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Abstract—As the key infrastructure for emerging 5G and
IoT applications, micro data centers would be widely deployed
at network edges to provide high-bandwidth low-latency cloud
service. In these systems, applications would deliver large-size
data objects among servers for various purposes like service
deployment, application scale-up, and data duplication on de-
mand. Accordingly, reducing the delivery time is crucial for the
optimization of service delay and system utilization.

To accelerate the delivery, this paper proposes a multi-
source-aware adaptive data transmission solution, Parallel Push
(PPUSH), by leveraging the fact that data objects in cloud
are generally replicated among servers by design. At the high-
level, PPUSH achieves efficient delivery of multi-source data by
launching multiple push flows in parallel; and at the low-level,
it decouples transfers from different sources by encoding data
objects with rateless RaptorQ code, and further employing novel
congestion controls to prioritize the bandwidth allocation of
concurrent tasks respecting their remaining sizes. Fluid model
analysis along with Mininet-based test and packet-level simu-
lation shows that, unlike DCTCP and other proposals, push is
robust to packet loss and achieves provable prioritized bandwidth
allocation. Extensive simulation results imply that, with above
advantages, PPUSH could achieve very efficient data delivery by
making use of all available data sources: for instance, compared
with the straightforward design of equal-size task split and fair
bandwidth allocation, its adaptive task assignment and prioritized
traffic scheduling reduce the average task completion time in a
tested scenario by 1.495× and 1.329×, respectively, demonstrating
a total improvement of 1.586×, when enabled at the same time.

Index Terms—Edge cloud, data delivery, congestion control,
prioritized bandwidth allocation

I. INTRODUCTION

NOWADAYS, to provide high-throughput, low-latency,
and cost-efficient cloud service for emerging 5G and

Internet of Thing (IoT) applications, increasing amounts of
internet service, cloud, and content providers are extending
their data center infrastructures to the network edge, making
the wave of edge cloud computing [1]. Essentially, these
edge data centers are micro- or middle- scale clusters, which
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would host various distributed applications like content deliv-
ery, website hosting, computation offloads, bigdata analysis,
machine learning, and so on [1, 2]. In practice, servers in
these clusters commonly need to deliver large-size data objects
for various purposes on demand. For example, to launch a
new microservice or cloudlet, a selected set of servers would
pull the involved Virtual Machine (VM) or container images
from the registries [3]; likewise, to scale up model inference
service, distributed Artificial Intelligence (AI) applications
would duplicate the trained model (with up to thousands
megabytes of parameters) [4] to newly launched servers; and
to recover from server failures or to improve the availability
of critical data, distributed storage applications might replicate
data blocks to different carefully selected slave nodes [5, 6].
Accordingly, to reduce service delays and improve the uti-
lization of infrastructure, resource-bounded edge data centers
must achieve very efficient delivery of data objects in practice.

By looking into the design principles of these applications,
we find that the involved data objects are generally replicated
among hosts and racks for various purposes by design. Indeed,
such a multi-source nature of data objects also brings with the
new opportunity of parallel transmission for the acceleration of
their deliveries [7]. For instance, to reduce service deployment
time, container images for microservice and cloudlet would
get hosted on multiple replicated registries [3]; consequently,
by launching multiple cooperative pull requests from all the
registries, it is possible to further reduce the time of image
downloads in service deployment and cloudlet initialization.
Likewise, to guarantee high data availability, each data chunk
in distributed file systems like GFS [5] and HDFS [6] is
replicated among 3 or 5 or even more carefully selected
servers; accordingly, for model parameters stored in these
systems, by fetching different parts of the trained model
from back-end storage nodes and existing inference nodes in
parallel, AI applications are able to cut down the time of model
preparation greatly when scaling up.

However, such a design is not widely used in production
so far, as there does not exist a practical and generic protocol
that would make efficient use of the multi-source nature of
the data. Although several production clusters have tried the
alternative design of peer-to-peer (P2P) mechanisms—splitting
the target object into pieces and transmitting them from all
available source nodes collaboratively, existing solutions like
BitTorrent and its variations Murder [8] and Cornet [9], are
highly tailored and far from optimal on two aspects. Firstly,
to download the same object from multiple sources collabo-
ratively, P2P systems run slow and sophisticated peer proto-
cols for the search and delivery of pieces dynamically [10],
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with the cost of non-trivial control overheads [8]. Making
fixed delivery task assignment to source nodes ahead would
eliminate the overheads, however, such a design could not
react to network variations like source failures and bandwidth
changes, resulting in inflexibility and inefficiency. Secondly
and more critically, as prior study has shown [11–13], to
optimize the average task completion times, applications prefer
prioritized bandwidth allocations. Unfortunately, existing peer
protocols are generally built upon either TCP or uTP [10, 14],
which pursues fair bandwidth allocations by design and might
cause incast problem [11]. Despite a lot of novel prioritized
protocols have been proposed, they i) could not scale [15],
or ii) are inefficient with the problem of slow start [9]
or no performance guarantees [16, 17], or iii) are hard to
deploy because of their non-trivial modifications on switch
hardware [7, 12, 13, 18] or exclusive use of all the limited
priority classes [19]. There also exist some proposals that
require no hardware modification [20]; however, like most of
aforementioned solutions [12, 13, 16–19, 21], they are unaware
of the multi-source nature of data, leading to sub-optimal.

To overcome these shortcomings and provide an efficient
object delivery service for cluster application, this paper
proposes PPUSH, a practical multi-source aware transmission
protocol. At the high level, PPUSH achieves low-overhead
multi-source data delivery with the assistance of a centralized
controller. To be scalable, the controller’s job is minimal.
For each data object, the controller maintains the set of its
active source nodes and works as the front-end resource server
waiting for receivers’ fetch requests. On getting a fetch, it
selects a group of source nodes to push different parts of the
object via UDP in parallel. Then, for each received packet, the
receiver generates an ACK to the corresponding sender for
acknowledgment and periodically reports its remaining task
size to the controller (we refer the packets sent by a source
node along with the triggered ACKs as a push flow). Once the
receiver has obtained enough packets to recover the original
object, it terminates all push flows with FIN packets.

At the low level, PPUSH i) lets source nodes send diverse
RaptorQ coded packets instead of the raw content, to avoid
duplicated transmission without complex explicit collabora-
tion [7] (§III-A), and ii) develops a DCTCP-alike sim-reliable
congestion control algorithm to achieve configurable weighted
fair sharing for concurrent push flows (§III-B,§III-C). RaptorQ
is a systematic and rateless coding scheme widely used for for-
ward error correction (FEC). With negligible overheads [7], it
makes PPUSH robust to packet loss, thus avoiding the problem
of head-of-line blocking, and more importantly, decoupling
the transmission tasks of different sources. As a result, source
nodes can send data as fast as they can without worrying
about duplicated transmission; and also, the entire delivery
task could tolerate both switch and source failures. Regarding
the congestion control, the algorithm employed by push is
distinguished from that of DCTCP with two novel designs.
First, as push flows tolerate packet loss, they employ explicit-
instead of cumulative- acknowledgments to avoid head-of-
line blocking [22]. Second, to prioritize bandwidth allocations
for the optimization of average task completion time, push
flows with the lower priority are set to be more sensitive to

ECN markings: consider that a push flow’s current running
average of the fraction of ECN mark is α; then, on getting an
ECN mark, its sender would reduce the congestion window
size by α/(2θ), rather than by the original α/2 suggested by
DCTCP [22]. Here, θ denotes the level of sensitivity at which
it reacts to ECN mark. As we prove in §IV, such a simple
design enables concurrent push flows to share the bottleneck
bandwidth in proportion to their θs. By dynamically updating
push flows’ θ-parameters according to their remaining task
sizes via a controller, PPUSH could optimize their average
completion times without upgrading switch hardware (§III-C).

We not only analyze push protocol with fluid models and
numerical techniques, but also prototype PPUSH in Mininet
and develop a packet-level event-driven simulator for detailed
large-scale performance study. Extensive results show that,
PPUSH converges very fast and would make provable weighted
fair yet work-conserving bandwidth allocation. By leveraging
the adaptive task assignment and θ-based traffic prioritization,
it outperforms the straightforward solution (i.e., fixed task split
and fair bandwidth allocation) up to 1.6× on tested workloads.

