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ABSTRACT

Recently, the abstraction of coflow is introduced to capture the
collective data transmission patterns among modern distributed
data-parallel application. During processing, coflows generally act
as barriers; accordingly, time-sensitive applications prefer their
coflows to complete within deadlines and deadline-aware coflow
scheduling becomes very crucial.

Regarding these data-parallel applications, we notice that many
of them, including large-scale query system, distributed iterative
training, and erasure codes enabled storage, are able to tolerate loss-
bounded incomplete inputs by design. This tolerance indeed brings
a flexible design space for the schedule of their coflows: when get-
ting overloaded, the network can trade coflow completeness for
timeliness, and balance the completenesses of different coflows on
demand. Unfortunately, existing coflow schedulers neglect this tol-
erance, resulting in inflexible and inefficient bandwidth allocations.

In this paper, we explore this fundamental trade-off and design
Poco, a POlicy-based COflow scheduler, to achieve customizable
selective coflow completions for these emerging time-sensitive dis-
tributed applications. Internally, Poco employs a suite of novel de-
signs alongwith admission controls tomakeflexible,work-conserving,
and performance-guaranteed rate allocation to online coflow re-
quests very efficiently. Extensive trace-based simulations indicate
that Poco is highly flexible and achieves optimal coflow schedules
respecting the requirements specified by applications.
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1 INTRODUCTION

In modern cloud data centers, distributed data-parallel applications
such as Hadoop, Spark, and EC-Cache, are widely employed to build
large-scale data processing, analysis, and storage services [4, 16].
In these systems, a job is split into multiple staged tasks carried out
by a cluster in distributed manners. During processing, involved
servers trigger groups of parallel, collective flows to move interme-
diate results from machines of the current stage to the next. These
flows in the same group are abstracted as a coflow since they share
the same performance goal and their completions act as the barrier
of the distributed computation [4, 5]. For time-sensitive applica-
tions like web search, retail, recommendation systems, etc., the
triggered coflows are generally bound with deadlines, implying the
dates by which they should be finished [5, 12]. To deal with these
transfers, existing deadline-aware (co)flow scheduling proposals di-
rectly reject a request if its deadline can not be met [5, 17]; or admit
all requests then dynamically preempt large-sized, less-emergency
transfers in service to increase the amount of deadline-satisfied
requests heuristically, without performance guarantee [11–13]. Un-
fortunately, such designs are proven to be sub-optimal for many of
emerging distributed applications.

Due to the approximate nature of the involved distributed com-
putation [7, 21], or the redundant design employed for data trans-
mission [10, 16], many of today’s distributed applications are able to
tolerate incomplete transmissions by design. For instance, in large-
scale query systems like web search and advertisement selection, for
each cache-missed request, a group of backend servers will report
then aggregate their top-N results to generate the final response;
a partial data transmission is acceptable to the application since
it is a sample for the whole data thus still bringing benefits to the
application [7]. Likewise, during the distributed iterative training of
modern machine learning models, besides the tolerance of incom-
plete training data, models like deep neural network based image
classification and natural language understanding, are robust to
achieve comparable convergence rate over incomplete parameter
updates [21]—Actually, the recent empirical study of [20] shows
that many machine learning algorithms are bounded-loss tolerant;
their end-to-end job performance would get little impact in case
the randomized network data loss is below a certain fraction (typ-
ically 10%∼35%). And for applications like erasure codes enabled
distributed storage system, on object reads/downloads, because of
the redundant self-coding designs, obtaining any k out of (k + r )
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splits of the object residing in the cluster, are sufficient to serve the
request [10, 16].

All the above observations demonstrate the ubiquity of tolerance
on incomplete inputs among emerging distributed applications. Re-
cently, by using this type of tolerance, Liu et al. propose a protocol
with controlled packet loss called ATP, to perform approximate
data transmission for approximate application [9]; Xia et al. design
BTP, a Bounded-loss Tolerant transport Protocol, to remove the tail
latency for the parameter synchronization process of distributed
model training [20]. However, both ATP and BTP are oblivious of
the coflow semantic among flows; their per-flow based designs are
proved to be sub-optimal for the schedule of coflow [5]. To support
incompleteness-tolerant coflow scheduling, Im et al. employ greedy
designs to maximize the partial throughput of coflow [7]. However,
the proposed Con-Myopic algorithm is unaware of the application
requirements in terms of the exact (coflow) completeness and time-
liness. As a result, Con-Myopic provides no performance guarantee
to time-sensitive application. Moreover, Con-Myopic assumes that
the data transmitted by a flow cannot be replaced by another. This is
not always true as the aforementioned applications show counter-
examples. For those applications, the data transmitted by all or
portions of the flows in a coflow is exchangeable. Accordingly, the
completeness of these flows is described by the total volume they
deliver successfully. In these cases, the schedule of Con-Myopic is
inflexible and inefficient.

In summary, emerging time-sensitive distributed data-parallel
applications are common to tolerate incomplete yet loss-bounded
inputs. This brings an import yet overlooked design space for the
schedule of their deadline-bounded coflows: in case the network is
overloaded thus impossible to complete all tasks in time, we could
trade coflow completeness for timeliness and trade one coflow’s
completeness for those of others.

This work. In this paper, we explore the fundamental trade-off
between the time a coflow could take to complete and the com-
pleteness it would achieve. As different applications generally have
various requirements on the completeness and timeliness of coflow,
we extend the barrier definition of coflow to support partial com-
pletion and develop Poco, a POlicy-based COflow scheduler, to
achieve customizable selective completion for them. To provide
guaranteed performances, Poco involves admission controls for
coflows arriving online. At the high-level, it provides a set of pol-
icy primitives, with which, distributed applications can precisely
define their requirements of both the expired time and minimum
completeness along with each coflow. Then, at the low-level, Poco
translates these requirements into time-slotted linear constraints
and formulate a Linear Program (LP) to solve. If the corresponding
LP is infeasible, Poco rejects the request; otherwise, any feasible
result of the problem yields a bandwidth allocation to admit the
new request without sacrificing the requirements of others.

