
Fast Incremental Flow Table Aggregation in SDN
Shouxi Luo, Hongfang Yu, Le Min Li

Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education
University of Electronic Science and Technology of China, Chengdu, P. R. China, 611731

rithmns@gmail.com, {yuhf,lml}@uestc.edu.cn

Abstract—In OpenFlow-based SDN, flow tables are TCAM-
hungry and commodity switches suffer from limited concrete
flow table size. One method for coping with the limitations is to
use aggregation schemes to reduce the number of flow entries
required to represent the same forwarding semantics. Unfor-
tunately, the aggregation retards table updates and lengthens
the updating time. During which, the data plane is inconsistent
with the control plane, forwarding errors such as Reachability
Failures, Forwarding Loops, Traffic Isolation and Leakage are
prone to occur. Since network updates take place frequently in
practice, the aggregation scheme must be efficient enough. In this
paper we propose offline FFTA (Fast Flow Table Aggregation)
and its online improver iFFTA to shrink the flow table size and
to provide practical fast updates. iFFTA is the first online non-
prefix aggregation scheme. Extensive experiments demonstrate:
(1) FFTA is about 200× faster than the previously published
best non-prefix aggregation scheme without loss of compression
ratio on offline aggregation; and (2) iFFTA achieves about 3×
faster than FFTA on online update incorporations with a loss
of an acceptable compression ratio per update. Thus the user
could make a combination use of FFTA and iFFTA for table
aggregations: call iFFTA usually and recall the efficient FFTA
once the switch is running out of concrete flow table space.

I. INTRODUCTION

In OpenFlow-based SDN, forwarding tables (i.e. flow ta-
bles) are TCAM-hungry since much more header fields are
included into the matching fields. For example, there are 12
fields with more than 237 bits in the first stable version of
OpenFlow (i.e. 1.0.0), and the fields continues to grow as
more fields are added in [1]. Unfortunately, because of TCAMs
are board-space costly, power-hungry and expensive[2]–[5],
commodity OpenFlow switches suffer restricted concrete flow
table space[5]–[7].

One promising direction in reducing the demands of
TCAMs is flow table aggregation, a technique that merges
multiple flow entries into one without modifying forwarding
semantics. Moreover, because of the aggregation is a software
solution, it is easy to implement it as an optional plug-in on
OpenFlow controller, and such a solution does not require any
changes to OpenFlow protocols or OpenFlow switches.

While a number of literatures have proposed aggregation
schemes for traditional prefix IP routing tables[8]–[10] or non-
prefix TCAMs rules or ACLs[2]–[4], [11], the aggregation of
flow table in SDN has its own particularities.

This work was partially supported by the National Grand Fundamental
Research 973 Program of China under Grant (No. 2013CB329103), and
Natural Science Foundation of China grant (No. 61271171).

1. Firstly, the match fields in the flow table are non-prefix
since multiple types of fields (both prefix and non-prefix)
are included, and those specified prefix aggregations cannot
cope with (e.g. [3], [8]–[10]).

2. Secondly, the actions of a flow table are more varied than
those of ACLs, which have about 2 or 4 actions generally.
So those 2 or 4-action dedicated aggregation schemes do
not work well (e.g. [2], [11]).

3. Thirdly and crucially, the flow table aggregation in SDN
is efficiency-sensitive especially, since forwarding rules
are update-prone and the aggregation will retard table
updates and lengthen the updating time. Moreover, during
the update, the data plane is inconsistent with the control
plane, forwarding errors such as Reachability Failures,
Forwarding Loops, Traffic Isolation and Leakage are prone
to occur[12]. So inefficient offline non-prefix aggregations
are inapplicable here (e.g. [2], [4]).

To achieve practical flow table aggregation, we present a
pair of aggregation schemes named FFTA (Fast Flow Table
Aggregation) and iFFTA (improved-FFTA) in this paper. FFTA
is an offline aggregation scheme and shares the basic 3-step ag-
gregation framework with bit weaving[4], i.e. (1) cut the rule
list into prefix-permutable partitions, then apply (2) modified
prefix aggregation and (3) bit merging (merge together rules
that differ by a single bit iteratively) to each partition to reduce
the amount of rules. However FFTA employs an entirely
different technique modified from ORTC[8] in partition ag-
gregations and could achieve about 200× acceleration without
any loss of compression ratio. Based on FFTA, we further
propose its online improver-iFFTA, to incorporate incremental
updates efficiently.

We summarize our two main contributions as follows:

1. FFTA, a very efficient offline non-prefix aggregation
scheme that is about 200× faster and much more memory-
efficient (orders of magnitude) than the presently best re-
ported scheme bit weaving[4] while achieving the provable
same compression ratio. For instance, for a common 100-
rule partition, bit weaving costs more than 1s to aggregate
while FFTA only needs several milliseconds.

