
Journal of Network and Computer Applications 141 (2019) 104–115

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Customizable network update planning in SDN☆

Shouxi Luo a,∗, Hongfang Yu b, Long Luo b, Lemin Li b

a Southwest Jiaotong University, Chengdu, 611756, PR China
b University of Electronic Science and Technology of China, Chengdu, 611731, PR China

A R T I C L E I N F O

Keywords:
SDN
Network update
Congestion-free
Rate-limiting

A B S T R A C T

Updating network configurations responding to dynamic changes is a error-prone task in SDN. During the update
process, in-flight packets might misuse different versions of rules, and “hot” links could be overloaded due to
the unplanned update order. As for the problem of misusing rules, recently proposed suggestions like two-phase
mechanism and Customizable Consistency Generator (CCG) have provided generic and customizable solutions. Yet,
there does not exist an approach that is flexible to avoid the transient congestion on hot links respecting to diverse
user requirements like guaranteeing update deadline, managing transient throughput loss, etc.; controllers are
in urgent need of such a solution.
In this paper, we propose CUP, Customizable Update Planner, to seek the solution. Different from prior
approaches that adopt fixed designs for a single purpose like optimizing the update speed (e.g., Dionysus) or
avoiding congestions (e.g., zUpdate, SWAN), CUP introduces generic linear programming models to formulate
user-specified requirements and the corresponding update planning problem. By solving these customized mod-
els, CUP is able to plan network updates according to a large fraction of user requirements, such as guaranteeing
deadlines, prioritizing operation orders, managing throughput loss, etc., while avoiding transient congestion. We
prototype CUP on Ryu and employ it to arrange updates for networks built upon Mininet. Results confirm the
flexibility of CUP while indicating that it always obtains the “best” update plans following the user’s wish.

1. Introduction

Reconfiguring forwarding rules in networks responding to dynamic
demands such as periodical traffic optimization, unexpected failover,
is always a error-prone task for operators (Luo et al., 2016; Raza et
al., 2011; Liuet al., 2013; Jinel al., 2014; Luo et al., 2015a; Luo et al.,
2015b; Reitblattel al., 2012; Luo et al., 2017). Recent trends toward
Software Defined Networking (SDN) seem to provide a promising solu-
tion for network management—with a logical central controller, opera-
tors can directly operate the forwarding rules on all switches. Even so,
the network is still an asynchronous system in essence. It is difficult to
synchronize the changes to flows from different ingress switches. There-
fore, when migrating a group of flows to their new paths, even if the
network is safe both before and after the reconfiguration, some “hot”
links could be overloaded during the update process in case new flows

☆ The preliminary version of this paper titled “Arrange Your Network Updates as You Wish” is published in the IFIP Networking 2016 Conference (Luo et al.,
2016). In this extended version, we mainly add the following work. We 1) give a proof of Theorem 1, 2) present more design rationales about why CUP adopts
two-phase mechanism to achieve consistency, 3) show the detailed design of the LP-based heuristic algorithm employed by CUP, 4) add evaluations about the
efficiency of CUP, and 5) discuss more about related work.
∗ Corresponding author.

E-mail addresses: sxluo@swjtu.edu.cn (S. Luo), yuhf@uestc.edu.cn (H. Yu), longvslong@gmail.com (L. Luo), lml@uestc.edu.cn (L. Li).

move in before those old ones move out (Liuet al., 2013; Jinel al., 2014;
Luo et al., 2015a).

As an example, consider the toy case shown in Fig. 1. On executing
WAN optimizations (Jinel al., 2014), the controller wants to update the
network’s configuration from Fig. 1a to b. For simplicity, we assume
that the network uses tunnel-based routing and all necessary tunnels
have already been established. If the controller carries out the update
in one-shot, link S4-S3 or S1-S3 might be overloaded during the update,
corresponding to the case that switch S4 happens to change F3 to its
new path before S1 moving F1 away from link S4-S3, or vice versa. The
congestion cannot be evaded by simply letting F1 and F3 be switched to
their new paths at exactly the same time (Mizrahi et al., 2015)—because
the incoming packets of F2 and F3, together with the in-flight pack-
ets of F1, could still congest S4-S3 until F1 drains; and so does
S1-S3.

https://doi.org/10.1016/j.jnca.2019.05.007
Received 8 December 2018; Received in revised form 2 March 2019; Accepted 9 May 2019
Available online 14 May 2019
1084-8045/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2019.05.007
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2019.05.007&domain=pdf
mailto:sxluo@swjtu.edu.cn
mailto:yuhf@uestc.edu.cn
mailto:longvslong@gmail.com
mailto:lml@uestc.edu.cn
https://doi.org/10.1016/j.jnca.2019.05.007

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Fig. 1. A network update example. Each link has 10 units of capacity and flows
are labeled with their sizes. If the controller carries out the update in one-shot,
link S1-S3 or S4-S3 will be overloaded during the update.

Such a type of congestion disappears following the completion of
update, but its destructibility lasts long—burst traffic leads to serious
queuing delay, and even, packet drops, which will let involved TCPs’
windows collapse, or even worse, kill connections. These bad influences
are not desirable, especially for real-time applications. Accordingly, car-
rying out network reconfigurations without introducing transient con-
gestion is a fundamental function required by SDN controller.

Planning network updates to avoid transient congestion is not an
easy task. Recent approaches like zUpdate (Liuet al., 2013) and SWAN
(Hongel al., 2013) try to solve the problem by introducing a sequence
of intermediate configurations, among which, the update from a for-
mer stage to the latter must always be congestion-free. To ensure such
a stage sequence exists, they require part of the link capacity to be
left vacant, which results in a great waste of link capacities (Hongel
al., 2013; Zheng et al., 2015). Furthermore, the intermediate configu-
rations they introduce will greatly complicate the update process, and
might even disturb user’s QoS—e.g., an intermediate path might have a
larger latency than both the initial and target ones. In contrast, Diony-
sus (Jinel al., 2014) and ATOMIP (Luo et al., 2015a) address the chal-
lenges by scheduling updates in thoughtful orders without bringing in
additional stages. For instance, by executing the update illustrated in
Fig. 1 following the 3-round sequence of [F4 → F1 → F3], no link
would be overloaded and no extra paths are introduced. Order arrange-
ment provides a more practical solution. However, it is not always the
panacea because such a congestion-free operating sequence does not
always exist.

Indeed, due to the various update scenarios and user demands that a
controller would deal with, simply arranging the update operations, or
introducing intermediate stages, is far from enough for a practical solu-
tion. We argue that, a practical planner should have these properties.

1) Effective to handle deadlock and deadline. First of all, the
planner must be able to find feasible congestion-free solutions for any
given task. On one hand, in some update scenarios, there does not
exist a congestion-free sequence (Jinel al., 2014; Luo et al., 2015a). For
instance, in the case of Fig. 1, if the demand of either F1 or F3 increases
to 6, it is impossible to migrate the network to its target routing state
by arranging the execution order without overloading S1-S3 or S4-S3.
This is a deadlock in update planning. On the other hand, even though
congestion-free schedules are found, they may not meet the deadline
requirements. This is because to remove overloads, the controller can-

not switch flows belonging to round-(i + 1) to their new paths until
flows moved out from these paths in round-i have exited. Suppose in-
flight packets require about 𝜏 units of time to exit from a path on aver-
age; then, it would take about k · 𝜏 for the entire network to perform a
k-round update. Such an update delay/duration might be unacceptable
for time-critical cases like failover routing (Liuel al., 2014). Therefore,
on planning updates, the planner should have the ability to break deadlocks
and guarantee deadlines.