However, building LPs for the selective-completion schedule of
coflow and solving them for rate scheduling are quite challenging.
Firstly, coflow requests arrive online; although a coflow’s detailed
requirements would be available upon its arrival but it is hard to get
that information ahead of time [14, 19]; thus, greedily allocating all
available bandwidth to admit an incoming request would be unfair
to future requests, resulting in unfairness among their applications.

Secondly, as we will show, the bandwidth allocation suggested by
LP might be non-work-conserving; Poco should not directly use
the raw LP results for rate controls. Thirdly, as an online scheduler,
the solving of involved LPs must be very efficient.

To address these challenges, Poco i ) employs a tunable model
to control the level at which bandwidth in the future is allocated
in admission control; ii ) designs a post processing to make work-
conserving bandwidth allocations; iii ) merges variables to compact
the model, and more essentially, iv ) develops a parallelizable core
to speed up the LP solving by making use of the specific constraint
structures of the problem. Extensive evaluations confirm its flexi-
bility and performance gains.

Limits of Poco.As a centralized scheduler, Poco introduces sched-
uling delays. In practice, a coflow’s actual duration depends on
both the available network bandwidth and the amount of data it
should deliver. For those small coflows that could complete within
a very short time (e.g., one or two RTTs), the scheduling delay of
Poco might be not negligible thus Poco could not help. In prac-
tice, there also exist many distributed applications like BSP-based
distributed machine learning and user-facing approximate bigdata
analytics whose triggered coflows are bulk and such delays are
acceptable [5, 12, 18]. Poco is mainly designed for them.

Contributions. To sum up, we make these contributions:

• An analysis of the design space and desired proprieties of
deadline-aware, loss-bounded coflow schedulers (§2).
• A high-level coflow abstraction along with a LP model that
enables applications to express completeness requirements
for deadline-sensitive coflows (§3.1, §3.2).
• A suite of schedule designs to compress the model size and
make fair yet work-conserving bandwidth allocations for
coflows incoming online (§3.3).
• An efficient solver accelerating the LP solving by leveraging
the specific structure of its constraints (§4).
• Extensive trace-based evaluations assess the feasibility, ef-
fectiveness, and scalability of Poco (§5).

2 POCO GUIDELINES

To start the design, let us first analyze the design space raised by the
tolerance of emerging distributed application (§2.1), and summarize
the desirable properties of Poco (§2.2).

2.1 Design Space

Consider that a group of flows Fe go through the same bottleneck
link e , and the sending rate of flow f at time t is rf (t ). Obviously,
as (1) shows, the volume that f can deliver before time t is deter-
mined by the integration of its allocated sending rate rf (t ) over
time, which is restrained by the rates allocated to all other flows in
turn as (2) indicates. Motivated by this, we obtain a foundational de-
sign space for the schedule of coflow: in a heavily-loaded network,
by taking advantage of the application’s tolerance of incomplete
inputs, we can i ) trade the achieved completeness for shorter com-
pletion times, and ii ) trade one flow’s completeness for those of
others. Moreover, if the data delivered by a group of flows within a
coflow (Fд for instance) is exchangeable, the network can balance



Selective Coflow Completion for Time-sensitive Distributed Applications with Poco ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

the total task (ϕд for instance) among its sub-flows with respect to
the network loads as (3) indicates.

vf =

∫ t

0
rf (t )dt (1)

rf (t ) ≤ ce −
∑

f ′∈Fe \{f }

rf ′ (t ) (2)

∑
f ∈Fд

vf ≥ ϕд (3)

2.2 Desirable Properties

By exploring aforementioned trade-offs, Poco performs selective
coflow completions for time-sensitive applications. To be practical,
it must realize the following design goals.

Performance guarantees. First of all, to ensure the progress of
distributed computation, applications usually have limited level
of tolerance. Hence, Poco should provide a service model with
performance promises to applications.

High flexibility. Second, different applications are likely to have
various performance requirements. Accordingly, Poco needs to be
flexible enough to support various requirements.

Fairness. Third, coflows arrive online; the requirements of future
coflow requests are agnostic ahead of time. Greedily allocating all
available bandwidth to admit requests is unfair to future arrivals [8].
Thus, Poco should support configurable admission control.

Work-conserving. Fourth, to fully utilize the network and serve
more requests, Poco is required to be work-conserving. That is to
say a link sits idle only if there is no traffic demand.

Scalability. Last but not least, as an online scheduler, Poco must
decide whether to admit a request and schedule all flow sending
rates to guarantee their performances efficiently. For this purpose,
the algorithms employed by Poco must run in real-time with low
time complexity.

3 POCO SCHEDULER

As Figure 1 sketches, Poco employs admission controls to provide
promises of completenesses and deadlines for coflows in the online
scenario. On getting an incoming request, if Poco finds a way to
meet its completeness- and deadline- requirements without violat-
ing those of any existing coflow, this new request could be admitted
and a corresponding bandwidth allocation is already found. Other-
wise, the request would get rejected; the application could either
cancel the request, or relax its requirements then resubmit again.

In this section, we first introduce the coflow abstraction (§3.1)
along with the network model (§3.2) Poco provides to capture
the flexible requirements raised by application, then describe the
optimization designs that Poco adopts to achieve fairness, work-
conserving, and scalability (§3.3).