2. iFFTA, an online improver of FFTA that achieves about 3×
acceleration further on incorporating updates with a loss of
only a small quantity of compression ratio. In consideration
of keeping a table most-aggregated-online is valueless in
practice, the controller could make a combination use of

978-1-4799-3572-7/14/$31.00 ©2014 IEEE

z m a
1 0111 Fwd 1
2 1111 Fwd 1
3 *101 Fwd 2
4 *011 Fwd 1
5 1*0* Fwd 3
6 1*1* Fwd 3
7 **** Drop

z m a
1 *101 Fwd 2
2 **11 Fwd 1
3 1*** Fwd 3
4 **** Drop

Fig. 1. Two semantic equivalent toy flow tables: the left is semantic
redundancy richer than the right. z is the priority, m is the match field(s), and
a is the related action. The left table can be cut into two prefix-permuatable
partitions, (1, 2, 3, 4) and (5, 6, 7).

FFTA and iFFTA for table aggregations: call iFFTA usually
and recall the efficient FFTA once the switch is running out
of concrete flow table space again.

The remainder of this paper is organized as follows. Section
II gives an overview of flow table and the state of rule aggre-
gations. Section III describes the design of FFTA and iFFTA.
Section IV evaluates their performances. Finally, sections V
and VI present related work and conclusions respectively.

II. BACKGROUND AND MOTIVATION

A. SDN and Flow Table

In OpenFlow-based SDN, forwarding policies are translated
into flow tables to act out[1], [13]. A flow table consists
of prioritized entries, each entry may be simplified as a
triple tuple 〈m, a, z〉 as the toy table in Fig.1 shows. In
practical terms, the match field is the combination of ingress
port, packet headers that defines the flow(such as VLAN ID,
Ethernet src/dst addr, 5-tuple etc.), and optionally metadata
specified by a previous table. The corresponding action a
is a sub-collection of instructions that are executed when a
packet matches the rule entry, including forwarding, drop,
modification, encapsulation, tunnel to controller and etc. In
the paper, we call such a match-action entry 〈m, a, z〉 a rule.
We also use rule to denote the ternary string m (i.e. the match
field) in that entry, when no ambiguity exists.

Correspondingly, a flow table with n rules can be formalized
as a sequence of tuples in nonincreasing order of the priority:
〈m1, a1, z1〉 , · · · , 〈mn, an, zn〉, where z1 ≤ · · · ≤ zn (with
smaller numbers meaning higher priority in the paper). We
assume they are collision-free, i.e. the rules with the same
priority would not match the same packets. So, the action
of a packet is exactly defined by the first matched rule
unambiguously 1, expressed as T (p), where p and T denote the
packet and matched flow table respectively. Since forwarding
rules are generated alone, multiple entries may overlap or have
the same action (ai = aj for some i 6= j). Aggregating those
redundancy-rich rules into fewer would reduce the TCAMs
demands for hardware switches or accelerate the matching for
software switches. However the aggregation must not change

1 In OpenFlow, the packets that no rule matches with will be processed as the
pre-defined/default rule specifies (e.g. drop, delivery to the next flow table
or encapsulate then forward to the controller). So we assume the table to be
complete here.

prefix label

∗ 2

0∗ 3

00∗ 2

000∗ 3

01∗ 1

010∗ 2

2

3

2

3

1

2

2

3 12 2

2

3 1

{2,3} {1,2}

{2}

{2}

Pass 3Pass 1, then 2

(a) (d)(b) (c)

Fig. 2. An example of how ORTC works: (a) tabular form with prefix IP
address in binary format and next-hop address label; (b) BST(binary search
tree) with state transitions marked; (c) Pass-1 produces the leaf-pushed BST,
then Pass-2 gets the set of candidate nexthops for each inner node; (d) and
the ORTC-compressed BST.

the action of any packet (i.e. the forwarding semantics), or
must preserve semantic equivalence so called. Suppose T † is
one aggregated table of T , there must be T † (p) ≡ T (p) for
∀p. A toy example of flow table aggregation is shown in Fig.1.

B. Prefix Aggregation

The aggregation of prefix rules has been widely studied
more than a decade[8]–[10]. In 1998, Draves et al.[8] designed
the Optimal Routing Table Constructor (ORTC) to minimize
the IP routing table size, which is provably optimal by the
number of rules, without altering any forwarding semantics.
ORTC uses a binary search tree (BST, or prefix tree, or trie) to
organize the prefix rules and employs leaf-pushing and relabel
techniques to aggregate. It consists of three passes over the tree
as Fig.2 shows.
1. Pass-1: Push the nexthop label (i.e. action) from the parents

towards the children to expand the prefixes, such that every
node in the binary tree either has two or no children.

2. Pass-2: Employ a post-order traversal up the tree to get the
set of candidate nexthops for each node.

3. Pass-3: Assign nexthop to each prefix node in the tree
starting from the root and traversing through to the leaves,
remove any unnecessary nodes and leaves.
While ORTC is an offline algorithm, several literatures (e.g.

SMALTA[9] and FIFA[10]) design variants to achieve fast
incremental update for aggregated rule with the sacrifice of
compression ratio or recomputing time.

C. Non-Prefix Aggregation

Unlike IP routing tables, the match fields in flow table are
fixed length and non-prefix (i.e. wildcards can appear at any
positions in the match field). Their aggregation is conjectured
to be NP-hard and several heuristics have been proposed to
achieve offline aggregation[2]–[4], [11]. To the best of our
knowledge, bit weaving is the best reported scheme presently,
which is claimed to achieve an average compression ratio of
23.6% for general non-prefixes in their tests.