In summary, our contributions are:
• PPUSH, a multi-source aware, loss-tolerable transport

protocol achieving very efficient delivery of multi-source
data objects with RaptorQ-decoupled parallel pushing.

• Weighted fair congestion control (WFCC), an easy-
to-implement congestion control algorithm that achieves
provable weighted fair sharing bandwidth allocation for
concurrent flows without specific hardware support. Be-
sides PPUSH, WFCC can be used for many other proto-
cols including DCTCP, QUIC, as well.

• Verified mathematical proof, a fluid model based math-
ematical analysis along with Mininet-based prototype
and packet-level simulation proving that WFCC enforces
controllable weighted fair bandwidth allocations.

• Extensive simulation, detailed performance evaluations
showing that PPUSH is robust to packet loss, performs
graceful traffic scheduling, and achieves very efficient
delivery of multi-source data objects.

The rest of this paper processes as follows. Section II briefly
analyzes the design challenges, then sketches the core idea of
PPUSH. Section III presents the design details. Section IV
further analyzes the WFCC employed by PPUSH with fluid
models, and verifies the theoretical findings with both Mininet-
based test and packet-level simulation. Before reviewing the
related work in Section VI, extensive performance evolution
follows in Section V. Finally, Section VII concludes the paper.

II. PROBLEM ANALYSIS

In this section, we first overview the practical limits and
challenges of designing new transport protocols for multi-
source data delivery in edge data center (§II-A), then overview
how PPUSH achieves the goal with novel designs (§II-B).

A. Design Challenges

To make efficient and practical parallel push in edge data
center, the following challenges must be addressed.
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Sender node dynamic. As is known, both node and link
failures are common to occur in today’s data centers since
i) servers are generally built from inexpensive commodity
components for cost effectiveness and ii) network updates are
error-prone [5, 23–25]. Thus, some source nodes of a delivery
task might be unavailable because of failure, or conversely, be-
come available during the transmission because of automated
repairs [5, 24]. To achieve the best performance, the proposed
solution should be able to make use of dynamically available
source nodes for the delivery on a routine basis.

Low cooperation overheads. Intuitively, the straightforward
design to achieve efficient object delivery upon dynamical
source nodes is to directly employ off-the-shelf P2P file
sharing applications (e.g., BitTorrent). However, their peer pro-
tocols are sophisticated, slow, and would introduce non-trivial
overheads [8, 10]. The alternative is to build a centralized
controller to control all the traffic [15]. Unfortunately, such
a design is impractical as well, since it is agnostic on bursty
link congestion and might underuse link capacities because of
its scheduling latency. Moreover, the controller would become
the bottleneck as it is too involved with the scheduling.

Unpredictable packet loss. In practice, multiple types of
traffic generally coexist in the network. Some of them might
trigger micro-bursts [26] (e.g., incast [11]), which would
build up the shallow switch queue very quickly and cause
unpredictable packet drops. Hence, on one hand, the proposed
protocol should be able to tolerate these bursty packet drops;
while on the other, it should keep queue utilization rate
low. Furthermore, to guarantee low latency for time-sensitive
traffic, the impacts of traffic triggered by the considered
background data delivery tasks on the other, must be isolated
(e.g., use the lowest priority for data delivery [27]).

Limited priority queue. As prior study has shown, the key to
optimize the average transfer completion times is to dynam-
ically prioritize their traffic respecting remaining sizes [12].
To be easy-to-deploy, the proposed solution should avoid
switch modifications; the state-of-the-art solutions implement
this type of schedule by directly employing the priority queues
provided by switch hardware then updating the assignment
of priorities dynamically. However, this design is impossible
in our settings, since current switch hardware supports only
4 ∼ 8 queues, most of which are already reserved for other
applications or services [21]. Hence, there is only the lowest
queue that PPUSH can use for traffic prioritization.

B. Solution Overview

Based on above analysis, we develop PPUSH, a readily-
deployable data center transport protocol, to achieve efficient
delivery of multi-source data objects. Basically, as Figure 1
sketches, PPUSH can make full use of all the available source
nodes with the help of a centralized controller (§III-A). To
be scalable, the job of the controller is minimal: it i) only
maintains the active set of source node for each delivery
task and ii) updates the corresponding congestion control
parameter according to remaining task sizes in period (§III-C).
To remove cooperation overheads and tolerate packet drops,

S[1] S[2] S[N]

ReceiverController

Push flows

… Source nodes

Control messages

Coded data

Fig. 1: PPUSH Architecture

PPUSH i) encodes multi-source data objects with RaptorQ
code and ii) has source nodes partitioning the stream of coded
packets to avoid duplicated transmission distributively [28].
More specifically, the source node first splits the data object
into blocks, and further encodes each of them into a stream of
equal-size, UDP-encapsulatable unique symbols via fountain
coding technique [28]. Then, push flows send different parts
of the coded symbols of consecutive blocks in UDP flows.
After getting any sufficient subset of encoded symbols, the
receiver recovers each original data block via decoding. To
achieve prioritized bandwidth allocations while keeping low
queue occupancy, PPUSH employs a DCTCP-alike weighted
fair congestion control algorithm for each push flow (§III-B).

To make efficient use of the residual bandwidth without
preempting other time-sensitive traffic, PPUSH tags packets
with the Differentiated Services Code Point (DSCP) value
bound with the lowest weight. Then, the weighted fair queuing
in switch would ensure that these push flows would make very
graceful use of the available link capacity.

In the following, we first introduce the design detail of
PPUSH in §III then illuminate why the proposed congestion
control yields provable weighted fairness in §IV.

III. PPUSH PROTOCOL

In this section, we first present the detail of how PPUSH ex-
ecutes parallel pushes (§III-A), then describe the weighed fair
congestion control (WFCC) algorithm that enforces controlled
weighted fair bandwidth allocation for concurrent push flows
(§III-B), and finally depict how PPUSH achieves prioritized
schedule of delivery tasks for the optimization of their average
completion times by updating their congestion control param-
eters via a logical central controller dynamically (§III-C).

A. Architecture and Workflow

As Figure 1 shows, PPUSH involves three types of nodes,
namely, receiver, controller, and source node, respectively.

Receiver. To fetch a data object, the receiver sends a re-
quest along with the Uniform Resource Identifier (URI) of
the resource, its device (or user) ID to the corresponding
controller via UDP, then listens on the same UDP port for
acknowledgment and task summary from the controller, and
coded symbols of data blocks from source nodes. If no ac-
knowledgment is obtained within a given time, it retries until it
gets one. During the receiving, the receiver periodically reports
the first un-decoded block’s index along with the remaining
number of needed symbols to the controller. Such a feedback
message works as heartbeats indicating the receiver’s activity
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and progress; thus, the controller can launch new push flows
for it in case new source nodes are online. On getting a coded
data symbol from the source node, the receiver immediately
generates an acknowledgment message (refer as ACK for short
hereafter), indicating which symbol is received along with
how many symbols are still needed from this sender for the
corresponding block’s decoding,1 to the source. Moreover, this
ACK would have an ECE flag enabled if the received IP
packet is marked with ECT. Once the receiver has obtained
whole of the original data object via decoding, it sends FINs
to the controller and all its active data senders. To guarantee
graceful termination, the FIN to controller would get resent if
no acknowledgment is obtained.

Controller. The controller in PPUSH is essentially the man-
ager of distributed source nodes and simultaneously acts as the
front-end server of data delivery. On getting a fetch request, it
records the identification as well as the IP address and UDP
port of the receiver, then emits an acknowledgment. In the
meantime, it dynamically selects a subset of active source
nodes containing the desired data object, to dispatch coded
data symbols to the receiver via push flows. To avoid the
problem of incast [9, 11], the number of selected senders
should be limited (e.g., by 3 for instance). During the delivery,
based on the reported remaining task sizes, it periodically
recomputes and adjusts the congestion control parameters of
all push flows, such that concurrent push flows would achieve
controlled weighted fair sharing on bottleneck links. In case
the controller does not get any update of a receiver for a
long time, it pauses all the corresponding push flows since
the receiver is likely to be offline. Finally, on getting the FIN,
it replies an acknowledgment and stops all the corresponding
push flows immediately.