3.1 Coflow Abstraction

As Figure 2 summarizes, Poco abstracts a coflow request, saying
Ci for instance, by the set of its involved flows Fi = { fi,1, fi,2, · · · },
and the group of its associated completeness requirements Ri =

Schedule coflows to guarantee 
completeness and timeliness

Network 
controller

Coflow request

admit/reject
2

3
Application 
controllers

1

Coflow 
abstraction

(Fig.2)

Figure 1: Service model of Poco

Grammar

Ci ::= (Fi ; Ri ) Application-specified coflow request
Fi ::= { · · · , fi, j , · · · } Transfer demands of cofow Ci
Ri ::= { · · · , (Gi,k ;ϕi,k ), · · · } Completeness requirements
fi, j ::= (τi, j ;vi, j ;pi, j ) Details of the j-th subflow in coflow i
More Notation

τi, j : Expired time of flow fi, j (we have ∀j : τi, j = τi in this paper)
vi, j : Remaining volume of flow fi, j
pi, j : Path of flow fi, j
Gi,k : Set of flow(s) in the same completeness group
ϕi,k : Completeness requirement

Figure 2: The coflow abstraction provided by Poco.

{· · · , (Gi,k ;ϕi,k ), · · · }. Compared with the original coflow abstrac-
tion proposed by [4, 5], Poco mainly extends the coflow model to
support partial completion. For the j-th subflow in Fi , i.e., fi, j , its
task is to transmit data with remaining volume vi, j via established
path pi, j within expired time τi, j . Although our model allows τi, j
vary among flows, in practice, a coflow represents a task and thus
flows belonging to the same coflow generally share the same dead-
line τi . In case the network is overloaded and a very strict hard
deadline is desired, it is impossible to make full transmissions of
all flows within their deadlines. Then, Poco makes selectively loss-
bounded partial completions. The k-th restriction in Ri given by
the application, specifies that the total completed volume of flows
in Gi,k should not be less than ϕi,k .

Obviously, the abstraction provided by Poco is very expressive.
With it, applications can specify coflow requests along with both
timeliness- and completeness- requirements easily. For transfers
without deadlines, Poco simply treats them bound with a very loose
expired time. And for coflows unable to tolerate incompleteness,
Poco sets their exact volumes as the completeness requirements.

3.2 Network Model

Without loss of generality, consider that there are n − 1 accepted
yet uncompleted coflow requests, labeled C1, · · · ,Cn−1, and the
newly incoming request to check is Cn . We assume that bandwidth
is allocated in time slots with length ∆T and we denote the rate of
flow fi, j during time slot t by ri, j,t . Then, the problem of finding
a bandwidth allocation to admit request Rn and meet its require-
ments without violating those of others, is straightforward to be
formulated as the system of linear inequalities shown in (4). Here,
vi, j and ϕi,k are the updated remaining flow size and uncompleted
completeness volume requirement, respectively; ce,t denotes the
available capacity of link e at time slot t that can be allocated to
admit the currently incoming request now.
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(4)




∑
(i, j )∈Gi,k

τi, j∑
t=1

ri, j,t∆T ≥ ϕi,k , ∀i,k (4a)

τi, j∑
t=1

ri, j,t∆T ≤ vi, j , ∀i, j (4b)

∑
(i, j ):e ∈pi, j

ri, j,t ≤ ce,t , ∀e, t (4c)

ri, j,t ≥ 0, ∀i, j, t (4d)

It is obvious that, if constraints in are infeasible, the request must
be rejected; otherwise, any feasible {ri, j,t } satisfying (4) yields a
bandwidth allocation that accepts Cn .

3.3 Schedule Designs

On getting a request, the straightforward design of Poco is to i ) for-
mulate the associated bandwidth allocation problem as a Linear
Program (LP) by introducing trivial objectives such as maximizing
the total completed volume subject to the constraints of (4), as (5)
show;1 then ii ) employ commercial off-the-shelf optimizer to solve,
and iii ) finally perform the admission control and rate schedule
based on the results. However, such a design is impractical, since
i ) the bandwidth of time slot in future might be over-allocated,
resulting in unfairness to future arrivals; ii ) more seriously, the rate
scheduling given by the LP does not guarantee work-conserving;
and last but not least, iii ) the LP model involves too many variables,
making the process of model solving time costly.

Maximize
n∑
i=1

|Fi |∑
j=1

τi, j∑
t=1

ri, j,t∆T s .t . (4) (5)

Fairness. To be fair for future coflow arrivals, Poco systematically
limits the allocation of link capacities in future time slots on per-
forming admission control. Suppose that link e is with the capacity
of ce , motivated by the design of [8], Poco lets ce,t = ce β (t ), in
which β (t ) = min(1, exp (−(t − t∗)/to )), t∗ and to are two tunable
parameters, receptively. By tuning them, Poco can control the level
at which future link capacities are allocated. Note that, to be work-
conserving in practice, for admitted requests, Poco should allocate
all link capacities to serve until they complete or expire.

Work-conserving.As we will show, the rate scheduling suggested
by LPs does not guarantee work-conserving, even if fine-grained
timeslots are employed and a very large t∗ is used in β (t ). For
instance, consider that an active flow would expire at time 1 and
two coflows Ci and Cj will appear at time 0 and 1, then expire at the
same time 2, respectively. Accordingly, let T∆ be one unit of time;
then there are two time slots, t1 with range [0, 1) and t2 with range
[1, 2). Suppose that each of these two incoming coflows involves
only one subflow, saying fi,1 and fj,1, going through the same
bottleneck link with capacity 2. The total volume and completeness
1 In this paper, Poco employs the objective of maximizing the total com-
pleted volume as a case study. With standard reformulation techniques [2], it
is very easy to extend Poco to support other types of schedules like maxi-
mizing the minimal gain of achieved completeness in a max-min fashion: i.e.,
Maximize min∀i,k 1

ϕi,k

∑
(i, j )∈Gi,k

∑τi, j
t=1 ri, j,t∆T .