Fortunately, for any update, by limiting the rates of some flows
at their senders or traffic shapers, controllers can always obtain a
congestion-free update sequence that involves fewer rounds and sat-
isfies the deadline requirements. Indeed, there is a trade-off between
the time an update takes, and the throughput the network has to drop
(induced by congestion or rate-limiting). For example, one can carry
out the update request demonstrated in Fig. 1 within 2 rounds by limit-
ing the rate of either F2 or F4 to 0 (e.g., when F2’s rate is limited to 0,
[F3 → F1, F4] is congestion-free), or even perform the update within 1
round by limiting the rates of both F2 and F4 to 0. This example gives us
a valuable insight: the planner should have the ability to trade throughput
loss for update speed.

2) Expressive to deal with user-specified requirements. As
infrastructure, today’s network is shared by numerous customers while
simultaneously carrying various kinds of traffic. To be a universal tool
for controller, the update planner should be extensible and easy to adapt
to user-specified requirements (aka intents). As an example, consider the
case of removing transient congestion for the update illustrated in Fig. 1
again. Provided the reconfiguration is time-sensitive and required to
complete within 1 round, the controller has to reduce some flow rates to
avoid congestion. Suppose this is an instance of inter-datacenter traffic
optimization (Hongel al., 2013), in which both F1 and F3 are interactive
traffic while F2 and F4 are background traffic, and the operator prefers
to minimize the amount of interactive traffic disturbed by the update.
In such a scenario, the planner should temporarily reduce the rates of
F2 and F4 to 0 to execute the update, i.e., limit the rates of {F1, F2,
F3, F4} to {5,0,5,0}. On the contrary, if F2 and F4, instead of F1 and
F3, are interactive, the result would be {1,4,1,4}. As another example,
if all flows share the same class and a fairness alike policy is expected
(Lamel al., 2012), the planner should set their rates to { 5

14 ,
4
14 ,

5
14 ,

4
14},

with the target of letting the decrease of throughput be fairly shared in
proportion.

Indeed, due to network’s diversity, such a special constraint of rate-
limiting is only the tip of an iceberg. In practice, there are plenty more
kinds of user-specified demands (about the update execution time or
throughput loss) that a controller would deal with. It follows that, on
planning rate-limiting schemes, the planner should be flexible enough to suit
various update scenarios, as well as user-specified demands.

3) Efficient to scale up. Last but not least, to be practical, the plan-
ner must be time-efficient to find feasible solutions for update requests
in time. In consideration of that the size of today’s network might be
really huge (e.g., Datacenter or backbone), the planner needs to easily
scale up.

As the first step, this paper proposes CUP, Customizable Update
Planner, to help controller deal with various updating requirements.

Table 1
Summary of previous approaches and comparison to CUP.

#Proposal Introduce intermediate status? Effectiveness Expressiveness

Handle deadlock Deal with deadline Meet user-specified requirements

zUpdate (Liuet al., 2013) Yes No No No
SWAN (Hongel al., 2013) Yes Yes Single deadline for all No
GI (Zheng et al., 2015) Yes Yes Single deadline for all No
Dionysus (Jinel al., 2014) No Yes No No
ATOMIP (Luo et al., 2015a) No Yes Single deadline for all No
CUP No Yes Per-flow deadline Yes (any time- and rate- related requirements)

105

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

CUP suggests adopting generic methods such as two-phase mecha-
nism [7, 6] to enforce rule consistency, and focuses on eliminating the
transient congestion during updates. Distinguished from existing solu-
tions proposed for fixed targets, CUP is effective and expressive to deal
with deadlock, deadline, prioritization, and many other user-specified
requirements as Table 1 summaries (Note that, proposals focusing
on enforcing rule consistency are not listed, e.g., CCG (Zhouel al.,
2015).). We analyze various demands and realize that, besides con-
sistency, what users/operators concern about the implementation of
an update, no matter how complex it is, generally involves two types
of fundamental issues—i) when a flow could take advantage of its new
path(s) and ii) how its throughput would be impacted during the update
process?

At a high-level, CUP provides an expressive user-friendly language,
with which, customers and operators can describe their own require-
ments easily and explicitly. When the network is to be updated, CUP
maps these high-level requirements into the essence (involved) flows,
and translates them into low-level linear constrains. At its core, CUP
builds a couple of generic linear programming models to formulate
the update request while capturing constrains from users. Via solving
these customized models, CUP obtains a congestion-free update execu-
tion plan that explicitly follows the user’s wish.

Roughly, CUP’s model involves two parts, Order Scheduler and Rate
Manager, which respectively answer the two basic problems mentioned
above. On planning an update, Order Scheduler first determines the
operation order respecting to time-related requirements. If congestion-
free sequences are found, Order Scheduler outputs the one involving
the minimum rounds; otherwise, it chooses the sequence causing least
overload on links. For the overloaded traffic, Rate Manager then figures
out the optimal rate-limiting scheme that is able to erase the conges-
tion while satisfying all throughput-related requirements. As the core
of both Order Scheduler and Rate Manager is to solve a single Linear
Program (LP), with high performance LP solvers, CUP obtains solutions
within polynomial time and is able to scale up.

We prototype CUP upon Ryu (An open-source sdn contro) and
use it to plan updates for networks conducted by Mininet (Hand-
igolel al., 2012). Results show that CUP is quite flexible to exactly
meet user-specified requirements, while effective to outperform exist-
ing approaches.

In summary, we make three contributions in this paper.

• Abstraction: We show how to express various user-specified updat-
ing requirements with a high-level language, and show how to
dynamically translate them into low-level linear constraints (Section
2).

• Model: We propose generic linear programming models to formu-
late and solve the customized update planning problem, with which,
controllers obtain the “best” update plan explicitly following user’s
wish (Section 3 and 4).

• Evaluation: We show that our CUP tool is flexible, effective, and
efficient to make update plans for “real” networks built by Mininet
(Section 5).

2. Flexible CUP

In CUP, network users as well as operators describe their desired
properties about the update with the high-level CUP language; they
can change the clauses at any time. On planning a network update, at
the first step, CUP “compiles” the user’s codes to figure out their exact
“meaning” in this instance. After that, CUP employs back-end solvers,
Order Scheduler and Rate Manager, to find the update processing plan
that exactly follows the user’s wish. Basically, the entire workflow of
how CUP produces is as Fig. 2 shows.

In the following, we present the high-level language in Section 2.1
and show the compilation process in Section 2.2. After that, we intro-
duce how CUP solves the planning problems in Section 3 and dis-

Fig. 2. The workflow of CUP on planning updates.

Fig. 3. Syntax of CUP high-level language.

cuss how it handles multi-tenants and concurrent update requests in
Section 4.

2.1. High-level language

CUP language (Fig. 3) provides end-users and operators with an easy
way to specify their requirements on configuring the network. A CUP
policy is a collection of rules, in which, each term specifies a specific
requirement, of either the activation time of new paths or the degra-
dation of throughputs, for a (group of) flow(s). CUP uses a regular
expression on the match fields of flow header to define the involved
traffic. For instance, ∗ defines all traffic passing through the net-
work; dstTCP = 80 defines all web access traffic; srcIP = 10.0.0.1/24 ∧
dstIP = 20.0.0.11 defines those flows from subnetwork 10.0.0.1/24 to
destination 20.0.0.11; and srcIP = 10.0.0.2 ∨ dstIP = 10.0.0.4 defines
the traffic from 10.0.0.2, or to 10.0.0.4.