Source node. In PPUSH, source nodes are the back-end stor-
age nodes holding the coded blocks of data objects, managed
by the controller. To keep the computation overhead and
latency introduced by RaptorQ decoding on the receiver small,
large-size data objects in PPUSH would be split into small
blocks for pipelined delivering and decoding. On getting a
push task from the controller, the source node sends all or
parts of the encoded symbols of the data object to the receiver.
As the parameter settings for both the splitting and encoding
of data objects keep consistent among all source nodes; these
selected source nodes would have exactly the same data blocks
and encoded symbols for the same data object.

Suppose that at most M source nodes would host the
requested data object; and encoded symbols of block j are
indexed with 0, 1, 2, · · · . To avoid duplicated transmission,
the i-th node only sends the symbols with index i + k M ,
where k = 0, 1, 2, · · · for block j. Similar to QUIC [29],
packets in each push flow carry with monotonically-increasing
packet numbers indicating their transmission orders. As well,
during the delivery, sent symbols would get acknowledged

1 For a block whose original symbol size is u, if the receiver has received v
coded symbols, the amount of remaining desired coded symbols for each of its
N active source, can be estimated by d u−v+2

N e according to [28]. Moreover,
to tolerate the possible drop of ACK packet, we can let each ACK confirm
the receipts of multiple recently received symbols for redundancy.

by the receiver explicitly. Thus, the sender can speculate
which symbols are lost. The acknowledgment also specifies
how many symbols from this sender are still required by the
receiver to decode the block. For each un-decoded block, the
sender would resend the lost symbols if there are, or emit
new ones, until the block gets decoded successfully. However,
if the sender switches to send the coded symbols of block j+1
only after it gets the decoded confirmation of block j, there
would be about one Bandwidth Delay Product (BDP) of in-
flight packets along the way belonging to block j because of
the acknowledgment delay. To reduce these redundant packets,
if the number of sent-yet-unacknowledged packet belonging
to block j is larger than the required amount specified by the
receiver, the sender would deliver the symbols of block j + 1
to use the remaining bandwidth gracefully.

Like QUIC [29], the emission of coded symbol packet in
each push flow is also controlled by a congestion window.
As detailed in §III-B and §III-C, based on the congestion
signals implied by acknowledgments along with the parameter
dynamically specified by the controller, push senders update
their window sizes with a DCTCP-alike congestion control
algorithm, achieving prioritized bandwidth allocations.

B. Weighted Fair Congestion Control

To not overload the network, source nodes employ con-
gestion windows to control the sending of coded blocks and
guarantee that the number of sent-yet-unacknowledged blocks2

would not exceed the current congestion window size. During
the delivery, PPUSH would dynamically update the size of
congestion window based on the arrival of acknowledgment;
the employed algorithm is quite similar to that of DCTCP [22].
In the following, we mainly describe their differences.

Firstly, as the acknowledgment sent by receiver is not cu-
mulative, packet drops in PPUSH could not be informed from
duplicated acknowledgments. Accordingly, the source node
considers a packet lost after at least DUPACKNUM (typically
3) packets sent after it have been acknowledged. Secondly,
to achieve prioritized bandwidth allocations among concurrent
push flows, transfers with the lower priority in PPUSH is set to
be more sensitive to ECN markings. Like DCTCP, the source
node maintains a running average of fraction of ECN-marked
packets (α) via Equation (1) for each window of data, where
F is the fraction of packets marked in the most recent window,
and g ∈ (0, 1) is a fixed parameter. Suppose the current
congestion window size is W . On getting an acknowledgment,
W would be updated following Equation (2). Here, θ is a
parameter configured by the controller specifying the degree of
sensitiveness at which this push flow reacts to ECN markings.

α ← (1 − g)α + gF (1)

W ← W +



1/W, if ECN = 0
1/W − α/(2θ), if ECN = 1

(2)

Indeed, as Theorem 1 clarifies, by dynamically updating θs
respecting the remaining task sizes of their transfers, PPUSH

2Note that, if a block is considered lost, it would not be treated as sent-
yet-unacknowledged any more.
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is able to perform prioritized yet starvation-free bandwidth
allocation to optimize their average computing times. In the
following, we describe how PPUSH achieves such optimiza-
tions with the assistance of controller, and leave the proof and
verification of why such a design works in §IV.

Theorem 1. Given a group of long-lived push flows through
the same bottleneck link, in their stable states, the bandwidth
obtained by the i-th flow is in proportion to its parameter θi .

C. Task-level Traffic Prioritization

PPUSH is designed to minimize the average completion
times of concurrent tasks. Although this problem is proven
to be NP-hard in theory [12], abundant prior study has shown
that it is easy to achieve near-optimal average completion time
minimization by simply prioritizing concurrent flows in non-
decreasing order of their remaining sizes [12, 13, 21]. Thus,
to optimize the average completion times, PPUSH should
configure push flows’ θ values respecting the order of their
remaining sizes and let the gap between θs as large as possible.

However, as the analysis in §IV will show, to make the
bandwidth of push flow converge fast and to improve its
stability in practice, {θi, j : e ∈ pi, j }, the θ-values of push flows
{pi, j } going through the same bottleneck link e, should satisfy
the requirements of θ− ≤ θi, j and

∑
(i, j):e∈pi, j θi, j ≤ θ

+ simul-
taneously. Here, pi, j denotes the j-th push flow (and its path)
belonging to delivery task i; θ− and θ+ are tunable constants
that bound the choose of θs (see §IV-A for the computations
of θ− and θ+). It is observably that, as prioritized bandwidth
allocation is pursued, flows with the highest priority would
take almost all of link bottleneck capacity [21]. Accordingly,
on each link, we can let push flows with the smallest remaining
task size take the most of θ+ and all other flows use the
lowest θ−. In case the smallest task involves multiple flows
in the same bottleneck; all these flows can share the same
θ value fairly. Consider that there are n push flows through
link e, among which m flows belong to the smallest task.
Then, the value of these high-priority push flows can be set
as θ+−θ− (n−m)

m . Moreover, in practice, there might be multiple
bottlenecks. To avoid inconsistent θs assignment among links,
PPUSH should manage θs with a global view.

Taking all these aspects into account, PPUSH updates flow
θs upon every push task arrival and completion event as
Algorithm 1 specifies. Consider that there are N active data
delivery tasks, f1, f2, · · · , fN , in which, task f i is with
the remaining value of vi served by a group of push flows:
Pi = {pi,1, pi,2, · · · , pi,Mi }. For the sake of description, we also
use the symbol of pi, j to denote the path and the set of links
involved by this push flow; in case task i only involves one
single push flow, we use f i to indicate this path as well. Then,
the assignment of their θs is conducted in non-decreasing order
of their remaining task sizes (Line 5). Based on the design, if
multiple tasks go through the same link, at most one of them
could use the large-θ value and all other tasks should use θ−

instead. Thus, we treat the large-θ value as a specific type of
exclusive link resource (i.e., token) and use E to denote the
set of links that already allocate their large-θ token to tasks.

Algorithm 1: Consistent θ assignment
Input : Current active delivery tasks { f i } and their states
Output: {θi, j }, the θ value of each push flow

1 E ← ∅ // the set of links whose large-θ tokens

are already allocated

2 F ← Sort { f i } according to {vi } non-decreasing
3 χ[e]← 0 for each link e // the number of flows

through e

4 π[e]← [] for each link e // high-priority flows

through e

5 foreach f i ∈ F do
6 Ep ← ∅

7 foreach pi, j ∈ Pi do
8 if pi, j ∩ E , ∅ then
9 θi, j ← θ−

10 else
11 θi, j ← θ+

12 Ep ← Ep ∪ pi, j
13 foreach e ∈ pi, j do
14 χ[e]← χ[e]+1
15 if θi, j = θ+ then
16 Append pi, j to π[e]

17 E ← E ∪ Ep

18 foreach e ∈ π do
19 r ← max(1, θ

+− θ− (χ[e]−len(π[e])
len(π[e]) )

20 foreach pi, j ∈ π[e] do
21 θi, j ← min(θi, j, r)

Then, pi, j , the j-th push flow of tasks f i , would get this large-
θ token, if and only if there are enough large-θ tokens along
its path (Line 8 to 12). Moreover, if two push flows belonging
to the same task go through the same bottleneck link, they
can use the same large-θ token for fair sharing. Hence, E is
updated in a per-task, rather than per-flow basis (Line 17).
Finally, the θ value of a push flow is bounded by the smallest
allocated value among its path (Line 21). Regarding the value
of θ+ and θ−, they are easy to estimate as §IV-A shows.