Bit weaving is based on a crucial observation that, a group
of non-prefixes can be permuted into prefixes simultaneously,
iff their wildcard positions are in a chain of subset relationship.
Specifically, bit weaving aggregates non-prefixes by cutting
them into a series of prefix-permutable partitions and making

a 4-pass aggregation over each. The partition cutting is easy to
do by checking the across pattern(s) among continuous rules
orderly and greedily 2. But the 4-pass aggregation is quite
complicated and inefficient. A brief but incomplete description
of 4-pass aggregation follows:
1. Pre-permutation: Sort ternary bit positions in increasing

order by the number of ternary strings that have a ∗ in that
bit position to permute rules into prefixes.

2. Prefix aggregation: Create a fake default rule assigned
with a fake action to make the partition complete. Assign a
specific weight to the fake rule, then employ the weighted
one-dimensional prefix aggregation algorithm in TCAM
razor[3] to minimize the prefixes in the partition. Due to its
specific weight, the fake rule always remains in the results,
remove it.

3. Bit merging: Search and merge together rules that differ
by a single bit within the partition.

4. Post-permutation: Revert all ternary strings back to their
original bit order.

D. The Shortcoming of Bit Weaving

Bit weaving is effective but inefficient. In tests, we find that
although the time of aggregating a partition in bit weaving
grows linearly with the partition size, the coefficient is still
too large. For instance, the costs of aggregating a 10-rule and
an 100-rule partition are larger than 25ms and 1s respectively,
which are quite huge delays in production networking. The
statistics of [4] shows that about 2.7% of partitions have more
than 32 rules and 0.6% of partitions have more than 128 rules
for their real-life rules. We speculate the flow table of the
further switch would have more fat partitions. Thus the delay
of aggregation is considerable and bit weaving is inapplicable
to dynamic networks since an inefficient global recomputing
(the whole partition or even the whole flow table) is need once
a rule updates.

III. DESIGN

In this section, we describe the designs of FFTA and iFFTA
which explain why they are so efficient.

A. Offline FFTA for Fast Snapshot Aggregation

FFTA (Fast Flow Table Aggregation) shares the same basic
idea and algorithm framework with bit weaving, i.e. first
cut the non-prefix table into prefix permutable partitions and
then aggregate each partition respectively. But it employs
a quite different core method in aggregating each partition.
Such a method not only eliminates the two permutations
(refer to Section II), visualizes the aggregation procedure, but
also could accelerate the aggregation 200× without loss of
compression ratio, and furthermore makes the aggregation of
rules traceable and easy to update.

2 Suppose S∗(x) and S∗(y) are the wildcard position sets of ternary string x
and y resp., x and y form a cross pattern iff S∗(x) 6⊆ S∗(y) ∧ S∗(y) 6⊆
S∗(x), see the Fig.1 for an example and refer to bit weaving[4] for more
details.

Our novel partition aggregation is based on a key intuition:
ORTC constructs prefixes into a BST (binary search tree) to
do optimal aggregation simply, efficiently and visually. As the
rules in each partition can be permuted into prefixes, why
do not we just construct the partition to a BST-like tree then
employ the ORTC-alike techniques directly? Such a technique
will omit the permutations and simplify the prefix aggregation
processes. Based on this, we redesign the aggregation of each
partition into three steps: (I) Tree Construction, (II) ORTC-
based Aggregation and (III) Bit Merging on the Tree, as the
brief example in Fig.3 shows.

1) Tree Construction: Each partition here can be permuted
into prefixes by sorting ternary bit positions in increasing
order by the number of ternary strings that have a ∗ in
that bit position (the first step for partition aggregation in
bit weaving[4]). Then those artifactitious prefixes can be
organized as a BST, where each artifactitious prefix is a node
in it. Suppose the preimage of the lowest common ancestor
(LCA) of those artifactitious prefixes in that BST is m, we
can expand the wildcards that appear in m but absent from the
original rules, into 0 and 1 in turn, to build up a tree to organize
the partition. Obviously, such a tree is equivalent to the one
constructed with artifactitious prefixes, but no permutations
are needed anymore. We call it a modified-BST. Take the toy
partition in Fig.3-(a) as an example, the corresponding LCA
is ∗ ∗ ∗1 and its modified-BST is shown in Fig.3-(b).

WLOG, for a partition with n rules (labeled 1, · · · , n resp.),
its LCA (denoted as m) is calculated by

∨n
i=1 mi, where mi is

the i-th rule’ match field and the operation ∨ on fixed length
ternary strings x and y 3 produces a new ternary string z,
whose k-th bit (denoted as z[k]) is ∗ if x[k] 6= y[k], or x[k]
otherwise. Then the wildcards to be expanded are those in the
position set:

⋃n
i=1 {k | m[k] 6= mi[k]}.