For the update of a collection of flows specified by m, there are
two basic types of indicators that customers and operators might con-
cern: i) how long it would wait before taking advantage of the new
path(s), and ii) how its throughput (i.e., rate) would be limited to avoid
transient congestion. CUP uses T(m) and R(m) to denote, respectively.
Using their relation expressions, these two basic elements can gener-
ate other complicated requirements. For instance, T(m1) ≤ T(m2) says,
flows matched with m1 should be switched into the new paths “no
later than” those matched with m2, while T(m2) ≤ val indicates the
waiting time before m2 switched should be “no larger than” val. Sim-
ilarly, R(m1) ≥ R(m2) implies the effective bandwidth of m1 during
the update should “no less than” that of m2, while R(m3) ≥ amap
means the user would like the effective bandwidth of m3 be maxi-
mized.

CUP language is simple yet expressive for many requirements. As
examples, revisit the toy update cases of Fig. 1. With CUP language,
network operators can formulate their own requirements precisely and
concisely as the instances in Table 2 illustrate.

2.2. Dynamic translator

High-level CUP policies are compiled into low-level restrictions,
which tell the planner how to process each flow’s reconfiguration is

106

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Table 2
Examples of CUP language on describing update cases shown in Fig. 1.

Update scenarios Policy expression

1 Minimize transient congestion without deadline requirements on the update
process.

(R(∗) ≥ amap)

2 Let interactive flows,F2 and F4, take advantage of new paths no later than 1
unit time, while minimizing the impacts on their throughputs (e.g., inter-DC
WAN optimization [17, 10]).

(T(mF2 ∨ mF4) ≤ 1;
R(mF2 ∨ mF4) ≥ amap)

3 Execute all flow migrations no later than 1 unit time, and let the
throughput loss be shared in proportion since they are in the same class.

(T(∗) ≤ 1; R(mF1) ≥ amap;
R(mF2) ≥ amap; R(mF3) ≥ amap;
R(mF4) ≥ amap)

in line with user requirements. To achieve this, the most challenging
task is to figure out the probable time cost of migrating a flow. CUP
employs the approach of pre-installing new rules then triggering two-
phase reconfigurations to address the problem. In this part, we first
present how to make the estimation of reconfiguration’s time cost pos-
sible in Section 2.2.1, then introduce the way of binding high-level
requirements with flows and translating them into low-level linear con-
straints in Section 2.2.2.

2.2.1. Estimating time cost of traffic migration
As Section 1 and Fig. 1 have shown, to not overload any link during

the update, the controller has to wait the flow that is moving out from a
link exits, before moving other flows in. Thus, the time cost of migrating
a flow to its new path(s) mainly involves two parts of i) waiting the
moving-out traffic exits (if any); and then ii) installing rules to shift the
flow to its new path(s).

As for the first part of draining time, we can simply use the well-
known One-Way Delay (OWD) as an approximation, which can be esti-
mated at end hosts (Gurewitz et al., 2006; Pathakel al., 2008), or at
edge switches in OpenFlow-enabled networks. CUP suggests adopting
two-phase update mechanism to guarantee strong rule consistency (refer
to Appendix A for the discussion). On carrying out an N-rounds flow
migration, at the first step, CUP pre-installs the new configurations
and sets rate-limits. Supposing the time of installing/modifying a rule
from the controller is 𝜖, the total time cost of this step is 𝜖 because
all rule installations (for both new paths and rate-limits) can perform
in parallel. Thus, the rest operations for each round are to i) wait a
draining time then ii) touch some flows’ ingress switches to activate
their new paths. Provided the largest OWD in network is 𝜏, we get the
point that flows migrated in the kth round would take advantage of
their new paths at time k × 𝜏 + (k + 1) × 𝜖. Consequently, if a
flow’s deadline requirement on the update process is val, we know that
the controller should make sure it get migrated no later than round⌊ val−𝜖

𝜏+𝜖 ⌋.
In practice, the time cost of modifying a rule on physical switches

is usually inconstant (Hanel al., 2015; Kuzniaret al., 2015; Jainel al.,
2013; Jinel al., 2014). Yet, recent studies have shown its long-tailed
characteristic (Jinel al., 2014). That is to say, simply choosing the 95th
percentile value (or other thresholds) as the estimated time is reason-
able in most cases. Moreover, since OpenFlow-style control is still in
its early stages, most switch software and SDKs are not optimized for
dynamic table programming yet (Jainel al., 2013). Some effects have
been put on improving this and we argue that future switches will be
more stable and fast for table changes (Hanel al., 2015; Bifulco and
Matsiuk, 2015; Chen and Benson, 2017).

As yet, we have found a way to estimate the time cost of migrating
a flow based the network’s maximum OWD and ingress’s rule modifi-
cation delay. In real networks, both types of delays can be measured
by the controller. With this information, CUP is able to translate the
absolute deadline requirements into round requirements. For simplic-
ity, hereafter, all deadline requirements we discuss in this paper are in
the form of round number.

Table 3
The key notations of the network model.

Notation Description

Mdue
R the set of predicates (m) holding T(m) ≤ val

Mamap
R the set of predicates (m) holding R(m) ≥ amap

MPT the set of ⟨mx,my⟩ pairs holding T(mx) ≤ T(my)
MPR the set of ⟨mx,my⟩ pairs holding R(mx) ≥ R(my)
N̂due

m the round deadline for flow matching with m

f ∈ F the set of all current flows in the network
F(m) the set of all flows matching with predicate m
tf the demand of flow f
rf the rate-limit setting of f during the update
r∗m the rate-limit setting for all flows matching with m
e ∈ E the set of all (directed) links in the network
ce the capacity of link e
tf ,e the load of f on link e before the update
t′ f ,e the load of f on link e after the update
FB the set of flows that will not be updated/migrated
FU the set of flows that will be updated/migrated
FU(m) the set of to-be-updated flows matching with m
FPT ∀⟨fi , fi⟩ ∈ FPT : fi should be updated no later than fj
Ndue

f f’s update deadline, in the form of round number
yf ,k whether f has been updated in round-k
tf ,e ,k the (maximum) load of f on e in round-k

2.2.2. Mapping requirements to each flow
Now, we show how CUP maps user requirements into each flow.

The basic notations that CUP’s model uses are summarized in
Table 3.

Lexical analysis and preprocessing. CUP first parsers user-
specified policies to get the semantics. Obviously, there are four types
of constraints on flow predicates, indicating the absolute update dead-
line (i.e., T(m) ≤ val), the relative update order in “no-later-than” form
(i.e., T(mx) ≤ T(my)), relative rate-limiting setting in “no-less-than”
form (i.e., R(mx) ≥ R(my)), and the expected targets that should be
optimized (e.g., R(m) ≥ amap). Without loss of generality, we let Mdue

T
be the set of predicates holding the relation of T(m) ≤ val, and Mamap

R
be the set of predicates holding R(m) ≥ amap. As well, we further use
MPT and MPR to denote the set of predicate pairs (e.g., ⟨mx,my⟩) that
have the relation of T(mx) ≤ T(my) and R(mx) ≥ R(my), respectively.
As discussed above, for a deadline requirement on flows specified by
predicate m, CUP can transfer it into a round number requirement with
Equation (1), where 𝜏 is the network’s measured maximum OWD and 𝜖

is the measured 95th rule modification delay.