IV. WHY IT WORKS

In this section, we first prove Theorem 1 via fluid model
based analysis (§IV-A), then show that push flows would
converge to their weighed fair stable states very fast via both
Mininet implementation and packet-level simulation (§IV-B).
Table I summarizes the involved notations.

A. Fluid Model Based Analysis

Consider that there are N long-lived push flows going
through the same bottleneck link of capacity C. With param-
eter θi , the i-th push flow obtains the congestion window of
Wi (t) at time t. At the switch side, we assume that the queue
occupancy at time t is q(t) and its ECN marking threshold is

5

https://doi.org/10.1109/JIOT.2020.2996800


Published in the IEEE Internet of Things Journal, 2020 https://doi.org/10.1109/JIOT.2020.2996800

TABLE I: Table of notation

Term Meaning

N Number of flows going through the bottleneck link

d Round-trip propagation time

K ECN marking threshold

C Capacity of the bottleneck link

t Time

q(t) Queue occupancy at time t

q̄ Average value of q(t) when the network is stable

θi The i-th flow’s θ value

Wi (t) The i-th flow’s congestion window size at time t

W̄ Average value of Wi (t) when the network is stable

α(t) Running average of fraction of ECN-marked packets at time t

ᾱ Average value of α(t) when the network is stable

g The weight given to new samples in computing α(t)

p(t) 1 if the current packet is ECN-marked; 0 otherwise

p̄ Average value of p(t) when the network is stable

R(t) Value of the round-trip time at time t

R̄ Average value of R(t) when the network is stable

T “Sawtooth” periodicity of flows when the network is stable

K . Let p(t) denote the packet marking process at the switch;
then we have

p(t) =



1, if q(t) > K
0, otherwise

(3)

We further assume that all flows have the equal propagation
delay of d and their rates are not too small. Accordingly, all
flows will experience the identical round-trip time: R(t), which
is made of the round-trip propagation time (d), along with the
queuing delay, as Equation (4) defines; and their proportions
of encountered ECN markings, would be the same: α(t).

R(t) = d + q(t)/C (4)

Essentially, push flows perform DCTCP-alike congestion
controls. Thus, analogous to DCTCP flows [22], they would
finally enter steady “sawtooth” patterns as our simulations in
§IV-B show. Consider that, after time t, push flows are all in
their stable states with the “sawtooth” periodicity of T . Then
the dynamics of Wi (t), α(t), and q(t) in their stable states can
be formulated as non-linear, delay-differential equations:

dWi (t)
dt

=
1

R(t)
−

Wi (t)α(t)
2R(t)θi

p
(
t − R̄

)
(5)

dα(t)
dt

=
g

R(t)

(
p
(
t − R̄

)
− α(t)

)
(6)

dq(t)
dt

=

N∑
i=1

Wi (t)
R(t)

− C (7)

in which, R̄ acts as the approximately fixed value for the delay
of ECN notification as (8) defines.

R̄ =
1
T

∫ t+T

t

R(t)dt = d +

∫ t+T
t q(t)dt

T
1
C

(8)

Similarly, we further define the average values of Wi (t),
α(t), and q(t) by (9), (10), and (11), respectively.

W̄i =
1
T

∫ t+T

t

Wi (t)dt (9)

ᾱ =
1
T

∫ t+T

t

α(t)dt (10)

q̄ =
1
T

∫ t+T

t

q(t)dt (11)

Then, because of the use of ECN, we would have Equa-
tion (12) and (13) for WFCC.

q̄ ≈ K (12)

R̄ = d +

∫ t+T
t q(t)dt

T
1
C
≈ d +

K
C

(13)

Moreover, recall that they are in their stable states and the
periodicity is T . So, there would be

0 =
∫ t+T

t

dWi (t)
dt

dt

=

∫ t+T

t

1
R(t)

(
1 −

Wi (t)
2θi

α(t)p
(
t − R̄

))
dt

≈

∫ t+T

t

1
R(t)

(
1 −

Wi (t)
2θi

ᾱ p̄
)

dt

(14)

implying that

W̄i ≈
2θi
ᾱ p̄

(15)

since ∀t : R(t) > 0,Wi (t) ≥ 0.
That is to say, once push flows are in their stable states, W̄i ,

the average window size of the i-th push flow, would be in
proportion to its parameter θi . Moreover, as these push flows
are synchronized, they would share the same RTT; so, their
obtained throughputs are in proportion to their parameters as
well. Thus, Theorem 1 is proved, which yields a guideline for
the prioritized schedule of push flows:

Guideline 1. Given a set of push flows, we can control their
bandwidth allocations by configuring their θi values.

Indeed, by applying this technique to (6) and (7), we get

p̄ = ᾱ (16)
N∑
i=1

W̄i ≈ Cd + K (17)

and further obtain

p̄ = ᾱ ≈

√
2
∑N

i θi

Cd + K
(18)

W̄i ≈
θi∑N
i=1 θi

(Cd + K ) (19)

by solving (15), (16), and (17) jointly.
According to the definition, αi would never exceed 1; so,

the value of θi should hold
N∑
i=1

θi ≤
Cd + K

2
≈

R̄C
2

(20)
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Fig. 2: Flow behaviors observed in Mininet test, packet-level
simulation, and fluid model analysis are consistent; when
sharing the same bottleneck link, push flows converge to
weighted bandwidth allocations respecting their θs very fast.

On the other hand, when the network is congested, the
decrease of flow i’s congestion window within in one RTT
is about 1 − αWi (t)

2θi . To improve the stability of push flows
and make efficient use of link capacities, we should let
Wi (t) + 1 − αWi (t)

2θi > 0, which indicates:

θi >
α

2
Wi (t)

Wi (t) + 1
(21)

As α ≤ 1, we recommend θi ≥ 0.5 in practice, which is
used as the value of θ−. Regarding the value of θ+, it can be
approximated by R̄C

2 according to (20), where R̄ is the average
round-trip time when the network is fully loaded.

B. Experimental Results

To verify that push flows do achieve the provable weighted
fairness in practice, we prototype PPUSH in Mininet [30]
and further develop a packet-level discrete-time simulator to
simulate its precise behavior. We run micro-tests and compare
the observed behaviors of push flows with those suggested
by the numerical analysis of fluid model {(5),(6),(7)}. Results
confirm that push flows converge to the provable weighted-fair
yet work-conserving bandwidth allocations efficiently.

Setup. Consider that there are two push flows, named f1 and
f2 belonging to two diverse tasks, going through the same
bottleneck link LC,D as Figure 2a sketches. In tests, push flow
f1 starts at 0s then completes at 8s, while push flow f2 appears
at time 2s then terminates at time 6s. Their θ parameters,

i.e., θ1 and θ2, are 1 and 4, respectively. We assume that
the propagation delay is very small and the bottleneck link
has the capacity of 20Mbps, which could transmit about 2066
push packets per seconds (pps), since each push packet is with
the size of 1210 bytes. During their transmissions, f1 and
f2 would build up the queue allocated to push traffic at the
bottleneck link LC,D; and when going through the link, push
packets would get ECN markings on enqueue once the queue
occupancy reaches the threshold of 30 packets. Following [22],
the value of parameter g is set to 1/16.

In our Mininet-based tests, the proof-of-concept implemen-
tation of push protocol is implemented in Python3.7. Even
though push uses UDP as its basis, to be aware of ECN
signals, both the sender and receiver should maintain the
ECN field residing in IP headers directly. We implement this
with raw sockets. Moreover, to improve the sending perfor-
mance of push sender, we launch two loop-forever processes
for the sending of data packets and receiving of ACKs,
respectively. These two processes communicate with shared
memory. On getting an ACK, the receiving process would
update the congestion window and sent-yet-unacknowledged
queue, according to the algorithm described in Section III-B.
Because of the performance limits of Mininet, we do not
use very high link capacity here [30]. In short, Mininet is
built upon light-weighted virtual techniques including process-
based virtualization, network namespaces, and software-based
switches. During the simulation, all virtual hosts, switches, and
links share the host server’s CPU, memory, and I/O capacities.
To reduce the impact of resource competition and to highlight
the results, link capacities must be limited.