In the paper, we built up the modified-BST recur-
sively, as the pseudocode in Fig.4 shows. The code
NODE(rule, left=right=nil) denotes creating a node to store
the rule and letting both its left and right children (denoted as
left and right resp.) be NULL(nil). For a node n, n.m, n.a
and n.z denote the match field(m), action(a) and priority(z) of
the stored rule respectively. In the program, we first calculate
the LCA ternary string of the partition, denoted as m (Line 2
in Fig.4), and use it to create the root node to start the
procedure (the root stores the fake rule 〈m,nil,∞〉 initially).
Then the construction is carried out by adding rules into the
tree in nonincreasing order of the amount of wildcards in them.
Each round (i.e. the APPEND-RULE in Fig.4), we push the rule
to be added from the root node to leaves, until the match field
sorted in the node is the same as its match field. If no node
is found, we expand the last visited leaf and re-push. Finally,
the rule’s host node will be found or created, we update the
node if the rule has a higher priority than that stored in the
node.

2) ORTC-based Aggregation: After the modified-BST is
built, we use ORTC to aggregate. Unfortunately, as the ex-

3 x ∨ y and y ∨ x are nondistinctive here.

Bit MergingORTC

z m a

1 ∗011 Fwd 1

2 0011 Fwd 3

3 ∗101 Fwd 2

4 0111 Fwd 1

5 1111 Fwd 1

(a) (b)

∗∗∗1

∗1∗1∗0∗1

∗011 ∗101

0111

∗111

1111

Fwd 3 Fwd 1

Fwd 2

0011

Fwd 1

Fwd 1

∗001

1011

(c)

∗∗∗1

∗1∗1∗0∗1

∗011 ∗101

0111

∗111

1111

Fwd 1Fwd 2

0011

Fwd 1

∗001

1011

(d)

∗∗11

Fwd 1

Depth 0

Depth 1

Depth 2

Depth 3

∗∗∗1

∗1∗1∗0∗1

∗011 ∗101

0111

∗111

1111

Fwd 2

0011

∗001

1011

Fig. 3. An example of how FFTA aggregates a prefix-permutable partition: (a) tabular form with non-prefix match field in binary format and action;
(b) modified-BST with action marked; (c) modified-BST with modified-ORTC produced; (d) the trace of bit merging and the aggregated modified-BST.

1: function CONSTRUCT-TREE(P) . P is a list of rules.
2: m←

∨
rule∈P rule.m; . calculate the LCA.

3: root←NODE(〈m,nil,∞〉 , left=right=nil);
4: for each rule, in nonincreasing of the amount of ∗ do
5: APPEND-RULE(root, rule);
6: end for
7: return root;
8: end function
1: procedure APPEND-RULE(node, rule)
2: if rule.m = node.m then
3: if rule.z < node.z then
4: node.a← rule.a;node.z ← rule.z;
5: end if
6: return
7: end if
8: if node.left = nil and node.right = nil then
9: t← min{k | node.m[k] 6= rule.m[k]};

10: Expand node.m[t] into {0, 1}, get {m0,m1} resp.;
11: node.left← NODE(

〈
m0, nil,∞

〉
, left=right=nil);

12: node.right← NODE(
〈
m1, nil,∞

〉
, left=right=nil);

13: end if
14: if rule.m belongs to node.left.m then
15: APPEND-RULE(node.left, rule);
16: else
17: APPEND-RULE(node.right, rule);
18: end if
19: end procedure

Fig. 4. The procedure of constructing the modified-BST of partition P .

ample in Fig.3 shows, the partition may be incomplete and
we can only aggregate those complete subtrees respectively.
A tree/subtree is complete iff all the matched ternary strings in
it have specified actions. Fortunately, it is easy to figure out the
active action for each node after Pass-1 employed. However,
the Pass-1 used here is a little different from the one described
in Section II. This is because: (1) any interior node will cover
all its descendants with the lower priority and (2) each node is
either a leaf node or an interior node with exactly two children
here. So, only priority-based action pushing is needed, we call
it modified Pass-1 and its corresponding pseudocode is shown

Modified Pass-1
for each node n (root to leaves, root excluded) do

p← parent(n); . p is the parent node of n.
if p.z < n.z then

n.a← p.a;n.z ← p.z;
end if

end for

Fig. 5. The pseudo-code of modified Pass-1 of ORTC.

in Fig.5. Now, all the maximal complete subtrees (MCS) are
obvious, then Pass-2 and Pass-3 of ORTC process successively.

Such an ORTC-based partition aggregation is simple, effi-
cient and intuitive. What’s more, it shares the same optimality
with the weighted one-dimensional prefix aggregation algo-
rithm used in bit weaving[4]. The basic idea in proving their
equivalence is as follows:

WLOG, suppose all the length K ternary strings in a given
partition P are permuted already. Let {a1, a2, · · · , an} be
the action set of P . Bit weaving first assigns each action a
weight of 1, then creates an all-∗ default fake rule, assigns
it a fake action an+1 and gives it a weight of 2K . Since the
algorithm used in bit weaving[4] outputs a prefix list whose
sum of the actions’ weights is the minimum, such a weight
assignment guarantees that action an+1 only appears in the
last rule in the minimized prefix list. That is to say, no actual
action will be assigned to those nodes on the paths from the
root to each maximal complete subtree in the corresponding
modified-BST. It is equivalent to do aggregation within each
maximal complete subtree respectively. As both our ORTC-
based aggregation and the weighted one-dimensional prefix
aggregation do optimal aggregation to each maximal complete
subtree in the partition, they have the same level of perfor-
mance on compression ratio.