N̂due
m = max

(⌊ valm − 𝜖

𝜏 + 𝜖
⌋,1) (1)

Basic network model. We assume that the network, G, is hosting
a set of flows F with links E. The rate of flow f ∈ F is denoted by tf
while the capacity of link e ∈ E is denoted by ce. By letting tf,e be the
traffic load of flow f on link e, the network’s state can be formulated as
S = {tf,e ∣ ∀(f ∈ F, e ∈ E)}. Then, a network update is to change its
state from S to S′ = {t′f ,e ∣ ∀(f ∈ F, e ∈ E)} by rerouting some flows,

107

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

or changing their traffic split ratios in the case of multi-path routing.
For the update of S ↦ S′, let FU be the set of updated flows and FB

be the set of unmodified flows. Obviously, there must be FU ∩ FB = ∅,
FU ∪ FB = F, and tf,e = t′f ,e for ∀(f ∈ FU, e ∈ E). We assume that the
update of flow f is required to be finished within Ndue

f rounds, and use

binary variable yf ,k(1 ≤ k ≤ Ndue
f) to indicate whether f (f ∈ FU) has

been migrated/updated in the k-th round. By defining yf,0 = 0 for con-
venience, we get the constraints as Equations (2) and (3) show.

∀k, f ∈ FU ∶ yf ,k ∈ {0,1} (2)

∀f ∈ FU ∶ 0 = yf ,0 ≤ yf ,1 ≤ … ≤ yf ,Ndue
f

= 1 (3)

Besides, we let rf denote the proportion of rate-limiting that flow f
would be set to during the update. Then, after rate-limiting is enabled,
the total load of f would be reduced to tf · rf, and the subpart on e before
and after the update would also decrease to tf,e · rf and t′f,e · rf, respec-
tively.

∀f ∶ 0 ≤ rf ≤ 1 (4)

Embedding user-specified requirements. In networks, flows are
defined by predicate strings of the packet header fields. By checking
whether a flow’s predicate intersects with the user-specified predicate,
CUP figures out which flows are involved with that rule. For rule pred-
icate string m, we denote F(m) as the set of flows that it intersects with,
and FU(m) as the subpart of to-be-updated flows in F(m). Then, via Equa-
tion (5), CUP gets the set of rules that a flow is matched with and gets
the exact deadline requirement of each flow. It should be noted that,
the entire update process will never exceed |FU|, the number of flow to
be updated. So, in case the estimated round calculated from user poli-
cies is larger than FU, or no deadline is required, Ndue

f will be set to |FU|.
Ndue

f = min(|FU |, min
∀m∈Mdue

T ∶f∈FU (m)
N̂due

m) (5)

As for the “no-later-than” order requirements, T(mx) ≤ T(my), if
two to-be-updated flows, fi and fj, happen to hold the relations of
fi ∈ FU(mx) and fj ∈ FU(my), it means they have order dependencies
on the update active time, namely, yfi,k ≥ yfj ,k for all feasible k. Let FPT
be the set of such order-dependent flow pairs; CUP can easily get it by
calculating Equation (6). Then, all “no-later-than” requirements are as
Equation (7) shows.

FPT = {⟨fi, fj⟩ ∣ ∃⟨mx,my⟩ ∈ MPT ; fi ∈ FU(mx); fj ∈ FU(my)} (6)

∀(fi, fj) ∈ FPT , k ≤ min(Ndue
fi

,Ndue
fj

) ∶ yfi,k ≥ yfj,k (7)

Now, CUP deals with rate/throughput related requirements. Same to
the case of time-related predicates, the predicate m in a rate-specified
rule also might match with multiple flows at the same time. We denote
the collection of involved flows as F(m) and regard them as a “virtual”
aggregated flow. For this “virtual” flow, we further use r∗m to present
what its rate-limit would be during the update process. Then the two
types of throughput requirements could be formulated as Equations (8)
and (9) show, in which r∗m is defined by Equation (10) and amap is the
index/variable that should be optimized.

∀(mi,mj) ∈ MPR ∶ r∗mi
≥ r∗mj

(8)

∀mi ∈ Mamap
R ∶ r∗mi

≥ amap (9)

r∗m =

∑
∀f∈F(m)

rf · tf∑
∀f∈F(m)

tf
(10)

So far, CUP has translated all user-specified requirements into low-level
flow-based constraints, which are all linear.

3. Efficient solver

To handle various updates, CUP needs a generic yet efficient solver.
However, the design is not easy since planning updates is computa-
tionally intractable in ordinary sense—even answering the question of
whether there exists a congestion-free solution for a given update is
NP-hard as Theorem 1 says.

Theorem 1. Determining whether there is a congestion-free update order
scheduling that meets user-specified deadline is NP-Hard in ordinary sense.

Proof. The proof is quite similar to that of Theorem 2 in (Jinel al.,
2014). Consider a network in which a set of integer traffic demands
travel through via link e1 or link e2, alternatively, and the capacity of
both links is c. Initially, flows in group GA go through e1, while flows
in group GB go through e2. Their total load are cA and cB, respectively,
where cA ≤

c
2 and cB = c. Suppose the update is to swap their routes.

Obviously, the fastest updating plan that might be congestion-free is a
3-round solution: 1) migrate a part of GB with the total load of c − cA
from e2 to e1; 2) migrate GA from e1 to e2; and finally 3) migrate the
reset of GB from e2 to e1 (with load cB − cA). However, to figure out
whether this 3-round congestion-free solution exists, we have to solve
the subset sum problem of finding a subset flows from GB sum to c − cA,
which is known as NP-complete. □

Corresponding to the fact that planning an update involves two
parts of i) finding an execution order and ii) computing the relevant
rate-limiting scheme, CUP heuristically decouples the original problem
into two parts as Fig. 2 shows. On planning a group of flow migra-
tions, the Order Scheduler module first determines which round each
flow should be moved in, based on user-specified time-related require-
ments. If there exists congestion-free sequences, Order Scheduler outputs
the one with the minimum rounds; otherwise, it suggests the sequence
causing smallest traffic overloads. Then, for the congested traffic, Rate
Manager further finds the optimal rate-limiting scheme that makes
the update free of congestion, respecting to throughput/rate-related
rules.

3.1. Order Scheduler

As Section 3.1.1 will show, the problem of scheduling flow migra-
tion order to reduce congestion can be formulated as a Mixed Inte-
ger Linear Program (MIP). Then, for the schedule of a small num-
ber of flows, it is possible to obtain the optimal order by directly
solving this MIP with efficient solvers. However, as finding the opti-
mization scheduling order is theoretically NP-hard, the computa-
tion process becomes quite time-consuming when the network scales
up. To find scheduling orders quickly, we further relax the origi-
nal MIP into a Linear Program (LP), and develop an efficient heuris-
tic solution based on the relaxed LP’s outputs as Section 3.1.2 illus-
trates.

In practice, a simple way to achieve both efficiency and effective-
ness on order scheduling is to employ a “dual-core” design. For each
planning request, CUP can perform the MIP solving and heuristic com-
putation, simultaneously. If MIP completes within a certain time (e.g.,
1 s), CUP gets the optimal results; otherwise, CUP chooses the heuristic
result and stops the task of MIP solving.