The design of our simulator follows that of [31] and is
written in Python3.7 as well. Basically, we implement a
discrete-event driven core, based on which, it is easy to
write Python objects to emulate the packet-level behaviors of
point-to-point link, queue discipline algorithms, flow senders
and receivers in detail. Injected with data delivery tasks, the
simulator will emulate then report how the involved packets
get sent, forwarded, queued, dropped or received in detail.

As for the numerical analysis of fluid model, it is performed
iteratively at the time step of one RTT.3 We assume that, the
initial congestion window of each flow is with the size of 1
and there is no queued or ECN-marked packet, i.e., Wi (0) = 1
and q(0) = α(0) = 0. Regarding d, g, C, K and θis, they are
configured respecting the parameters used in Mininet-based
tests and packet-level simulations. Then, following {(3), (4),
(13)} and {(5),(6),(7)}, It is easy to compute how exactly
the congestion window Wi (t), marked factor α(t), and queue
occupancy q(t) would change, iteratively. To stand in line
with the protocol’s design, during the numerical iteration, the
maximum increase of w within in one RTT is bounded by
2BDP, and the values of Wi (t), q(t), α(t) are amended by
Wi (t) ← max(Wi (t), 1), q(t) ← min(qmax,max(q(t), 0)), and
α(t) ← max(α(t), 0)), respectively. As well, the code of our
numerical analysis is written in Python3.7.

All tests and simulations are conducted on a 64-bit Ubuntu
18.04 server equipped with 16G RAM and a single Intel(R)

3 Here, we simply use the approximated average RTT of Equation (13).
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Fig. 3: When push flows go through different bottlenecks, their
bandwidth allocations are work-conserving.

Xeon(R) Silver 4210 (2.20GHz) CPU.

PPUSH converges to provable weighted fairness. As Fig-
ure 2c shows, push flows could make full use of the bottle-
neck link bandwidth; and consistent with the result of our
fluid model based analysis, their stable sending rates (i.e.,
the observed goodputs since no packet drop occurs) are in
proportion to their θs. Besides their goodputs, we also record
their detailed behaviors. Recall that f1 and f2 go through
the same bottleneck link; thus, their observed round-trip times
(RTTs), fraction of marked packets (α) would be the same. For
simplicity, we only plot f1’s RTTs and αs here. As Figure 2c
demonstrates, similar to the behaviors of DCTCP [22], the
congestion window of push flow converges to its steady
“sawtooth” very fast; so do its RTT (Figure 2d), α (Figure 2f),
and the bottleneck link’s observed queue occupancy (Fig-
ure 2e). From Figure 2e, we also observe that, in their stable
states, q̄, the mean of queue occupancy, does approximate the
threshold of ECN marking, i.e., 30. Thus, our conjecture of
q̄ = K specified in (12) is reasonable. Similarly, consistent
with (17) and (19), the sum of active push flows’ congestion
window sizes shown in Figure 2c is approximately equal to the
stable queue occupancy (≈ 30). Moreover, according to (18),
when only f1 is active, the value of ᾱ would approximate
√

2 × 1/30 ≈ 0.258; and when both push flows are active, the
value would approximate

√
2 × (1 + 4)/30 ≈ 0.577. Figure 2f

shows consistent results.

PPUSH is work-conserving. In practice, push flows might
have multiple bottlenecks; strictly allocating bandwidth in
proportion to their weights is not work-conserving. To verify
how push flow would behave, we reduce the capacity of link
LB,C to 5Mbps and rerun tests as Figure 3a shows. The
goodputs of push flows observed in Figure 3b demonstrate
that the bandwidth allocations made by push flows are work-
conserving. Thus, PPUSH achieves optimal link utilization.

V. PERFORMANCE EVALUATION

In this section, we make detailed evaluation of PPUSH.
Extensive packet-level simulation results indicate that:

1) PPUSH is able to tolerate packet loss;
2) it performs θ-based prioritized schedule gracefully with-

out introducing bursts;
3) it largely eliminates possible incasts;
4) by dynamically splitting task among its source nodes

and prioritizing traffic respecting their remaining sizes,
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Fig. 4: PPUSH achieves high goodputs upon packet loss.

it delivers multi-source data objects very efficiently,
outperforming existing solutions in both intra- and inter-
datacenter scenarios.

Compared schemes. As verified in §IV-B, the observed
behavior of our Python-based simulator is consistent with
those implied by Mininet-based prototype implementation and
math analysis. Thus, in the following, we use it to study the
detailed performance of PPUSH. Basically, we implement the
proposed push and several other protocols including TCP-
Reno, DCTCP, and TCP-like congestion control driven DCCP
(referred as DCCP for short hereafter), and SCDP as baselines.

A. Micro-benchmark Analysis

Before looking into the performance gains PPUSH could
achieve on optimizing tasks’ average completion times (§V-B),
here, we first study its detailed behaviors on packet loss,
bandwidth dynamic, θ switching, and incast impairment.

PPUSH tolerates packet loss. Different from DCTCP, push
is designed to achieve high throughput over lossy link. To
study the impacts of packet loss on push flows, we let a push
flow whose θ is 1 go through a link with the capacity of
106pps and latency of 40us. A drop-tail queue is bounded to
the link; it would mark ECT-enabled packets on enqueue once
its occupancy is larger than 30 packets and would further drop
packets once the occupancy reaches 100 packets. To simulate
serious packet loss caused by burst congestion, we configure
the link to drop 100 successive packets starting from time
0.05s. As Figure 4a shows, the bursty packet loss has little
impact on the size of push’s congestion window, while the
congestion window of DCTCP collapses, indicating the robust
of push. However, the robustness has bounds. In this test,
the congestion window of push flow would collapse once the
number of successive drops reaches 108. Furthermore, we also
test the impacts of random packet loss. As demonstrated in
Figure 4b, the goodputs of TCP-Reno, DCTCP, and the semi-
reliable TCP-like DCCP decrease rapidly; although DCCP is
slightly better than the other two, their achieved goodputs are
less than 5% of the available link capacity once the loss rate
is larger than 0.1. In consistent, push flow achieves consistent
goodputs over lossy links when the random loss rate is less
than 62%. This is reasonable since push flow does not suffer
from the problem of head-of-line blocking and it could infer
lost packets for transmission efficiently.

PPUSH reacts to traffic variations very quickly. In practice,
push flows are likely to coexist with other traffic and push
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Fig. 7: PPUSH performs graceful schedule of θ without
introducing burst congestion.

flows are recommended to set with low priorities. As a
result, the bandwidth a push flow can use would vary with
time, depending on the rate of high-priority traffic. In such
a situation, the observed RTT of push flow would vary as
well since its available bandwidth changes. To investigate the
performance of push flow, we rerun the test shown in Figure 4a
and let the available bandwidth get halved then doubled at
time 0.2s and 0.4s, respectively. As Figure 5 shows, consistent
with Equation (4), the observed RTT does change with the
link bandwidth that push flow could use. Obviously, push is
very efficient—it is able to adapt the congestion window size
(cwnd) to match the available bandwidth in several RTTs.

PPUSH makes full use of available bandwidth. PPUSH
achieves efficient data delivery by using all available band-
width for parallel push. To check its flexibility, we setup a
delivery task with the size of 0.5 × 106 packets served by
two source nodes traveling diverse paths to the receiver. We
let the sum of their total bandwidth be 106 consistently, and
vary V1/V2, their ratio of available bandwidth, from 1 to 20.
We find that, PPUSH is able to make full use of all available
bandwidth as the task always completes at nearly 0.5s. Also,
we find that the ratio of push flows’ completed volumes grows
linearly with the ratio of available bandwidth on their paths
as Figure 6 demonstrates.