3) Bit Merging on the Tree: Within each partition, bit
merging aggregates rules via merging two rules that have
the same action and differ by a single bit into one entry by
replacing the bit in that position with ∗ iteratively. Obviously,
those mergeable rules contain the same amount of ∗s and they
are on the same level in the modified-BST. So, we do merge
from the bottom up in the tree for acceleration. At every turn,

we try to merge an unmerged rule with another (use unmerged
rules preferred), and the generated rule is added into the upper
level for more probable merging, as Fig.3-(d) shows. Once all
mergeable rules in this level are merged (once at least), we
move to the upper level and recur. The merging of rules is
easy to model as a directed acyclic graph (DAG) with a vertex
for each related rule and an edge for each merging operation.
Moreover, since bit merging only occurs in rules with the same
action, the traces of merging form disjoint DAGs for actions.
We use them to accelerate the incorporation of updates in
iFFTA.

Finally, we order the aggregated rules from the bottom to the
top to acquire the rule orders (i.e. priorities) in the partition.
To keep the relative order of rules in different partitions
unchanged, we simply reuse the original priority values in that
partition. It is feasible because the amount of rules would not
exceed after aggregating. Although such a strategy may make
some holes in priorities, it doesn’t really matter. Leaving holes
in priority sets or TCAM blocks is a practical trick to reduce
the overhead of moving rules for adding/deleting rules.

B. Online iFFTA for Fast Incremental Update Incorporation

In FFTA, the original table is cut into partitions and
each partition is aggregated independently. Thus the general
approach to incorporate an update (insertion, deletion, or
modification of one rule) is: (1) locate the partition where the
update occurs by consulting the partition id of the pre-existing
rule (for deletion or modification) or comparing priorities (for
insertion); then (2) apply the update to the affected partition.

To update a partition, the naive but time-consuming way is
to rerun FFTA for the entire partition. In general, most of the
aggregated rules would not change for an update, therefore a
more efficient approach for updates is to only re-aggregate
those affected rules. Following the principle, we propose
iFFTA, a suite of update incorporation strategies basing on
FFTA, for fast update incorporations.

iFFTA consists two main operations: (1) update the affected
nodes in the modified-BST then (2) redo bit merging for the
affected rules (i.e. update the DAGs). It is easy to find the
affected rules for bit merging by checking the changes of
DAGs, once the updates of modified-BST are finished. Next,
we present the basic principles of how to update a modified-
BST in Fig.6 and give a brief introduction below.

1) Insertion: For a rule to be inserted (denoted as r), we
first check its priority (i.e. r.z) against all the original rules
(denoted as set Po). If r.z < minZ or r.z > maxZ where
Z ← {ri.z | ri ∈ Po}, we mark it unaggregated and insert it
directly; Otherwise, we need to locale the rule’s corresponding
host node in the tree. If the host node exists, since the insertion
only affects those rules in the same MCS (Maximal Complete
Subtree), the insertion is analogous to an update of aggregated
prefixes. We can employ SMALTA[9] or FIFA[10] for the
affected MCS, or simply rerun modified-ORTC for the subtree
rooted at the node (the one we implement in our evaluation).
In other cases, there is no such a host node, it means the
newly inserted rule introduces cross patterns with original

1: procedure INSERT(rule)
2: Let Z ← {r.z | r ∈ Po}; . Po is the original rules;
3: if rule.z > maxZ or rule.z < minZ then
4: mark rule as unaggregated, add it directly;
5: else if the corr. host node of rule exists then;
6: run SMALTA or FIFA for the affected MCS;
7: rerun bit merging for the affected rules;
8: else
9: rerun FFTA for the partition;

10: end if
11: end procedure
1: procedure DELETE(rule)
2: if rule is marked unaggregated then
3: delete it directly;
4: else if the deletion of rule breaks completeness then;
5: rerun FFTA for the broken MCS;
6: else
7: run SMALTA or FIFA for the affected MCS;
8: rerun bit merging for the affected rules;
9: end if

10: end procedure
1: procedure MODIFY(ruleold, rulenew)
2: INSERT(rulenew);
3: DELETE(ruleold);
4: end procedure

Fig. 6. Principles in update algorithms

rules and the modified-BST must be reconstruction 4. We just
rerun FFTA for the whole partition.

2) Deletion: For those rules marked unaggregated in inser-
tion, we can delete them directly. Otherwise, we need to locate
its corresponding host node in the modified-BST firstly. If the
rule deletion does not break any completeness, e.g. one of its
ancestors has a specified original action in the tree, then we
rerun SMALTA or FIFA for the affected MCS. In other cases,
such a deletion will break some MCS into nano MCS(s), a
newly FFTA for the broken MCS is required.

3) Modification: A modification can be considered as an
insertion followed by a deletion as described above.

On rare occasions when the modified-BST must be re-
construction, iFFTA degenerates into the rerun of FFTA.
Fortunately, this is rarely the case, and moreover our FFTA
is quite efficient.

Besides, iFFTA gives up the use of two optional techniques
in bit weaving, redundancy removal (divided into upward
redundancy and downward redundancy) and prefix shadowing,
since they both will trigger a complex computing when any
rule that makes a redundancy or shadow changes (e.g. deleted)
in the original table, as we show later.