3.1.1. The MIP model
The first step of planning update to prevent transmit congestions is

to evaluate what link loads would be during the update procedure. For
flow f ∈ FU, we let tf,e ,k indicate its maximum possible load on link e
when preforming the reconfiguration of round k. Then, the maximum
(possible) load on link e in this round is

∑
f∈FB tf ,e +

∑
f∈FU tf ,e,k.

108

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Fig. 4. An example of that the updated flow is not changed independently: move
f from path S1-S2-S3-S4 to S1-S3-S4.

tf ,e,k =

⎧⎪⎪⎨⎪⎪⎩

tf ,e − yf ,k−1 ·(max(tf ,e, t′f ,e) − t′f ,e)

+ yf ,k ·(max(tf ,e, t′f ,e) − tf ,e)
Changed ind.

tf ,e − yf ,k−1 · tf ,e + yf ,k · t′f ,e Otherwise

(11)

The calculation of tf,e ,k for round k has two formulations depending on
f’s update senses as Equation (11) shows. In both formulations, it is cer-
tain that f’s load on link e equals tf,e if f has not been migrated yet, i.e.,
yf,k−1 = yf ,k = 0, or equals t′f,e if its migration has completed, i.e.,
yf,k−1 = yf ,k = 1. The difference exists in the case when f happens to
be migrated in round k, i.e., yf,k−1 = 0 and yf,k = 1, and the link is
used by both f’s old path(s) and new path(s).

In datacenter networks, the multiple paths between two end-hosts
usually share the same hops and packets traveling through them are
likely to experience the similar delay (Liuet al., 2013). Accordingly,
the load of f on link e during the update is either tf,e or t′f,e. In this
condition, f is changed independently (Liuet al., 2013) on link e, and its
maximum possible load during the update is max(tf ,e, t

′
f,e), correspond-

ing the upper case of Equation (11). However, the situation of WAN
is quite different, in which multiple paths of a source-destination pair
generally have distinct delays. In the worst case, the load of flow f on e
would reach tf,e + t′f,e. As an example, consider the case of rerouting
flow f from path S1-S2-S3-S4 to S1-S3-S4 shown in Fig. 4. On switching
f to its new path, because of the transmission and buffer delays, incom-
ing packets traveling through S1-S3, together with the in-flight packets
on sub-path S1-S2-S3, would contribute a total load of tf,e + t′f ,e on
link S3-S4. Fortunately, by comparing the new network configuration
with the old one, CUP knows whether a flow is changed independently
or not. Then, the right expression of tf,e ,k for flows and links can be
decided.

On computing the update order, CUP tries to minimize the over-
loaded traffic on links while optimizing the total required rounds. Pro-
vided oe is the amount of overloaded traffic on link e (whose capacity
is ce), there are many alternative formulations that capture the link
load situation of the entire network—E.g.,

∑
∀eoe, max∀eoe,

∑
∀e

oe
ce

, and

max∀e
oe
ce

. CUP adopts max∀eoe. With this design, even if the network is
failed to apply the rate-limiting schemes, the scheduled update order
will still let the transient congestions be distributed on most links,
so that the overloaded packets are more likely to be held by switch
buffers.

∀e, k > 0 ∶
∑

f∈FB

tf ,e +
∑

f∈FU

tf ,e,k ≤ ce + oe; oe ≥ 0 (12)

Obviously, this order scheduling problem is naturally to be formulated
as a MIP (Mixed Integer linear Program) as Fig. 5 shows, where 𝛾 is a
small factor (0 ≤ 𝛾 ≪ 1) and the tail − 𝛾 ·∑∀(f,k)yf,k is to let flows
be migrated as soon as possible.

3.1.2. Heuristic scheduler based on relaxed LP
The procedure of CUP’s heuristic scheduler (refer as LPHA here-

after) is as Fig. 6 describes. Given an update, the heuristic algorithm
first solves the corresponding relaxed LP to get the relaxed value
of {yf ,k ∣ ∀(f, k)} (Line 1), then greedily selects a round number for
each flow based on the results (Line 2). Because of the relaxation,

Fig. 5. Schedule update orders to minimize the link overloads. 𝛾 is a small
constant: 0 < 𝛾 ≪ 1.

Fig. 6. Determines the update order schedule with a LP-based heuristics, LPHA;
𝛾 is a small constant: 0 < 𝛾 ≪ 1.

the obtained order might violate the relative time requirements (e.g.,
Equation (3)). To remedy this, LPHA builds a directed graph D to cap-
ture the “no-later-than” requirements (Line 3–5) and use it to fix (Line
6–19).

Note that, these time requirements formulate a non-strict partial
order for the to-be-updated flows. That is to say the time requirement
on updating order is reflexive, antisymmetric, and transitive. For exam-
ple, the transitivity implies that, if fi should be updated no later than fj
while fj should be updated no later than fk, the implicit requirement is
that fi should be migrated no later than fk; the antisymmetry indicates,
if one of {fi, fj} should be updated no later than the other, it means they
must be updated in the same round. Therefore, there might be loops in
the directed graph D, in which flows belonging to the same cycle are
required to be updated in the same round. To handle this, LPHA finds
out all the Strongly Connected Component (SCC) in the D with Tarjan’s
algorithm (Tarjan, 1971), whose time complexity is linear with the total
number of nodes (V) and edges (E) in the graph–O(|V| + |E|). As each
SCC is a set of intertwined cycles, LPHA aggregates each into a virtual

109

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Fig. 7. Manage transient congestions in each update round {rf ∣ ∀f} explicitly
following user’s requirement. 𝜚 is a small constant: 0 < 𝜚 ≪ 1.

node, so that D shrinks into a virtual Directed Acyclic Graph (DAG)
(Line 6).

The procedure of fixing the “no-later-than” relationship on DAG is
similar to that of the topological sorting algorithm described by Kahn
(1962). At each turn, LPHA i) picks a node v with no incoming arrows
(i.e., no-later-than requirements) from the DAG (Line 9), ii) computes a
round number that satisfies the requirements of all flows belonging that
node 10, and iii) sets the round number of these flows (Line 12). After
the rounds of flows in this node are established, LPHA immediately
updates the maximum possible round number for the un-scheduled
flows having “no-later-than” requirements on this node (Line 15). This
guarantees all “no-later-than” requirements always being kept.

Finally, LPHA makes a rearrangement to remove the unused round
numbers, and get the final schedule—𝜋(Xi) (Line 19).

3.2. Rate Manager

Once the update order is determined, CUP gets the value of {tf ,e ,k ∣
∀(f, e, k)}. The next issue is to find a rate-limiting scheme avoiding con-
gestion respecting to user’s requirements. As defined in Section 2.2.2,
rf is the ratio that flow f should decrease to for removing transient
congestions; then, the straightforward solution to obtain the optimal
rate-limiting scheme for user-specified requirements is to solve the cor-
responding LP shown in Fig. 7.

∀e, k > 0 ∶
∑

f∈FB

rf · tf ,e +
∑

f∈FU

rf · tf ,e,k ≤ ce (13)

Note that, when no amap-based rule is specified, CUP adopts
R(∗) ≥ amap by default, which results in minimizing the total through-
put loss. In some cases, there might be multiple rate-setting schemes
that obtain the same optimal amap. CUP adds a tail of 𝜚 × min∀frf (𝜚
is a small positive constant) into the objective to gain the one limiting
less flows.