requirement of fi,1 are 2 and 1, respectively, while those of fj,1
are 3 and 2, respectively. At time 0, the corresponding LP for the
admission control of coflow Ci is as (7) shows. By solving the
problem with either simplex or interior-point method, we might get
the result of ri,1,1 = 0, ri,1,2 = 2 (indeed, this is exactly the solution
given by Mosek 8.1.67 [1], a commercial off-the-shelf LP solver),
yielding a bandwidth allocation to admit coflow Ci . However, such
a scheduling is not work-conserving since no traffic occurs in slot
t1. As a result, at time 1, coflow Cj would get rejected since there
does not exist enough bandwidth to guarantee its requirements.
For this specific instance, it is possible to achieve work-conserving
bandwidth allocation by assigning degressive weights to slotted
rates in the objective (e.g.,

∑n
i=1
∑ |Fi |
j=1
∑τi, j
t=1

ri, j,t
τi, j ). However, such

a design is impractical as Poco must under-allocate bandwidth in
future slots on admission control for fairness.

(6)




0 ≤ ri,1,1 + ri,1,2 ≤ 2 (6a)
0 ≤ ri,1,1 ≤ 2 (6b)
0 ≤ ri,1,2 ≤ 2 (6c)

Maximize ri,1,1 + ri,1,2 s .t . (6) (7)
To address this, Poco employs a post process to adjust the rate

schedules given by LP. Basically, if there is remaining bandwidth in
earlier slots, Poco greedily moves parts of a slot’s task up, until no
movement can be made. At the end, a work-conserving rate sched-
uling is obtained. In case there are multiple flows going through the
same under-loaded link, flows with unmet completeness require-
ments would occupy the available bandwidth before those whose
completeness requirements are already satisfied; and for either
requirement- unmet or met flows, residual slotted link capacities
are allocated to them in non-decreasing order of their deadlines.

Scalability. Because of the fine-grained slotted bandwidth alloca-
tion, the model involves a large number of variables, taking non-
trivial time for LP solvers to deal with. In addition, the aforemen-
tioned process of work-conserving might also introduce significant
delays since the number of slots to be checked could be huge. To
overcome these, i ) Poco lets flows that already meet their com-
pleteness requirements have the rate of 0 for model pruning, and
merges successive time slots between flow expiration events into
a single one. Then, ii ) Poco employs a novel algorithm to solve
the compacted LP in parallel by leveraging the specific structure of
its constraints. Finally, iii ) Poco modifies the results given by LP
solver to make work-conserving adjustments. Next, we describe
how Poco merges time slots and performs post progresses and
leave the detail of its parallel solver to §4.

On performing admission controls, if no flow expires from time
slot t1 to t2, it is reasonable to assume that all flow rates keep consis-
tent during the interval, without impacting either the feasibility or
optimality of the problem. Such a design is equivalent to adding the
constraints of ri, j,t = ri, j,t−1 for unexpired flows { fi, j : ∀τi, j > t }
and slots {t : ∄τi, j = t }. Following this, merged time slots are
with various lengths and the number of variables for the schedule
of flows with N diverse deadlines would be limited to N (N+1)/2,
which is independent from either flow lifespans or the setting of
slot width. Denote the l-th expired time as τ (l ) and let τ (0) be 0.
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Then, for the l-th merged time slot, starting from τ (l−1) to τ (l ) , the
corresponding available capacity of link e for admission control, is
corrected as βlce , in which βl is the corresponding correct factor of
link capacity defined in (10). Accordingly, the problem of (5), along
with its constraints (4), can be reformulated to (9), where πi, j is the
interval index of the diverse expired time τi, j (11), ∆

(l )
T is the width

of the l-th merged slot (12), and r̄i, j,l is the rate of fi, j during that
interval. Here, N is the number of diverse deadlines, which is also
the amount of time slotted after merging.

(8)




∑
(i, j )∈Gi,k

πi, j∑
l=1

∆
(l )
T r̄i, j,l ≥ ϕi,k , ∀i,k (8a)

πi, j∑
l=1

∆
(l )
T r̄i, j,l ≤ vi, j , ∀i, j (8b)

∑
(i, j ):e ∈pi, j

r̄i, j,l ≤ βlce , ∀e, l (8c)

r̄i, j,l ≥ 0, ∀i, j, l (8d)

Maximize
n∑
i=1

|Fi |∑
j=1

πi, j∑
l=1

r̄i, j,l∆
(l )
T s .t . (8) (9)

βl B

∑τ (l )−1
t=τ (l−1) β (t )

τ (l ) − τ (l−1) + 1
(10)

πi, j B argmax
l
{l : τ (l ) ≤ τi, j } (11)

∆
(l )
T B (τ (l ) − τ (l−1) )∆T , l = 1, · · · ,N (12)

As for the post bandwidth adjustment, Poco repeats to fully fill
available slotted link capacities by moving parts of a slot’s task
up until no link capacity is left. Since the result of LP yields a
bandwidth allocation to the future, Poco could work in pipeline by
keeping making work-conserving adjustments for slots only in the
near future to keep low process delay.

4 EFFICIENT POCO SOLVER

To support large-scale selective coflow scheduling, Poco employs
a parallelizable solver to solve (9) by making use of the specific
sparse and block-angular constraint structure of the involved LP
model. Basically, the solver of Poco is built upon the well-known
homogeneous model based primal-dual interior-point method (HPD-
IPM) [1, 2]. Next, we first overview the workflow of HPD-IPM on
solving our problem (§4.1), then describe the detail of how Poco
reduces and parallelizes the involved matrix computations (§4.2).

4.1 Workflow of HPD-IPM

Given (9), we can rewrite it in its matrix format as (13) shows, where
T stands for the operator of transpose. The exact formats of𝐴, 𝑥,
and 𝑏 of (8) follow in §4.2.