In bit weaving, a rule is called upward redundant iff it is

4 Actually, inserting a rule whose match field contains the partition’s LCA
also causes a reconstruction even though no cross pattern introduced. It is
avoidable by using the all-∗ string as the partition’s LCA in the initial tree
construction.

completely in the shadow of prior rules and no packet will
fall into it. The removal of upward redundant rules does not
change the forwarding semantics, but make the update(s) of
aggregated rules more complex. Suppose C is the set of prior
rules that makes/covers upward redundant rules, if the match
fields of any rule in C changes (e.g. deleted by controller),
the aggregator has to figure out all the influenced upward
redundant rules, then re-aggregate all the affected partitions.
This may cause a global re-aggregation. Likewise, both the
removal of downward redundant rules and the use of prefix
shadowing of earlier partitions have the similar disadvantages.

C. About Forwarding Semantics Equivalence

Similar to the proofs in bit weaving[4] and SMALTA[9],
since each step in both FFTA and iFFTA do not change
the forwarding semantics of table, they keep the forwarding
semantics equivalence all the time.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the effects and efficiency of
FFTA and iFFTA. Extensive experimental results demonstrate
that: (1) FFTA is about 200× faster than bit weaving while
using much less memories and sharing the same compression
ratio; (2) Based on FFTA, iFFTA is about 3× faster further in
incorporating updates with an acceptable loss of compression
ratio. Specifically, both FFTA and iFFTA only cost several
milliseconds to several ten-milliseconds for an update. While
bit weaving needs several hundred-milliseconds to seconds
since it has to re-aggregate the whole partition or even the
whole table in an inefficient way.

A. Methodology

We implement FFTA and iFFTA in Python. Since the
authors of bit weaving only releases the implementation of
the one-dimensional weighted prefix minimization they used5,
which is also written in Python, we use our accelerated
version of bit merging to make a complete bit weaving. All
experiments were carried out by Python 3.2.3 on a PC running
64-bit Ubuntu 12.04 server with 6G memory and a single Intel
i7-930 CPU. All algorithms used a single processor core.

Unfortunately, we have no access to non-prefix rules of
real-world networks. In consideration of that all algorithms
share the same way in making prefix-permutable partitions
and both the offline aggregation and online update occur
in a single partition alone, we use the publicly available
prefix forwarding entries from Stanford University Backbone
Network [14] to synthesize partitions for tests. There are
14 operational zone Cisco routers connected via 10 Ethernet
switches to 2 backbone Cisco routers (named bbra and bbrb)
that in turn connect Stanford to the outside world. Fig.7 details
the 16 routing tables, where the original, action and MCS
denote the amounts of original rules, actions and maximal
complete subtrees (MCS) of that prefix table with the default
route (i.e. the all-∗ entry) excluded.

5 http://www.cse.msu.edu/%7emeinersc/suri.py

The statistics of bit weaving[4] shows that about 2.7% of
partitions have more than 32 rules and 0.6% of partitions have
more than 128 rules for their real-life rules. We speculate the
further switch’s flow tables would have more fat partitions.
To make extensive experiments, we test offline aggregations
on 10, 20, 30, · · · , 300-rule synthesized partitions, and test
updates on 150-rule synthesized partitions. All the rules are
selected from one of the prefix tables shown in Fig.7 and each
test is repeated 20 times. We use all the 16 prefix tables for
tests and the figures shown in the paper are cases of using
bbrb’s table.

B. Results

Fig.8(a) shows that the average running time of both FFTA
and bit weaving (labeled FFTA and Bitweaving resp. in Fig.8)
grow linearly with the number of rules in the partition, but
FFTA is about 200× faster than bit weaving. For instance,
FFTA costs less than 21ms to aggregate a 300-rule partition
while bit weaving needs about 3.5s to aggregate a 240-rule
partition. Similarly, FFTA costs much less memory than bit
weaving as Fig.8(b) shows, where the two y-axis(s) denote
the peak usage of physical memory and virtual memory
respectively. In testing, the process of bit weaving is always
put in to Disk Sleep state and becomes a zombie process, when
aggregating those partitions whose size n is larger than 250.
Thus we only test partitions whose n ≤ 240 for bit weaving.

Fig.8(c) shows the average compression ratios (calculated
by AggregatedTableSize

OriginalTableSize) of FFTA and bit weaving on those
partitions. It is clear that the effects of FFTA is exactly the
same with bit weaving as we prove before. We also obvious
that the compression ratio here is much worse than the results
claimed in bit weaving, this is due to the partitions are
generated randomly. We synthesize the partitions in different
strategies and find that FFTA is still about 200× time faster
and orders of magnitude more memory-efficient.

In addition, FFTA* and Bitweaving* in Fig.8 denote the
results of FFTA and bit weaving with bit merging disabled
respectively. We find that our accelerated bit merging does
not increase the (peak) memory cost and the inefficiency of
bit weaving here is mainly caused by the one-dimensional
weighted prefix minimization[4], which is a dynamic program-
ming solution.