3.3. Tricks for scalability

So far, we have built a generic solver made up of Order Scheduler and
Rate Manager for CUP. Obviously, the core computation in both Order
Scheduler and Rate Manager is solving LPs, which can be efficiently
done within polynomial time by leveraging fast solvers like CPLEX and
MOSEK. Consequently, the entire solver is a polynomial time approach
as well. Furthermore, there are several simple yet efficacious designs
that CUP can employ to simplify the model and accelerate the compu-
tation.

For instance, it is easy and possible to remove these “free” vari-
ables from the models to accelerate the speed of solvers. If a link would
never be overloaded during the update, CUP can exclude its related con-
straints from the model safely. We call such links non-critical, and they
can be determined by Equation (14) easily. Corresponding, if a flow
only encounters with non-critical links, there is no need to limit its rate.
CUP can remove its constraints from the Rate Manager model. As well,
if a to-be-updated flow is non-critical and does not have “no-later-than”
relation with other flows, it can be migrated directly in the first round
without planning computations.

Enon−crit. = {∀e ∣
∑

∀f∈FB

tf ,e +
∑

∀f∈FU

max
∀k

tf ,e,k ≤ ce} (14)

Moreover, for an update that involves a huge number of critical flows
and links, an intuitive heuristic to control the model scale is to i)
split it into multiple tiny scheduling tasks, ii) solve them respectively,
and iii) merge these results to get the final one. However, both the
split and merge process are non-trivial tasks, as flows to be updated
might be binded with user-specified “no-later-than” and “no-larger-
than” requirements. We leave the detailed designs as our future work.

4. Discussion

In this section, we give brief discussions on several concerns with
CUP, i.e., i) whether there exists solutions for any given CUP policy, ii)
could CUP help the controller arrange updates from multiple tenants,
and iii) how CUP could handle multiple concurrent update requests.

4.1. Solvability

As Fig. 3 shows, the requirements on both the updating time and
flow rates that CUP is capable of describing are non-strict partial orders
by design. Accordingly, constraints that users specify their updates to
comply with would never conflict. For instance, if flow fi is required
to be updated no later than fi by one rule while the converse require-
ment is specified by another, these two flows should be updated within
exact the same round. Similarly, for two flows, provided that rate-
related requirements ask the degree of one flow’s rate limiting to be
no-more-than that of the other, these two flows could share the same
rate-limiting settings. Therefor, the models involved by Order Sched-
uler and Rate Manager are always solvable. Actually, for any update
request, it is obvious that moving all flows in one round while limiting
flow rates zeros always yields a feasible planning for any given update
request.

4.2. Multi-tenant

In practice, a network might be shared by multiple tenants (or vir-
tual operators) simultaneously (Sherwood et al., 2010). The require-
ments specified by a tenant should only impact its own updates and
own traffic. In such cases, CUP would look into the tenant informa-
tion when embedding policies. As for CUP’s solver, Order Scheduler is
able to handle this directly because there is no difference on the sub-
problem of order scheduling; however, Rate Manager needs a modifi-
cation as the rate management problem is a multi-objective optimiza-
tion problem now— max(amap1, amap2,… , amapn). Multiple-objective
optimization has been studied for very long time and there are so
many solutions, such as scalarization, no-preference methods, priori meth-
ods, etc (Wikipedia and Multi-objectiv, 2015). In this paper, CUP sim-
ply adopts the approach of linearly scalarizing (Wikipedia and Mul-
ti-objectiv, 2015) the multiple objectives into the single objective of
max

∑
∀iwi · amapi, where wi ≥ 0 stands for the weight of the ith ten-

ant. By simply pursuing this scalarizated objective, CUP supports multi-
tenant updates. We note that there is room to improve and CUP is flex-
ible to be upgraded.

4.3. Concurrent updates

In general, a “fat” update request involving many flow migrations
would be planned to execute in more than one round. As the network
configuration is volatile, new update request is likely to occur before the
current “fat” one completes. This should be handled appropriately and
immediately as some new flow migration requests might have urgent
deadline requirements. CUP adopts the generic two-phase mechanism
(Luo et al., 2015b) to implement the reconfiguration of each round,
which naturally supports update streams. Accordingly, CUP can imme-
diately deal with a new request by just regarding it together with these
unperformed rounds as a fresh request; rule consistency is always guar-
anteed.

110

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Fig. 8. Transient congestion during unplanned updates.

5. Evaluation

In this section, we implement a simplified CUP based on Ryu, and
conduct virtual networks with Mininet to test CUP. Our results indi-
cate that CUP is flexible enough to handle user-specified time- and
throughput-requirements. Moreover, CUP is very effective. On each
type of requirement, CUP always significantly outperforms the variant
of Dionysus which is modified to handle that requirement type.

5.1. Implementation

We prototype CUP upon Ryu 3.26, and employ it to plan traffic
migrations for toy virtual networks on Mininet 2.2 (Handigolel al.,
2012).

Network setup. When switches start up, the controller installs
default routes and tunnel rules via OpenFlow 1.3. We let end-hosts
send UDP packets with each other in steady rates to simulate the case
of backbone traffic in WAN, and use VLAN tags to implement tunnel-
based forwarding for them. We assume that the network adopts multi-
path routing, in which ingress switches split and assign a flow to its
sub-tunnels respecting to tunnel weights. Then, updating a flow is only
to reconfigure its tunnel weights at the ingress, so that each update is
consistent in essence (Reitblattel al., 2012; Luo et al., 2015b).

To carry out weighted traffic splitting on Open vSwitch, the con-
troller installs a group of exact-match rules specifying the tunnel for
each microflow.1 Unfortunately, this approach makes rule manage-
ment on ingress complex as the update of a single flow might trigger
the modification of a collection of microflow rules. We address the prob-
lem by using the Multiple Flow Table mechanism provided by Open-
Flow switches (supports start from OpenFlow 1.1). Basically, rules in
an ingress switch are either stored in Table 0 or Table 1 depending
on their types. In normal, forwarding functional rules like tunnels and
default routes reside in Table 1, and these microflow rules that realize
traffic splits and tunnel selections, together with a lower priority all-∗
whose action is “goto Table 1”, reside in Table 0. When a flow’s splitting
weights are to be updated, the controller first installs microflow rules
that implement the new weights in Table 1, then installs a high-priority
wildcard rule with action “goto Table 1” into the first table to “guide”
involved packets to the new weights. After that, the controller silently
modifies the actions of those unmatched microflow rules in Table 0
following the new weights, then deletes the previously installed wild-
card rule and microflow rules. Following this, we make rules easy to
manage and guarantee the consistency property during weight recon-
figurations.

1 In tests, the traffic from a host to another is equally dispersed over 20 UDP
flows, and its ingress switch holds a corresponding number of microflow rules
for traffic splitting. Thus, the accuracy of traffic-splitting is 0.05.

Fig. 9. Plan under policy: (T(∗) ≤ 1;R(∗) ≥ amap), i.e., all migrations should
be finished within 1 round and the total network throughput should be as-
much-as-possible.

