt: Distributed data-parallelism for existing
ml applications,” in 10th Euorsys, 2015.

[12] S. Luo, H. Yu et al., “Efficient file dissemination in data center networks
with priority-based adaptive multicast,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 6, pp. 1161–1175, Jun 2020.

[13] S. Luo, H. Xing, and P. Fan, “Softwarized ip multicast in the cloud,”
IEEE Network, vol. 35, no. 6, pp. 233–239, 2021.

[14] S. Luo, H. Yu et al., “Towards practical and near-optimal coflow
scheduling for data center networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 11, pp. 3366–3380, 2016.

[15] S. Luo, P. Fan et al., “Selective coflow completion for time-sensitive
distributed applications with poco,” in 49th ICPP, 2020.

[16] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[17] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized learning works:
An empirical comparison of gossip learning and federated learning,” J
Parallel Distrib Comput, vol. 148, pp. 109–124, 2021.

[18] S. Shi, Q. Wang et al., “A distributed synchronous sgd algorithm with
global top-k sparsification for low bandwidth networks,” in 39th ICDCS,
2019, pp. 2238–2247.

[19] J. Xia, G. Zeng et al., “Rethinking transport layer design for distributed
machine learning,” in 3rd APNet, 2019, p. 22–28.

[20] H. Zhou, Z. Li et al., “DGT: A contribution-aware differential gradi-
ent transmission mechanism for distributed machine learning,” Future
Generation Computer Systems, vol. 121, pp. 35–47, 2021.