Fig.9 shows the performances of FFTA and iFFTA on a
stream of 50-rule updates. The updated partition is made up
of the bbrb’s first 75 prefixes and last 75 prefixes. The 50
rules to be updated are randomly selected from the synthesized
partition.

Fig.9(a) shows the average computing time of FFTA and
iFFTA for incorporating updates. It implies that iFFTA is about
3× faster than FFTA and both FFTA and iFFTA have the
similar time complexity on insertion and deletion. Specifically,
the time cost to incorporate an update for FFTA and iFFTA are
about 3ms or 10ms respectively. What omitted in the figures,
we enlarge the size of test partitions and notice that the average
time per update for both FFTA and iFFTA also grow slowly
with the number of rules in the partition.

router bbra/bbrb boza/bozb coza/cozb goza/gozb poza/pozb roza/rozb soza/sozb yoza/yozb

original 1825/1620 1614/1453 184909/183376 1767/1669 1489/1434 1567/1483 184682/180944 4746/2592

actions 61/40 25/26 42/41 20/20 18/17 17/15 48/39 77/48

subtrees 18/18 11/11 60022/60015 11/11 12/12 11/11 60015/60013 13/12

agg. 691/662 180/156 47973/47947 147/130 103/88 97/85 47991/47956 184/115

rate 37.9%/40.9% 11.2%/10.7% 25.9%/26.2% 8.3%/7.8% 6.9%/6.1% 6.2%/5.7% 26.0%/26.5% 3.9%/4.4%

router bbra/bbrb boza/bozb coza/cozb goza/gozb poza/pozb roza/rozb soza/sozb yoza/yozb

original 1825/1620 1614/1453 184909/183376 1767/1669 1489/1434 1567/1483 184682/180944 4746/2592

action 61/40 25/26 42/41 20/20 18/17 17/15 48/39 77/48

MCS 18/18 11/11 60022/60015 11/11 12/12 11/11 60015/60013 13/12

aggregated 691/662 180/156 47973/47947 147/130 103/88 97/85 47991/47956 184/115

ratio 37.9%/40.9% 11.2%/10.7% 25.9%/26.2% 8.3%/7.8% 6.9%/6.1% 6.2%/5.7% 26.0%/26.5% 3.9%/4.4%

 Fig. 7. The information of forwarding tables in Stanford University Backbone Network.

0 50 100 150 200 250 300
Number of rules in the partition

0

0.025

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
gg

re
ga

tio
n

tim
e

(s
)

Very close

FFTA*
FFTA
Bitweaving*
Bitweaving

(a) Time cost over partition size

0 50 100 150 200 250 300
Number of rules in the partition

0

20

40

60

80

100

120

Pe
ak

 re
si

de
nt

 se
t s

iz
e

(M
B

)

Overlap

FFTA*
FFTA
Bitweaving*
Bitweaving

40

60

80

100

120

140

Pe
ak

 v
irt

ua
l m

em
or

y
si

ze
 (M

B
)

(b) Memory cost over partition size

0 50 100 150 200 250 300
Number of rules in the partition

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

C
om

pr
es

s r
at

io

Without bitmerging

FFTA*
FFTA
Bitweaving*
Bitweaving

(c) Compression ratio over partition size

Fig. 8. FFTA outperforms bit weaving at the running time and memory without loss of aggregation effectiveness. Besides, our accelerated version of bit
merging does not increase the demands of memory.

We count the change of aggregated rules per update in the
tests, their distributions are shown in Fig.9(b). It implies that
there is very little difference between iFFTA and FFTA.

We also test the loss of compressibility for iFFTA (cal-
culated by iFFTA-CompressionRatio

FFTA-CompresionRatio − 1). We test multiple
partitions and notice that the results are tightly related to the
test partition. The one shown in Fig.9(c) are the result of the
case we mentioned before.

Further, we redo the experiments using all other 15 prefix
tables and find the similar conclusions. Besides, the offline
compression ratio of each prefix table with the default rule
excluded is also shown in Fig.7.

V. RELATED WORK

Prefix aggregation: The issue of prefix aggregation have
received considerable attention from the research community
over the last few years. Draves et al.[8] designed an offline
algorithm called ORTC to generate the compressed IP routing
table, which is proved to be optimal (means the number of
entries in the generated table is minimized). Based on ORTC,
online algorithms like SMALTA[9] and FIFA[10], are present
to achieve the fast incremental updates of aggregated tables
with a sacrifice of compression ratio or recomputing time.
Although the aggregation of prefixes is different from that of
a flow table, they inspire our design. In addition, we employ
a variant of ORTC for partition aggregations.

Non-Prefix aggregation: The problem studied here is
more similar to the aggregation of TCAM/non-prefix rules.
McGeer and Yalagandula[2] formulated the TCAM rulesets
minimization into a Boolean optimization problem. But their

algorithms are either inefficient or customized, unpractical for
flow table aggregation. Liu et al. designed TCAM razor[3] and
bit weaving[4] for non-prefix classifier aggregation. TCAM
razor compresses multi-field classifiers by constructing a series
of intermediate one-dimensional prefix classifiers. The method
it employs only produces prefix classifiers and may miss some
opportunities for compression. Bit weaving is excellent for
offline aggregation, but not practical for dynamic network,
since global recomputing (re-aggregate a whole partition or
even the whole flow table) is needed once a rule updates.
Our FFTA shares the similar basic idea and achieves the same
compression ratio with bit weaving, but it is more efficient
(about 200× faster with less memory usage) and friendly to
table updates.