The schedule of θ is graceful. As described in §III-C, once
a new task arrives or any existing task completes, PPUSH
would reassign the large θ value among tasks to perform
smallest-remaining-size-first scheduling. To study its impact
on the network load, we let 10 push flows go through the
same link with the capacity of 10 × 105 pps, among which
f2 starts at 0.5s then completes at 1s. Following the setting,
θ+ is with the value of 55. According to Algorithm 1, during
time slots 0 ∼ 0.5s and 1 ∼ 1.5s, f1 would obtain the large-θ
value of 55 − 8 × 0.5 = 51 and all other active flows use the

small-θ value of 0.5. Then, during 0.5 ∼ 1s, f2 would take
over the large-θ of 55 − 9 × 0.5 = 50.5 until it completes at
time 1s. As Figure 7 shows, PPUSH performs the schedule
of θ gracefully; the switch of θ would not introduce bursts.
This is reasonable since the impact of θ on flow’s sending
rate is indirect: changing a flow’s θ would not immediately
impact its sending rate; instead, it controls how the push flow
reacts to the congestion signal of ECN markings. Then, all
the active flows would iteratively converge to the weighted fair
bandwidth allocations in RTTs. We also observe that i) the link
capacity is fully used; and ii) the ratios of the average observed
goodputs of f1 and f2 over other flows during 0 ∼ 0.5s and
0.5 ∼ 1s, are about 102 and 101, respectively, equal to the
ratios of their θ values exactly.

PPUSH largely eliminates incast. Recall that PPUSH accel-
erates the delivery of data objects with parallel push flows.
As these flows are in the pattern of many-to-one aggregation,
once getting synchronized, they might suffer from the incast
problem: in that situation, packets may exhaust the maximum
permitted queue buffer, resulting in packet losses. To study
the impacts, we increase the amount of concurrent long-lived
push flows through a same link, then observe their stable
queue occupancy. Results show that, when θ-parameters are
set according to Algorithm 1, push flows would exhaust the
queue buffer of 100 packets once their amount reaches 179. By
contrast, when all push flows share the same θ parameter of 1
like DCTCP, 90 push flows, about only half of that of PPUSH,
would lead to full queue occupancy; as for DCTCP [22],
only 61 concurrent flows would cause queue overflow. Such a
result indicates that PPUSH’s congestion control algorithm also
largely eliminates incast problems. It is reasonable since most
push flows in PPUSH are more sensitive to ECN markings as
their θ-parameter is set to 0.5. Thus, PPUSH is able to leverage
a large number of sources for data delivery at the same time.

B. Performance

Now, we evaluate the performance of PPUSH on optimizing
the average task completion times via trace-based simulations.

As for the tested workloads, consistent with real distributed
application designs, we consider that a fixed set of M nodes
in the cluster work as the storage nodes holding all the data
objects. On getting a delivery task, the PPUSH controller
randomly selects R nodes to push the requested data in
parallel. Here, we define R as the task’s fanout and its typical
value is 3. Regarding data object sizes, they are synthesized
following the distribution of transfer sizes measured from a
real data center [12]. In consideration of that PPUSH is not
designed for the delivery of very tiny data objects, we scale the
object sizes to the range of [2, 200]×1024 packets accordingly.
In line with prior study [12, 13, 32], tasks are assumed to arrive
in Poisson; the arrival rate is varied to obtain a desired level of
network load on bottleneck links and the default average load
is 0.9. Regarding the cluster’s network architecture, we test the
topology of One Big Switch abstraction (OBS) [12, 32], Leaf
Spine [33], and Fattree [34]. We vary the simulation settings
to study the robustness of PPUSH and observed consistent
conclusions. By default, the tested clusters involve 100 servers
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TABLE II: Compared schemes & baselines

# Scheme Task assignment
policy

Traffic
prioritization

Switch
modification

PPUSH(0,0) static no no
PPUSH(0,1) static WFCC no
PPUSH(1,0) dynamic no no
PPUSH(1,1) dynamic WFCC no

DCTCP [22] static no no
DCCP [35] static no no
TCP-Reno static no no

SCDP [7] dynamic MLFQ yes

for all topologies but Fattree—due to the specific structure of
Fattree, we set its k-parameter to 8, yielding a scale of 128
hosts. As for link capacities, their default values are 2 × 105

pps; while that of the fabric link of Leaf Spine topology is
8× 105 pps. For OBS and Leaf Spine topologies, 10 hosts are
randomly selected as storage nodes; and for Fattree, each of
its pod substructure would contain exactly one storage node.

As Table II summaries, besides the default PPUSH(1,1)
scheme, in which the suffix of (1, 1) indicates that both the
dynamic task assignment and traffic prioritization are enabled,
we also consider the variants of PPUSH(0,0), PPUSH(0,1),
and PPUSH(1,0). For PPUSH(0,0) and PPUSH(1,0), their θ-
parameters are set to 1 and keep consistent to disable traffic
prioritization. As for the baselines, we assume that each task is
equally split across all its source nodes and employs the state-
of-the-art DCTCP [22], TCP-like DCCP [35], and the legacy
TCP-Reno for the transmission of each subpart, respectively.
In tests, we generate 200 tasks and rerun 20 instances for
each parameter setting. We use the raw value of average task
completion times (Average TCT or ATCT for short) as the
performance metrics. And to eliminate the impact of task sizes,
we also consider the normalized ATCT. Assume the average
task size of the tested workload is s and the bandwidth of each
end-host is c, then the ideal average task completion time used
for normalization is s

c . When comparing multiple schemes, the
factor of improvement made by scheme A over B is computed
by ATCTB

ATCTA
, in which ATCTA and ATCTB are the average TCTs

under the schedule of A and B, respectively.

Case studies. Figure 8 shows the detailed average TCTs of
different schemes over various network topologies. Recall that
for each parameter settings, we rerun 20 times. Accordingly,
the box of each scheme shows the lower to upper quartile
values of the twenty ATCTs and the red line indicates the
corresponding mean value. It is obvious that, PPUSH(1,1), i.e.,
PPUSH with both dynamic task assignment and θ-parameter
based traffic prioritization enabled, achieves the best ATCTs.
For example, its performance gains in terms of mean nor-
malized ATCTs over PPUSH(0,0) in topologies OBS, Leaf
Spine, and Fattree are about 1.586×, 1.581×, and 1.453×,
respectively. We also notice that, among all topologies, the
result of PPUSH(0,0) is quite close to that of DCTCP. This is
reasonable since the network is not heavily loaded—in such a
case, there is rarely packet drops; thus, the behavior of push
flow is quite similar to that of DCTCP since their congestion

control algorithms are exactly the same (in PPUSH(0,0), all θs
are set to 1). The performances of TCP-like DCCP and TCP-
Reno are much worse, since they are not designed for data
center networks. Another notable finding is that, PPUSH(1,0)
outperforms PPUSH(0,1), indicating dynamic task assignment
achieves more performance improvement than θ-based traffic
prioritization on the tested workloads. Consider the results
of OBS in Figure 8a as examples, the performance gains
of PPUSH(1,0) and PPUSH(0,1) over PPUSH(0,0) are about
1.495× and 1.329×, respectively. Figure 9 shows the distri-
bution of the corresponding push flows’ completion ratios.
Results confirms that the PPUSH does dynamically adapt
the task’s interested data to its available source nodes. For
instance, if tasks are split equally, each push flow would
complete about 33.3% of its task since the source fanout is 3;
however, under the schedule of PPUSH(1,0) about 20% of push
flows complete about 40% of their tasks, and more than 3% of
push flows completes 60% of their tasks. The results obtained
by PPUSH(1,1) are much more obvious, in which about 8% of
push flows completes 60% of their tasks. Such results indicate
that PPUSH could make full use of all the bandwidth for data
delivery, and moreover, the θ-based congestion control enables
PPUSH to further prioritize tasks respecting their remaining
sizes, resulting in more unbalanced completion ratios.