Minimize𝑤T𝑥 s .t .𝐴𝑥 = 𝑏 (13)

1 Choose starting point 𝑧0 : (𝑥0;𝑦0; 𝑠0;θ0;κ0),
parameter εf , εд , γ , and η

2 for k ← 0 tomaxIter − 1 do

3 𝑟kb ← 𝑏θk −𝐴𝑥k

4 𝑟kc ← 𝑤θk −𝐴T 𝑦k − 𝑠k

5 𝑟kd ← 𝑤T𝑥k + κk − 𝑏T 𝑦k

6 µk ←

(
𝑥k
)T

𝑠k+θkκk

rank (𝐴)+1
7 if µk ≤ εд and 




(
𝑟kb ; 𝑟kc ; 𝑟kd

)


 ≤ εf then

8 break

9 Compute 𝑑: (𝑑𝑥;𝑑𝑦 ;𝑑𝑠;dθ ;dκ ) by solvinga



𝐴 −𝑏
𝐴T I −𝑤

−𝑤T 𝑏T −1
𝑆k 𝑋k

κk θk





𝑑𝑥

𝑑𝑦

𝑑𝑠

𝑑θ
𝑑κ


=



η𝑟kb
η𝑟kc
η𝑟kd

−𝑋k𝑠k+γ µk𝑒
−θkκk+γ µk


in which𝑋k ← diaд(𝑥k ),𝑆k ← diaд(𝑠k )

10 Calculate and choose the step size αk

11 𝑧k+1 ← 𝑧k + αk𝑑

Algorithm 1: The workflow of how the homogeneous
algorithm [1] solves the problem of (14).
aDespite different variations of the algorithm might vary in detail, all they

share the same core of solving equations in the form of (15).

According to the theory of linear optimization [1, 2], the problem
of (13) can be solved by solving its homogeneous self-dual deriva-
tion (14), a linear program with strictly complementary solutions
that can be obtained by thewell-known homogeneous algorithm [1].
Then, if its strictly complementary solution (𝑥∗;𝑦∗; 𝑠∗;θ∗;κ∗) has
θ∗ > 0, 𝑥

∗

θ yields an optimal solution to (13); otherwise, the original
problem is infeasible.

𝐴𝑥 − 𝑏θ = 0

𝐴T𝑦 + 𝑠 −𝑤θ = 0

𝑏T𝑦 −𝑤T𝑥 − κ = 0

𝑦 is free, (𝑥; 𝑠;θ ;κ) ≥ 0

(14)

In short, HPD-IPM is a variation of the well-known primal-dual
interior-point method [2]. Given the problem of (14), it starts from
an initial point like (𝑒;0;𝑒; 1; 1), then inters for a decreasing se-
quencing of µ, until the result is converged or the iteration exceeds a
threshold, as Algorithm 1 sketches. Obviously, the most time-costly
procedure in each iteration is to solve a linear equation system
(Line 9) and the workflow [1] is to first i ) compute 𝑑y from (15) for
an established right hand side vector 𝑣, then ii ) obtain the entire 𝑑,

where𝐷k =𝑋𝑘 (𝑆𝑘)−1 = diaд(
xk1
sk1
,
xk2
sk2
, · · · ).

𝐴𝐷k𝐴T𝑑y = 𝑣 (15)

Obviously, 𝐴𝐷k𝐴T is a positive-semidefinite matrix that has
the Cholesky decomposition of 𝐿𝐿T in most cases; we can obtain
𝑑y by solving𝐿𝑔 = 𝑣 and𝐿T𝑑y = 𝑔, sequentially. In the following,
we show how Poco achieves this in an efficient way.
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4.2 Parallel Cholesky Solver

Indeed, as we will show, the𝐴 involved in Poco has the multiple-
level primal block-angular structure, which makes the process of
Cholesky decomposition and solving parallelizable [6]. This enables
us to speed up Poco solver greatly by making use of the abundant
cores in modern server.

To identify the block-angular structure of𝐴, let us revisit the con-
straints specified in (8). Notably, the corresponding requirements
to admit a new coflow request are made of two classes: i ) meeting
each coflow’s minimum transfer demands within their deadlines
(i.e., (8a)) without excusing the maximum size of each flow (i.e.,
(8b)); and ii ) making sure that no link gets overloaded through
the transmitting (i.e., (8c)). Let Γ be the set of all time-slotted link
resources that would be used by coflow, and further denote the
corresponding link and time index of the o-th time-slotted link
resource κo as κeo and κto , respectively. Then, the associated time-
slotted link capacity Poco could use for admission control now can
be computed by βκtocκeo . By using 𝐴i and 𝐵i to indicate these two
types of constraint matrices for coflow i , respectively, the linear
constraints shown in (8) can be reformed as a primal block-angular
structure as (16) shows, in which 𝑥s is the vector of slack variables
for the constraints of link capacity at each time interval, and the
details of 𝑥i , 𝑏i , and 𝑏∗ follow in (17), (18), and (19).

𝐴𝑥 =



𝐴1
𝐴2

. . .
𝐴n

𝐵1 𝐵2 · · · 𝐵n I





𝑥1
𝑥2
...

𝑥n
𝑥s



=



𝑏1
𝑏2
...
𝑏n
𝑏∗



(16)

𝑥i B [(r̄i,1,1, · · · , r̄i,1,πi,1 , r̂
+
i,1),

· · · ,

(r̄i, |Fi |,1, · · · , r̄i, |Fi |,πi, |Fi | , r̂
+
i, |Fi | ),

r̂−i,1, · · · , r̂
−
i, |Ri |]

T

(17)

𝑏i B
[
vi,1, · · · ,vi, |Fi | ,ϕi,1, · · · ,ϕi, |Ri |

]
T

(18)

𝑏∗ B
[
βκt1

cκe1 , · · · , βκt|Γ |
cκe
|Γ |

]
T

(19)

As (17) shows, 𝑥i is made up of the rate allocations of flows
belonging to coflow i , along with a few slack variables {r̂+i, j } and
{r̂−i, j }. Likewise, as (20) indicates, the constraint matrix involved by
each coflow also follows exactly the same pattern of block-angular
structure, in which,ψi,k, j is either 1 or 0, indicating whether the
k-th requirement Gi,k involves fi, j or not. As for 𝐵i , constant
ℏo,i, j,l is either 1 or 0, indicating whether fi, j goes though link κeo
during time interval κto (24). Here, we also have κto ≡ l .