More recently, Palette[6] and One Big Switch abstraction[7]
have proposed the schemes of decomposing a flow table into
subtables and distributing them among the paths to reduce the
demands of flow table space in each switch. CacheFlow[5]
uses rule caching techniques to virtualize the physical TCAMs
to get the illusion of an infinite rule table. While orthogonal to
our work, all those works may be benefited since fewer rules
would need to be distributed or cached.

VI. CONCLUSION AND FUTURE WORK

Flow table aggregation is a promising direction in reducing
the requirements of TCAMs for SDN switches. We have
proposed FFTA and iFFTA, a pair of flow table aggregation
and update schemes, to reduce the size of flow table with
practical fast updates supplied. Extensive experiments demon-
strate: (1) FFTA is about 200× faster than the best reported

0 10 20 30 40 50
Update streaming

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
A

cc
um

ul
at

iv
e

tim
e

(s
)

FFTA Insert
FFTA Delete
iFFTA Insert
iFFTA Delete

(a) Accumulative time cost

0 2 4 6 8 10
Changed rules per update

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FFTA Insert (offline)
FFTA Delete (offline)
iFFTA Insert (online)
iFFTA Delete (online)

(b) The CDF of changed rules per update

0 10 20 30 40 50
Update streaming

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

 o
f c

om
pr

es
si

bi
lit

y

iFFTA Insert (online)
iFFTA Delete (online)

(c) Loss of compressibility

Fig. 9. iFFTA is about 3× faster than FFTA on incorporating updates.

non-prefix aggregation scheme with much less memory usage
and achieves the provable same compression ratio on offline
aggregation simultaneously; (2) iFFTA achieves about 3×
acceleration further with a loss of only a small quantity of
compression ratio per update. For example, FFTA and iFFTA
only need about 10ms and 3ms to incorporate an update
respectively. So the controller could make a combination use
of FFTA and iFFTA for table aggregations: call iFFTA usually
and recall the efficient FFTA once the switch is running out of
concrete flow table space. Since the aggregation retards table
updates and lengthens the updating time, during which the
networking is error-prone, FFTA and iFFTA are more practical
for SDN.

The aggregation reduces the number of rules, but it also
changes the definitions of those flows involved in and mixes
their entries up, which results in a coarser traffic statistics.
For our next step, we plan to design techniques to estimate the
statistics information of each original flow from the aggregated
flow.

REFERENCES

[1] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
openflow: A survey,” Communications Surveys Tutorials, IEEE, vol. 16,
no. 1, pp. 493–512, First 2014.

[2] R. McGeer and P. Yalagandula, “Minimizing rulesets for tcam imple-
mentation,” in INFOCOM 2009, IEEE, 2009, pp. 1314–1322.

[3] A. X. Liu, C. R. Meiners, and E. Torng, “Tcam razor: a systematic
approach towards minimizing packet classifiers in tcams,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2010. [Online].
Available: http://dx.doi.org/10.1109/TNET.2009.2030188

[4] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: a non-prefix
approach to compressing packet classifiers in tcams,” IEEE/ACM Trans.
Netw., vol. 20, no. 2, pp. 488–500, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2011.2165323

[5] N. Katta, J. Rexford, and D. Walker, “Infinite
cacheflow in software-defined networks,” Princeton University,
Tech. Rep. TR-966-13, Oct 2013. [Online]. Available:
http://www.cs.princeton.edu/research/techreps/TR-966-13

[6] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, 2013 Proceedings IEEE,
2013, pp. 545–549.

[7] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in Proceedings of
the 9th international conference on Emerging networking experiments
and technologies, ser. CoNEXT ’13, 2013. [Online]. Available:
http://www.cs.princeton.edu/ jrex/papers/rule-place13.pdf

[8] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing optimal
ip routing tables,” in INFOCOM ’99. Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 1, 1999, pp. 88–97 vol.1.

[9] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh,
J. Wang, and P. Francis, “Smalta: practical and near-optimal fib
aggregation,” in Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, ser. CoNEXT ’11. New
York, NY, USA: ACM, 2011, pp. 29:1–29:12. [Online]. Available:
http://doi.acm.org/10.1145/2079296.2079325

[10] Y. Liu, B. Zhang, and L. Wang, “Fifa: Fast incremental fib aggregation,”
in INFOCOM, 2013 Proceedings IEEE, 2013, pp. 1–9.

[11] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff,
K. Ligett, and J. Wang, “Compressing rectilinear pictures
and minimizing access control lists,” in Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms,
ser. SODA ’07. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2007, pp. 1066–1075. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1283383.1283498

[12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” in Proceedings of
the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’12. New York, NY, USA: ACM, 2012, pp. 323–334.
[Online]. Available: http://doi.acm.org/10.1145/2342356.2342427

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[14] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte, “Real time network policy checking using header
space analysis,” in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, ser. nsdi’13. Berkeley,
CA, USA: USENIX Association, 2013, pp. 99–112. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482638