Benchmark schemes. We implement CUP’s algorithm in Python
and employ Mosek (ApS, 2016) as the backend solver for LPs. As
a benchmark, we implement the schedule algorithm of Dionysus.
Although it is designed for dynamic scheduling of updates, under the
situation that new rules are pre-installed and ingress switches share
the similar time cost on enabling new configurations for flow, Diony-
sus would also derive a round schedule together with a rate limiting
scheme for each update in advance (Jinel al., 2014). If the obtained
round number is larger than the deadline requirement, we assume that
Dionysus adopts its deadlock-break mechanism for help—limit the rates
of flows whose scheduled time would miss the deadline to zeros, and
perform all their migrations in the last round.

5.2. Case study

To evaluate how transient congestion caused by unplanned updates
would influence the traffic, we first conduct experiments for the toy
update cases shown in Fig. 1. Note that all virtual hosts and switches
in Mininet use the shared CPU and bandwidth resources for simula-
tion (Handigolel al., 2012). To avoid resource competition between
them and to highlight the results, we set link bandwidth to 5 Mbps
with 100 ms delay, and let port buffer size be large enough to hold all
overloaded traffic. Accordingly, in the case of no congestion, the trans-
mission delay of all old paths is about 200 ms, same to the network’s
maximum OWD, and that of the new paths is about 100 ms.

Fig. 8a shows the transmission delay of packets in each flow when
the controller sends the “activate the new path” commands for {F1,
F3, F4} in One Shot at the 0.4 s. About 150 ms later, receivers get
packets through the new paths. Obviously, the latency of packets in
all flows increase during the update process. That is to say, they all
entered queues because of transient congestion. In the test, we set no
artificial control delay between the controller and switches (however,
there is still a delay about 50 ms for each flow table modification from
CUP sending the command via REST API) so that all flows take advan-
tage of their new paths almost at the same time. As a result, the newly
incoming packets of F1 together with the in-flight packets of F3 and
F4 overload Link S1-S3, while F1’s in-flight packets together with the
newly incoming packets of F2 and F3 overload Link S4-S3. In practice,
the activation time of new rule might be distinct on switches; transient
congestion happens once a flow moves in the hot link before the old
in-flight packets exit. And these overloaded packets in high speed net-
work can be really huge, which would quickly eat up switch buffers and
result in heavy packet loss (Jinel al., 2014).

As a comparison, Fig. 8b shows the case of migrating flows in order
of [F4 → F1 → F3], which is the result planned by both Dionysus and
CUP under the policy of (R(∗) ≥ amap). In this case, the controller

111

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Fig. 10. Plan under (T(∗) ≤ 1;R(mF2 ∨ mF4) ≥ amap), i.e., all migrations
should be finished within 1 round and the total throughput of F2 and F4 should
be as-much-as-possible.

triggers flow migrations round by round, and waits the maximum OWD
time (200 ms) between them. Following the plan, the update process
takes about 600 ms to complete, but avoids all transient congestion.

Then, we look into the case of planning updates with time- and
throughput-requirements. Provided the update request appear at the
0.4 s, and the operator wants all flows to take advantage of their
new paths no later than 300 ms; that is to say, all flow migrations
must be carried out within one round,2 and rate-limits are needed
to avoid congestion. Fig. 9 and Fig. 10 show the results planned
by CUP under user-specified policies (T(∗) ≤ 1;R(∗) ≥ amap) and
(T(∗) ≤ 1;R(mF2 ∨ mF4) ≥ amap), respectively. In the case of Fig. 9,
all flows share the same importance and the operator prefers the total
throughput be reduced as less as possible. With the objective function
shown in Fig. 7, CUP’s Rate Manager lets the throughput loss be shared
by all flows in proportion as Fig. 9b shows, where Δy

Δx stands for the
flow rates observed by the sender or receiver—about { 5

14 ,
4
14 ,

5
14 ,

4
14 }.

Different from Figs. 9 and 10 demonstrates the case that F1 and F4 are
background traffic while F2 and F4 are interactive whose throughput
should be keep as much as possible. As the results show, CUP finds the
update plan exactly following the operator’s wish. In contrast, Dionysus
will handle the requirements in a rough way—completely kill F1 and
F2 to avoid congestion.

5.3. CUP flexibility

To investigate the flexibility of CUP, we further employ it to plan
updates for a small WAN topology (Jinel al., 2014; Zheng et al., 2015),
which involves 8 nodes and 14 links as Fig. 11 illustrates. In this case,
each link is assumed to have the capacity of 10 Mbps and delay of
200 ms. We consider the case of WAN optimization, where ingress
switches split the traffic to a destination among its 4-shortest paths
to pursue load balancing. Because of lacking real traffic matrices, we
assume that all the possible paths of a source-destination share the
equal weight initially, and use gravity model (Luo et al., 2015a) to syn-
thesize the current traffic demands, which make the maximum link load
be 99% in the old configuration. Then, the update scenario is to recon-
figure traffic split weights to the new one that reduces the maximum
link load to the minimized value, 78%. The longest path(s) in tests
involves 4 links; accordingly, the network’s maximum OWD is 800 ms.
For each link e, we consider it as unchanged independently for flow f, if
f has more than one path going through e and these paths hold distinct
lengths (i.e., delays).

2 It takes about 200 ms to pre-install new rules and wait rate-limits coming
into force; then less than 100 ms is left for performing the updates.

Fig. 11. WAN topology in (Jinel al., 2014).

Fig. 12. Throughput loss vs. update speed.

When no update deadline is required, CUP finds a congestion-free
plan involving 5 rounds without limiting flow rates, while Dionysus
obtains a 6-round plan that achieves the same goal. Then, we artificially
add deadline requirements to all flows and compute the proportion of
network throughput that CUP, as well as Dionysus, has to abandon for
congestion freedom. Numerical results indicate that CUP outperforms
Dionysus about 3 × on reducing the impact of network throughput as
Fig. 12 shows. CUP is excellent because its Rate Manager always obtains
the optimal rate-limiting scheme respecting to user’s requirements. On
the contrary, Dionysus just randomly kills some flows to move on. In
addition, Dionysus would never touch the rate of the un-updated flows.
But in some cases, slowing down some of them really helps.

We also study the cases that some traffic is background and the
operator wishes interactive traffic be less impacted during the update.
To this end, we assume that a certain percentage of traffic between each
source-destination pair is background, then calculate how many round
CUP, as well as Dionysus, would need to perform congestion-free recon-
figuration without reducing the throughput of interactive traffic. Fig. 13
demonstrates the results. It implies that, with the proportion of back-
ground traffic increasing, the round number required by CUP rapidly
decreases. And after the background traffic accounts for half of the traf-
fic, CUP always performs congestion-free updates in one round without
reducing the rates of interactive flows. In contrast, Dionysus cannot
achieve this because of its unawareness of user-specified requirements.
If we pre-limit the rates of background traffic to zeros, Dionysus then
obtains small update rounds as CUP does. However, similar to the cases
shown in Fig. 12, such a solution is far from good because too many
flows are killed unnecessarily.

5.4. CUP efficiency

To understand the efficiency of CUP, we examine the time that
CUP solvers spend on constructing as well as solving linear models for
update scheduling. Recall that, CUP adopts the heuristic design of i) first
deciding the updating order ii) then computing the optimal rate limits.

112

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Fig. 13. Impact of background traffic.

Accordingly, the total time that CUP needs for scheduling an update,
is the sum of these took by Order Scheduler and Rate Manager. Fig. 14
illustrates the detailed results of the aforementioned updating cases of
rebalancing traffic for inter-DC WAN topology (Fig. 12), in which each
measured time is the mean value of 20 trials, carried out by Mosek on a
PC running 64-bit Ubuntu 14.04 server with 8G RAM and a single Intel
E5-1620 v2 CPU.