Impact of source fanout. By default, the task’s source fanout
is 3, which means each task involves 3 source nodes. In this
part, we vary the source fanout from 1 to 9 and rerun the
tests. To eliminate the diversity of task size, we mainly use
the normalized average task completion time as the metrics
hereafter; for each parameter setting, the plotted result is the
average value of the twenty tries. Roughly speaking, as the
results in Figure 10 show, the normalized ATCTs decrease
with the increase of source fanouts. However, the achieved
improvement is diminishing: 2 and 3 sources yield significant
gains and once fanout > 5, there is little improvements then.
Thus, to reduce the controller loads while enjoying the benefits
of multiple source nodes, we recommend the use of 3 source
nodes as default. The results also demonstrate that PPUSH
outperforms DCTCP even when each task only involves one
source node. In such cases, the benefits come from θ-based
traffic prioritization; thus, PPUSH is able to optimize the
completions of legacy unicast transfers as well.

Impact of network load. To study the impacts of network
load, we control the task arrival rate to vary the aver-
age network load from 0.5 to 0.99. As Figure 11a shows,
for all schemes, the normalized ATCTs grow linearly with
the increase of network load; and the performance gain of
PPUSH(1,1) over PPUSH(0,0) would exceed 1.6×. This is rea-
sonable, as higher network loads would cause more concurrent
transfers and link congestion, resulting in larger completion
times. However, the rates of increase under the schedule
of PPUSH(1,1), PPUSH(1,0), and PPUSH(0,1) are less than
those of DCTCP, DCCP, and TCP-Reno, indicating that the
prioritized design enables PPUSH to make more efficient use
of link capacities. As for PPUSH(0,0), consistent with prior
findings, its results overlap with those of DCTCP. Hereafter,
we only present the results obtained in the OBS topology,
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Fig. 8: The detailed average task completion times (ATCTs) of PPUSH and baselines on
various network architectures.
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Fig. 10: Impacts of source fanout indicates that selecting 3 source nodes for each task is good enough for PPUSH; note that
the results of PPUSH(0,0) overlap with those of DCTCP.

since we observe the consistent results among all topologies
like the situation shown in Figure 10.

Impact of task size. Next, we re-scale each task size 2, 4,
or 6 times while holding the average network load of 0.9
to study the impacts of task sizes. As Figure 11b explains,
the benefits of PPUSH(1,1) and PPUSH(1,0) scheduling would
obtain consistent normalized average completion time, while
other schemes that split the task to source nodes equally obtain
slight performance improvements. This is mainly because of
the simulation setting. With the increase of task size, there
would be fewer concurrent tasks in the cluster but their
sizes are much larger as we let the network load keep 0.9.
Accordingly, for these large-size flows, there would be enough
time for their congestion control algorithms to converge, thus
making fully use of link capacities.

Impact of cluster scale. Figure 11c shows the achieved nor-
malized ATCTs would decrease with the increase of their clus-
ter scale. Thus, PPUSH is able to provide high-performance
multi-source data delivery for very large edge data centers
as well. We also find that the performance improvement of
PPUSH(1,1) is slightly less than that of DCTCP, DCCP, TCP-
Reno; this is because its performance is quite close to the
unachievable optimal of 1 already, yielding little space for
improvement.

Impact of link capacity. In consideration of that clus-
ters in practice might have various link capacities, we also
test the impact by increasing the capacity of each link.
As Figure 11d shows, distinguished from other schemes,
PPUSH(1,1) achieves consistent normalized ATCT upon net-
works with larger link capacities, indicating that PPUSH(1,1)

could achieve efficient data delivery on future 40G, 100G, or
even 400G cluster networks as well.

Impact of workload type. Then, we investigate the impact
of workload type on the schedule performance. Here, we
let each task randomly select 3 other nodes rather than
from a pre-decided storage node pool as its sources, and
generate 700 tasks to test. As the results in Figure 12 shows,
upon this new type of workload, PPUSH(1,1) also achieves
the best performance without surprise. However, a different
and interesting observation is that, PPUSH(0,1) outperforms
PPUSH(1,0), indicating the benefits of θ-based traffic priori-
tization is larger than that of dynamically task assignments.
This is mainly because in this workload, there would be
much more concurrent flows in the network; accordingly, the
θ-based traffic prioritization is more efficient than dynamic
task assignment. We also notice that, once the fanout is
larger than 3, their performance would even decrease. This is
mainly because, when a task arrives, it would trigger multiple
concurrent flows at the same time, introducing non-trivial
bursts. When the number of concurrent flows reach some
threshold, these bursts would build up the queue, then lead
packets drops, or even worse cause flow timeouts, resulting
in legible performance degradation. We have collected the
average amounts of timeout events suffered by tested schemes.
As Figure 12c shows, once the source fanout is larger than
3, the amount of timeout events does increase. Even so, the
performance impact on PPUSH is little. To avoid this problem,
we recommend 3 source nodes for each task by default.

Compared with SCDP. Next, we compare the performance
of PPUSH with the recently proposed SCDP [7]. At the high
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Fig. 11: Extensive tests on various network loads, task sizes, cluster scales, and link capacities show that PPUSH(1,1) always
obtains the best near-optimal performances; note that the results of PPUSH(0,0) overlap with those of DCTCP.
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Fig. 12: Results indicate consistent conclusions when each task’s source nodes are randomly selected from all active nodes.

level, both SCDP and PPUSH employ RaptorQ-decoupled
parallel transfers to achieve efficient delivery of multi-source
data objects. However, at the low level, they are totally
different. Firstly, SCDP is built upon NDP, a recent protocol
that achieves very low latency and high-throughput delivery
of small-size flows in the context of data center networks,
with the cost of non-trivial modification on switch hard-
ware [18]. Secondly, SCDP employs Multi-Level Feedback
Queuing (MLFQ) for traffic prioritization, which requires
multiple queues and is sub-optimal as it does not use the
exact remaining task size information available at receivers. To
investigate the performance of SCDP over various task sizes,
we scale the object sizes to the range of [20, 2000] × L, and
increase the scale factor L from 1 to 300. By default, the initial
windows (IW) of SCDP is set to one BDP. Figure 13 shows
the average completion times of data delivery tasks under
the schedules of PPUSH and SCDP, in which the thresholds
of MLFQ are [20, 204, 2048, 20480] (packets), respectively.
For all tests, the normalized average task completion times
get better slightly with the increase of L. This is mainly
because small tasks generally complete within a few RTTs;
the impacts of RTT on their completions are more obvious.
Basically, SCDP achieves excellent performance on delivering
small data objects. However, with the increase of task size,
its performance decreases; and it would underperform both
PPUSH(1,0) and PPUSH(1,1) once L is larger than 10. In
addition, we also rerun the tests by letting MLFQ thresholds
increase with L and observe very similar phenomena. Such
results imply that the performance of SCDP is very sensitive
to its parameter settings: in case the thresholds of MLFQ do
not match with the workload well, its performance will get
degraded a lot. Indeed, this mismatching is inevasible in prac-
tice as the network loads are mutable and MLFQ thresholds

100 101 102

# Task size scale (× [20, 2000] packets)

1.5

2.0

2.5

No
rm

al
ize

d 
AT

CT

One Big Switch
PPUSH(0,0)
PPUSH(0,1)
PPUSH(1,0)

PPUSH(1,1)
SCDP

Fig. 13: The performance gap between PPUSH and SCDP is
tiny; PPUSH is better unless data objects are very small.

are hard to tune. In consistent, PPUSH is able to adopt its
congestion windows respecting packet drops, ECN marks, and
θ parameters gracefully. The performance of PPUSH on the
delivery of small objects are not as good as its performance
on the delivery of large objects. This is mainly because it takes
several RTTs for a push flow to converge and make full use of
all the link capacity. A promising enhancement is to increase
its initial congestion window size smartly; we leave this as
future work.

PPUSH over WAN. In practice, some data objects might get
replicated among geo-distributed data centers connected with
wide-area network (WAN). Compared with intra-datacenter
connections, WAN-based inter-datacenter paths generally have
limited capacities (e.g., hundreds of Mbps) and large round-
trip times (e.g., several to hundreds of milliseconds) [36]. To
better understand the impact of WAN, we first consider a
simple flow-level test in which two push flows f1 and f2, with
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Fig. 14: PPUSH achieves consistent performance over WAN.

the θ values of 4 and 1, go through the same WAN path/tunnel
with the capacity of 104 pps. We vary the path’s round-trip
propagation time from 10us to 100ms, then observe how many
packets would be delivered by f1 and f2 in 10 seconds. As
Figure 14a shows, f1 and f2 can make full use of the available
bandwidth, as the sum of their delivered packets approximates
105 = 104(pps)×10(s). However, with the increase of round-
trip propagation time, the ratio of their allocated bandwidths
would not strictly match with 4

1 , the ratio of their θ values, any
more. This is because it takes several round-trip propagation
times for push flows to converge. This duration increases with
round-trip propagation time and does impact flows’ delivered
volumes.