𝐴i B



𝑎i,1 1
𝑎i,2 1

. . .
𝑎i, |Fi | 1

ψi,1,1𝑎i,1 0 · · · · · · ψi,1, |Fi |𝑎i,1, |Fi | 0 −1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

ψi, |Ri |,1𝑎i,1 0 · · · · · · ψi, |Ri |, |Fi |𝑎i, |Fi | 0 −1



(20)

𝑎i, j B [∆(1)
T , · · · ,∆

(πi, j )
T ] (21)

Input: 𝑨, 𝑫𝑘

C1: Calc 𝑳𝑖 via  𝑳𝑖𝑳𝑖
𝑇 = 𝑨𝑖𝑫𝑖

𝑘𝑨𝑖
𝑇

C3: Calc 𝑴𝑖 = 𝑩𝑖𝑫𝑖
𝑘𝑨𝑖

𝑇𝑳𝑖
−𝑇

C4: Calc 𝑳∗ via 𝑳∗𝑳∗
𝑇= 𝑫𝑛+1

𝑘 + σ𝑖=1
𝑛 (𝑩𝑖𝑫𝑖

𝑘𝑩𝑖
𝑇 −𝑴𝑖𝑴𝑖

𝑇)

S1: Calc 𝒅𝑦,∗ via 𝑳∗(𝑳∗
𝑇𝒅𝑦,∗) = 𝒗∗− σ𝑖=1

𝑛 𝑴𝑖 𝑳𝑖
−1𝒗𝑖

S2: Calc 𝒅𝑦,𝑖 = 𝑳𝑖
−𝑇𝑳𝑖

−1(𝒗𝑖 − 𝑨𝑖𝑫𝑖
𝑘𝑩𝑖

𝑇𝒅𝑦,∗)

Output: 𝒅𝑦

C2: Calc 𝑳𝑖
−1

Input: 𝒗

Parallel 

cholesky 

decomposition

Parallel 

solving

i=1,2,…,n

i=1,2,…,n

i=1,2,…,n

i=1,2,…,n

Figure 3: Workflow of how Poco solves (15) in parallel

ψi,k, j B



1 (i, j ) ∈ Gi,k

0 otherwise
(22)

𝐵i B



· · · ℏ1,i, j,1 · · · ℏ1,i, j,πi, j 0 · · · 0

. . .
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
· · · ℏ|Γ |,i, j,1 · · · ℏ|Γ |,i, j,πi, j 0 · · · 0

 j=1, · · · , |Fi |

(23)

ℏo,i, j,l B



1 κeo ∈ pi, j ∧ l ≤ πi, j

0 otherwise
(24)

Recall that the core of HPD-IPM is to solve 𝐴𝐷𝑘𝐴T = 𝑣 via
Cholesky decomposition techniques. By splitting the diagonal 𝐷k

into blocks and let the i-th block𝐷k
i shares the same shape with

𝐴i , we obtain that 𝐴𝐷k𝐴T has the form

𝐴𝐷k𝐴T=



𝐴1𝐷
k
1 𝐴

T
1 𝐴1𝐷

k
1 𝐵

T
1

𝐴2𝐷
k
2 𝐴

T
2 𝐴2𝐷

k
2 𝐵

T
2

. . .
...

𝐴n𝐷
k
n𝐴

T
n 𝐴k

n𝐷
k
n𝐵

T
n

𝐵1𝐷
k
1 𝐴

T
1 𝐵2𝐷

k
2 𝐴

T
2 · · · 𝐵n𝐷

k
n𝐴

T
n 𝐶



(25)

where

𝐶 =
n∑
i=1

𝐵i𝐷
k
i 𝐵

T

i +𝐷
k
n+1 (26)

It is easy to verify that Cholesky factorization always preserves
this bordered form [6]. Accordingly, to be consistent with the struc-
ture of A, we label its blocks as (27) shows, and partition both the
variable vector𝑑y and the right hand side value vector 𝑣 into blocks,
𝑑y B (𝑑y,1;𝑑y,2; · · · ;𝑑y,n ;𝑑y,∗), 𝑣 B (𝑣1;𝑣2; · · · ;𝑣n ;𝑣∗).

𝐿 =



𝐿1
𝐿2

. . .
𝐿n

𝑀1 𝑀2 · · · 𝑀n L∗



(27)

Then, the workflow of how Poco solves 𝑑y in parallel is as Fig-
ure 3 shows. Notably, at the high-level, the computations involved
in C1, C2, C3 and S2 can be parallelized for each coflow i; and at
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the low-level, since each𝐴i repeats the same primal block-angle
structure, the computation involved in S1 could be accelerated with
the similar design. Moreover, all matrix computations are able to
be parallelized as well.

Such a design has two advantages: on one hand, it reduces the
computation greatly by exploiting the sparsity of𝐴; on the other, it
makes the computation parallelizable at multiple levels by making
use of the well structure of𝐴.

5 EVALUATION

In this section, we evaluate Poco through trace-based simulations.
We compare it with state-of-the-art deadline-aware coflow sched-
ulers Varys [5], Con-Myopic [7], and the default baseline Fair-
Sharing (FS). Extensive results indicate that Poco is flexible and
robust to make very efficient tolerance-aware coflow scheduling:

(1) Poco lets more coflows meet their requirements by trading
the achieved completeness for timeliness, and trading one
coflow’s completeness for those of others;

(2) its scheduling algorithm makes very effective use of the net-
work to provide guaranteed performance to time-sensitive
coflow, outperforming that of the state-of-the-art Varys up
to 1.25× and even more (the performance gain depends on
the instance’s settings);

(3) its core solver is very efficient, achieving linear speedup
(hundreds and even more) by making usage of the specific
block-angle structure of its constraint matrix.