To further investigate the performance of PPUSH, we also
consider a task-level multi-source data delivery workload
named data redistribution. Here, we consider that there are
N data objects in a geo-distributed cloud, each of which is
replicated among K randomly selected data centers. Then,
one data center is temporarily unavailable; we i) randomly
select a new data center for each impacted data object, and ii)
recover it at the newly selected location with PPUSH and other
protocols. Here, we use the Google’s inter-datacenter WAN,
B4, as the test topology [37] and scale both the number of
data objects and the sizes of data objects down to accelerate
the packet-level simulation. More specifically, the B4 topology
involves 18 nodes and 42 links across 4 continents. We assume
that each link is with the capacity of 104 pps, while the
delays of intra- and inter- continent links are 1ms and 10ms,
respectively. The size of data object is scaled down to the
range of [1, 100]×104 packets. We consider that there are 300
data objects in total and each is replicated among 5 randomly
selected nodes. The unavailable datacenter is chosen randomly
and we repeat the test 50 times. Figure 14b shows the average
completion times of all involved data objects under various
delivery schemes. Consistent with the intra-datacenter multi-
source data delivery tests shown in Figure 13. PPUSH achieves
the best performances on inter-datacenter scenario as well. The
small performance gaps among PPUSH(1,0), PPUSH(1,1), and
SCDP imply that the performance improvements are mainly
contributed by the RaptorQ-decoupled adaptive task allocation
in such heterogeneous networks. In consideration of the fact
that limited bandwidth and large round-trip propagation times
would not impact the RaptorQ-decoupled dynamically task
allocation. We argue that PPUSH would work well over WAN.

VI. RELATED WORK

PPUSH achieves efficient deliveries of multi-source data
with code-enhanced transport protocol, which implements
prioritized bandwidth allocations without using priority queue.
In the following, we revisit recent study on the related topics
in the context of data center networks, respectively.

Multi-source data delivery. Taking advantage of the multi-
source nature of data to accelerate its delivery is not new.
Indeed, this is exactly the idea adopted by off-the-shelf In-
ternet peer-to-peer (P2P) file sharing networks (e.g., BitTor-
rent) [10, 38], and commercial content delivery systems [39].
With the raise of cloud computing, a lot of effort has been
made to deploy similar systems (e.g., a modified version of
BitTorrent) in enterprise data centers like those of Twitter
and Tencent, to reduce the time of package dissemination
in service deployment [8, 40], or data broadcast in iterative
data optimization [9]. Even though these proposals support
many-to-one cooperative delivery of the same data object,
the schedule results are sub-optimal as they are originally
designed for one-to-many data dissemination, in which the
original source sender is the scaling bottleneck. On one hand,
they employ sophisticated peer protocols to select senders for
each piece of the data object; such a control plane is slow
and introduces non-trivial overheads [8]. On the other, their
data deliveries are based on TCP or uTP. These protocols
are proven to be sub-optimal for the optimization of task
completion times, since they pursue max-min fairness on
bandwidth allocation by design [12, 13]. Distinguished from
them, PPUSH achieves efficient delivery of multi-source data
object by i) decoupling the transmission of different source
with RaptorQ codes and ii) developing the new transport
protocol of push to prioritize concurrent tasks. Such a design
shares the similar basic idea with the recent proposed SCDP,
which also employs RaptorQ to achieve many-to-one delivery
of multi-source data [7]. However, distinguished from SCDP’s
clean-slate, new hardware-based protocol designs [7], PPUSH
requires no switch modifications thus is readily-deployable.

Code-enhanced datacenter transport protocol. In recent
years, increasing attention is paid to enhancing the perfor-
mance of data center transport protocols with advanced code
techniques. For example, CAPS [41] employs LDPC codes,
a linear error correcting code, to encode short TCP flows,
based on which it spreads the coded packets among multiple
available paths. Accordingly, CAPS is able to reduce the
average flow completion times significantly as the problems
of head-of-line blocking and out-of-order delivery are relieved
with code. Likewise, DC2-MTCP improves MPTCP by lever-
aging network coding to ease asynchronous packet losses [42];
LTTP [43] avoids the problem of incast for many-to-one UDP
transfers with LT code; and sharing the similar idea of PPUSH,
the recent proposed SCDP enables both many-to-one and one-
to-many data transfers to tolerate packet loss and to achieve
low flow completion times with the code of RaptorQ [7].

Traffic prioritization without priority queue. To achieve
weighted-fair bandwidth allocation among tenants in pub-
lic cloud, Seawall transmits their flows with separate TCP-
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like tunnels and controls each tunnel’s aggregated sending
rate with weighted additive increase, multiplicative decrease
(AIMD) [44]. Differently, WFA prioritizes traffic using the
proportional fairness of TCP connection: it splits each trans-
mission task into a controlled amount of concurrent flows
based on its weight [9]. Such a design is sub-optimal since
it would launch a large number of small flows in batches,
introducing bursts, incasts, and unstable inefficient bandwidth
utilization because of slow-start. Quite similar to the design of
push, D2TCP [45] and L2DCT [17] prioritize TCP flows for
the optimization of missed deadlines and average completion
times by dynamically updating how senders react to ECN
markings. However, their heuristic algorithm designs lack
strong theoretical analysis. To support strict prioritized band-
width allocation, PDQ lets switches compute flows’ sending
rates respecting to the tagged priorities explicitly. However,
it is hard to deploy as the required switch operation is
not supported by off-the-shelf hardware [18]. Motivated by
PDQ, PAM [46] simplifies the involved switch operations
with hardware-supported approximate designs, and designs
novel rate control algorithms to achieve priority-based rate
schedules for data center multicasting [33], using the emerged
dataplane-programmable switch [47]. Systems like Varys [48],
Fastpass [15] and Flowtune [49] achieve traffic prioritization
by explicitly controlling the sending rate, or the emitting of
packet or flowlet, from a central controller; however, they are
hard to scale because the central schedulers are too involved in
the scheduling. Distinguished from all above solutions, PPUSH
employs provable yet easy-to-deploy weighed-fair congestion
control for traffic prioritization; it is easy to scale up as the
controller only needs to update the θ-parameters of current
flows on the event of task arrival and completion.

VII. CONCLUSION

In this post-cloud era, micro data centers would be widely
deployed at the network edge to build up low-latency, high-
throughput, and cost-efficient cloud service for emerged 5G
and IoT applications. On the cluster side, the critical data
objects involved by edge computing are generally replicated
among carefully selected servers and racks for various pur-
poses like load balancing and high availability; and the asso-
ciated cluster applications generally need to deliver large-size
data objects among servers on demand.

To achieve efficient delivery of these multi-source data
objects in edge cloud, this paper proposes a novel generic
solution named PPUSH. At the high-level, PPUSH launches
multiple parallel transfers with the assistance of controller for
efficient and collaborative delivery based on the multi-source
nature of data objects. At the low-level, it decouples associated
transfers by encoding the payload data with RaptorQ codes and
develops a new loss-tolerable, readily-deployable, prioritized
transport protocol named push for the delivery from each
source. To study the detailed behavior of PPUSH, we i)
analyze its congestion control algorithm with fluid model,
ii) prototype PPUSH in Mininet, and iii) further develop
a packet-level network simulator. Extensive results obtained
from Mininet-based micro benchmarks and packet-level large

scale simulations indicate that, PPUSH is robust to packet
loss and achieves provable prioritized bandwidth allocations;
moreover, it achieves very efficient data delivery by making
full use of all available source nodes, in both intra- and inter-
datacenter scenarios. For instance, in a tested intra-datacenter
instance, compared with the straightforward design of splitting
tasks among sources equally and letting concurrent flows share
bandwidth fairly, the design of adaptive task allocation and
prioritized bandwidth allocations acquire the improvements of
1.495× and 1.329×, respectively, yielding a total improvement
of 1.586×, when enabled at the same time.
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