5.1 Methodology

Workload. The coflow workloads employed in evaluations are
generated using a coflow workload generator following the de-
sign provided by Varys [5]. In short, it unsamples the Facebook
traces to the desired number of coflows, network load, cluster scale,
etc., while keeping workload characteristics similar to the original
Facebook trace. However, the Facebook trace does not involve the
attribute requirements of deadline and completeness. In common
with prior work [5, 12], for each coflow Ci , we set its deadline
constraint to be (1 + z)ρi , where ρi is the minimum completion
time of coflow i in an empty network, and z is a randomly number
following the uniform distribution U [0; 2x]. As for the complete-
ness requirements, we assume that each involves the requirements:
Ri : {(Fi ,αi

∑ |Fi |
j=1 vi, j )}, where αi varies from 0 to 1. Unless men-

tioned otherwise, our simulation results use the baseline of 300
coflows, 1.0 network load, 0.9 completeness requirements; and x ,
the scale factor of deadline (i.e., the mean of z), is set as 1.

Cluster.We find that simulations imply consistent results under
diverse cluster scales. To reduce the simulation time, we consider a
cluster involves 60 servers here. In common with recent work, the
entire cluster network is abstracted out as a non-blocking switch [5,
15], which interconnects all machines with 1 Gbps bidirectional
links.

Simulator. Similar to that of Varys, we develop flow-level simula-
tors (in Python3) to perform detailed replays of the aforementioned
coflow traces, according to the schedule policy of FS, Varys, Con-
Myopic, and the proposed Poco, respectively. In short, FS is the

max-min fair sharing policy adopted by TCP and its variations.
Varys is the state-of-the-art deadline-guaranteed coflow scheduler,
which performs admission controls by letting coflows finish ex-
actly at their deadlines, then adjusting sending rates to achieve
work-conserving [5]. Con-Myopic is the only existing scheduler de-
signed to support partial completions; it greedy schedules coflows
to maximize their marginal partial throughput without considering
their exact deadlines [7]. Poco admits coflow requests based on the
results of (9), then adjusts flow rates to achieve work-conserving.
As for the back-end solver of Poco, we implement a parallel core
based on Scipy to denote the performance gain, in which the paral-
lelization is implemented and controlled by Numpy2 implicitly. In
all tests, rejected requests do not get resubmitted. Theoretically, a
fine-grained slotted model would ensure a more efficient use the
network. However, setting ∆T too small would cause the under-
lying transport protocol (e.g., DCTCP) to behave erratically due
to significant variation of available bandwidth. Also, smaller slots
would increase the running time of simulation greatly. We suggest
the use of O (100) ms slots and let ∆T be 500 ms in our simulation.
As for the tunable parameter t∗ and to for the control of available
link capacity in future, we let t∗ be τ∗/(u∆T ), and to be 1000, respec-
tively, where τ∗ is the 85-percentile of the involved coflows’ ideal
completion times and u is the average network load, both of which
can be inferred from served coflows in practice.

Metrics. Regarding the performance metrics, we mainly consider
the percentage of coflows that meet their requirements of deadline
and completeness. For specific test cases, we also consider the
(normalized) completed volume and achieved completeness under
various scheduling schemes. Besides, we also evaluate the speedup
of Poco’s core solver shown in Figure 3. For each parameter setting,
we perform 8 trials.

5.2 Performance

Detailed case study. As Figure 4a shows, under the default param-
eter settings, FS, Con-Myopic, and Varys let about 13.1%, 35.2%, and
78.0% coflows meet their completeness and deadline requirements,
respectively. In contrast, the average percentages achieved by Poco
is 97.7%, yielding the performance gain of 7.46×, 2.78×, and 1.25×,
respectively. For these test cases, Figure 4b gives their detailed Com-
plementary Cumulative Distribution Function (CCDF) curves of all
coflow requests. Recall that both Poco and Varys employ admis-
sion controls to provide performance guarantees; accordingly, their
curves involve line segments. However, Varys neglects the toler-
ance nature of application and always makes full completion for
admitted coflow, resulting in performance loss compared with Poco.
Regarding FS and Con-Myopic, they work poorly since the agnosti-
cism of application requirements. Meanwhile, we also observe that
the schedule of Con-Myopic does not guarantee work-conserving,
since it is designed to maximize the marginal partial throughput at
each slot [7].

To ascertain their performance details, we also count the total
transmitted volume in each case (normalized by the total volume
of all requests, Figure 4c) and the achieved completeness of each
flow (Figure 4d). Obviously, Poco makes very efficient use of the

2SciPy: Open source scientific tools for Python https://www.scipy.org

https://www.scipy.org
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Figure 4: The details of Fair-Sharing (FS), Con-Myopic, Varys, and Poco on scheduling coflows with 0.9-completeness and

“x = 1”-deadline requirements.

network as it transmits nearly 89.4% of all the volume, accounting
about 92.6% of the total volume of the coflow requests it admits.
As for Varys, it makes 100% deliveries for all the coflows it admits,
accounting about 62.8% of the total requested volume. A very inter-
esting observation is that, FS only lets about 13.1% requests meet
their requirements, however, its transmitted volume reaches 83.0%
of the total. Such results imply that, maximizing the network good-
put/throughput does not necessarily optimize the completion of
coflow. Thus, to perform efficient coflow scheduling, the awareness
of both the completeness and deadline is a must for the scheduler.
As an example, Poco enables more coflow requirements be met by
trading completeness for timeliness and trading one coflow’s com-
pleteness for those of others on demand. The illustration shown
in Figure 4d confirms the awareness and flexibility of Poco: all
admitted coflows do satisfy the completeness requirements of 0.9,
yet at the flow-level, less than 86% of the admitted flows achieve
the completeness level of 0.9 for their own tasks.

Impact of completeness. To investigate the impact of complete-
ness, we change each αi , the required completeness level, from 1 to
0.6, then rerun the tests and check the percentage of coflows that
could meet their requirements under various schedule schemes. As
Figure 5a illustrates, the results of Varys keep consistent, because it
is unaware of the tolerance of completeness thus always perform-
ing 100% completions for all admitted requests. Conversely, with
the relaxation of required completeness, all other three schemes
schedule more coflows to meet their requirements. Especially, Poco
is able to admit and satisfy all the requests, once their required
completeness level is less than 0.8. Such results imply the ability of
Poco on performing tolerance-aware scheduling, again. Moreover,
we find that Poco still outperforms Varys about 5%, even when all
coflows require 100% completions. That is to say, the rate schedule
algorithm adopted by Poco always makes more efficient use of the
bandwidth than that of Varys. This is reasonable, since the schedule
of Poco is built upon LP and Poco obtains the optimal results in
polynomial time. Besides, the results of FS and Con-Myopic also
reveal that their percentages of met coflow increase linearly with
the decrease of the required completeness level. This phenomenon
is consistent with the observed distribution shown in Figure 4b.

Impact of deadline. As the other requirement dimension of a
coflow request, we then test how the amount of requirement-
satisfied coflow changes if coflows have looser deadlines. To this

end, we increase x , i.e., the mean value of z, or the so-called scale
factor of deadline, from 1 to 5. As Figure 5b reveals, for all schemes
but Poco, a significant increased amount of coflows would meet
their requirements when their deadlines get relaxed. However, the
results of Poco have little change. This is reasonable since the re-
laxation of deadline would not reduce the network load indeed. As
Poco has already made very efficient use of the network to admit
the request, there is little room to improve.

Impact of network load. Next, we test the change of requir-
ement-satisfied coflow under various network loads. According
to the trace generator, the tested coflow requests are assumed to
arrive in a Poisson process whose rate is λ. We vary the network
load from 0.6 to 1.2 by controlling the rate parameter λ. Because a
coflow will get expired automatically after its deadline, there would
be only a limited amount of coflows to server even if the network
load runs into a load value larger than 1. As Figure 5c indicates,
for all schedule schemes, the percentages would reduce with the
increase of network load, consistent with the fact that more re-
quests will get completely served if the network load is light. We
also notice that once the network load is under 0.6, Poco would let
all requests meet their requirements simultaneously. This reflects
that Poco does make very efficient rate allocations.

Speedups. Now, we test the efficiency of Poco’s core solver. To
highlight the speedups of using the block-angle constraint structure
while eliminating other effects, we use the straightforward imple-
mentation of the solver core shown in Figure 3 to solve randomly
generated constraints and right hand vectors on an Ubuntu 18.04
server equipped with one Intel Xeon(R) Silver 4210 CPU and two 8
GB DDR4 memory. In tests, we assume constraint blocks are square
and share the same size, then test how the run time changes with
the block size and amount (i.e., parameter n in (16)). Basically, the
solving time of Poco solver ranges from several milliseconds to
several hundreds of milliseconds, depending on the problem size.
As is known, the concrete running time could be greatly improved
by taking advantage of hardware specific optimizations like MKL.3
To normalize the effects of hardware, we compare the run time of
Poco solver with that of the naive solver unaware of the constraint
structure.

3Intel@Math Kernel Library, https://software.intel.com/en-us/mkl

https://software.intel.com/en-us/mkl
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Figure 5: Different from the significant performance degradation of FS, Con-Myopic, and Varys, the percentage of coflows that

admitted by Poco only decreases slightly with the increase of required completeness and network load. As well, Poco always

outperforms all other scheduling algorithms greatly.
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Figure 6: Comparedwith its native implementation, the core

computation involved by Poco solver can be greatly acceler-

ated by taking advantage of the specific constrict structure

shown in (16); and the speedup ratios increase with both the

block amounts and block sizes: the speedup ratios increase

almost linearlywith both the block amounts and block sizes.

As Figure 6 implies, compared with the naive solver, the Poco
solver obtains huge performance gain by making use of the block-
angle structure of the constraint matrix: the speedup grows almost
linearly with both the size and amount of involved constraint blocks.
For instance, the ratio would reach nearly 400 when the constraint
matrix involves 100 angle blocks, each of which involves 200 vari-
ables and constraints. It is reasonable, since the solver design shown
in Figure 3 not only makes the computation parallelable, but also
eliminates a lot of useless calculation by using the sparsity of con-
straints. Because of the limits of hardware capacity, the speedup
ratio would not grow without bound. Nevertheless, the results
still give us a strong insight that huge performance gain would be
achieved by making use of the well-structure of constraints.

6 CONCLUSION

Nowadays, an increasing number of emerging time-sensitive dis-
tributed applications are able to tolerate loss-bounded inputs by
design [3, 9, 16, 20], yielding novel design space and trade-offs for
the schedule of their coflow transmissions. Accordingly, this paper
studied this type of trade-off and proposed Poco, a POlicy-based

COflow scheduler, to achieve tolerance-aware coflow scheduling
based on the requirements of applications. As confirmed by exten-
sive trace-driven simulations, by trading loss-bounded complete-
ness for timeliness and trading one coflow’s completeness for those
of others on demand, Poco was able to achieve optimal bandwidth
allocations respecting user-specific requirements; and, by making
use of the constraint structure of the problem, Poco obtained linear
speedups for the computation of rate scheduling.
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