As Fig. 14a shows, given an update request, it would take non-trivial
time, ranging from tens to hundreds of milliseconds, for CUP to build
linear models for the corresponding scheduling problem. Basically, this
is due to the fact that our initial CUP implementation acts as a first step
for functional verification and it employs the Mosek Fusion API (ApS,
2016) for fast prototyping. With the high-level programming abstrac-
tion provided by Fusion, we could focus explicitly on modeling ori-
ented aspects rather than reformulating problems into a single matrix
and a few vectors, which is a time-consuming and error-prone process.
Fusion APIs make the life much easier; but it simultaneously introduces
computational overheads compared to using the low-level C APIs (ApS,
2016). Thus, for production code, building CUP solvers with these low-
level APIs would be a better choice. Also, we observe that, the time
for model building increases with Round, the maximum allowed round
number. This is reasonable since more variables and constraints CUP
solvers (i.e., these shown in Figs. 5, Figure 6, and Fig. 7) would get
involved in, when a larger Round is set.

Besides model building, we further count the time that CUP takes on
solving each of them. As Fig. 14b summarized, for each update request,
the MIP-based Order Scheduler (Fig. 5) would need notable yet unpre-
dictable solving time, up to tens of seconds, while its LP-based heuris-
tic, LPHA, always yields a feasible order scheduling within several mil-
liseconds. We also notice that, when a loose deadline is set (e.g., when

Round ≥ 5), the MIP-based Rate Manger would be more efficient than
its colleague that uses LPHA as the core. Mainly, this is because when
Round ≥ 5, MIP-based Order Manger has found congestion-free schedul-
ings in which no rate limit is needed thus it is easy for Rate Manger to
find a feasible solution in that case. As Section 3.1 suggests, in practice,
Order Scheduler could achieve both efficiency and effectiveness via a
“dual-core” design.

6. Related work

Managing network updates in SDN is a hot topic. We mainly revisit
the most related work here and refer the interested readers to (Foerster
et al., 2018) for a comprehensive survey.

As in-flight packets might be handled by a mix of different versions
of rules during the update, several approaches are proposed to pro-
vide strong consistent properties such that no packet or flow misuse
rules (Reitblattel al., 2012; Katta et al., 2013; Luo et al., 2015b), or
weaker yet specific properties such as loop freedom (Mahajan and Wat-
tenhofer, 2013; Zhouel al., 2015; Ludwiget al., 2015), and waypoint
invariant (Ludwigel al., 2014; Zhouel al., 2015). While orthogonal to
them, CUP focuses on another problem of managing transient conges-
tion during the reconfiguration process, and directly employs generic
two-phase approach (Luo et al., 2015b) to guarantee strong rule consis-
tency for each step/round.

Schedulers like zUpdate (Liuet al., 2013), SWAN (Hongel al., 2013),
and GI (Zheng et al., 2015) attempt to avoid transient congestion by
introducing a sequence of intermediate traffic distributions (i.e., con-
figurations), following which, the transition might be congestion-free.
These introduced intermediate configurations greatly complicate the
update procedure, and make the network error-prone (Miserezet al.,
2015). Even worse, these intermediate configurations might hurt user’s
QoS because of their paths might have unsatisfied delays and jitters.
Moreover, for some updates, there does exist congestion-free transition
plans. To avoid this, a portion (10%–50% (Hongel al., 2013)) has to be
left vacant, which leads a great waste of link capacities (GI (Zheng et
al., 2015) chooses to bear the transient congestion instead of reserving
vacant bandwidth). Differently, Dionysus (Jinel al., 2014) and ATOMIP
(Luo et al., 2015b) try to handle transient congestion by scheduling
update operations according to a dynamic-determined or pre-designed
order, which might avoid the problem of intermediate configurations.
Even though, they only maintain a pre-defined specific objective by
design—either towards fast speed, or congestion freedom. Accordingly,
they cannot deal with various update scenario properly. By comparison,
CUP formulates the update planning problem with generic models. Via
binding models with user-specific constrains and objective functions,
CUP adapts to a large fraction of scenarios easily.

Fig. 14. Efficiency of CUP cores: Order Scheduler and Rate Manager.

113

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Like CUP, many other researchers also realize the advantage of cus-
tomizable network update planning and propose attractive proposals,
recently. For example, Atoman enables operators to manually choose
both the optimization objective and constraints for network update
scheduling (Luo et al., 2019). However, Atoman would not limit flow
rates; thus, it could not guarantee congestion freedom, in case the net-
work is heavily loaded and there does not exist a congestion-free order
scheduling. The work of Hermes does employ customizable rate limit-
ing schemes to avoid transient congestion; but it focuses on the target
of maximizing the sum of service utilities during the update, which is
different from what CUP pursues (Zheng et al., 2018).

7. Conclusion

As transient congestions are prone to occur during SDN updates,
controllers are in urgent need of a planner to handle the trouble. We
argue that planning the reconfiguration process respecting to specified
requirements is an import issue. In this paper, we have analyzed the
desired properties of such planners and proposed a case design–CUP.
CUP translates high-level user-specific requirements into linear con-
straints and formulates the planning problem as generic linear pro-
grams. By solving customized LPs, CUP is flexible to obtain “best” plans
for a large fraction of updates.

Acknowledgements

We would like to thank the anonymous reviewers and editors for
their useful feedback. This work is supported in part by the Fundamen-
tal Research Funds for the Central Universities (2682019CX61).

Appendix A. Why CUP adopts two-phase for rule consistency

As is known, when reconfiguring the network, in-flight packets
might misuse different versions of rules (Reitblattel al., 2012; Luo et
al., 2015b; Mahajan and Wattenhofer, 2013; Ludwigel al., 2014; Zhouel
al., 2015) and the solution is to either perform rule changes following
a well-designed order (Mahajan and Wattenhofer, 2013; Ludwigel al.,
2014; Zhouel al., 2015), or use version tags to avoid the mix use (Reit-
blattel al., 2012; Luo et al., 2015b). Order arrangement does not require
extra rule spaces, however, it has two fatal flaws. First, it is not univer-
sal and only works in specified cases (Mahajan and Wattenhofer, 2013;
Ludwigel al., 2014). Second and crucially, it is time-costly since it has
to change rules one-by-one; this results in big update durations (Luo et
al., 2015b). For example, provided the longest path in the dependency
tree of rule changing order is L and the average time for changing a rule
from the controller is 𝜏, it would take about L × 𝜏 to go through the
entire process. In contrast, the version-based two-phase mechanism is
generic and fast. If new rules already exists, the controller only needs to
modify the ingress to switch a flow to the new path(s)—the time cost is
𝜏; even though new rules are absent, the controller can let all new rules
ready within another 𝜏 because these rule installations can be executed
concurrently—the total time cost is 2𝜏, still greatly smaller than L × 𝜏.

The possible price of version-based methods is rule-space
overheads—switches have to hold two version of rules temporarily. For
this problem, recent study has shown that, with the help of wildcard in
match fields, switches only needs to store two versions for rules that
are being modified (Luo et al., 2015b); this greatly reduce the over-
heads. Moreover, after an update procedure completes, all old rules
can be removed immediately. Thus, we argue that rule-space overheads
are not serious in many cases. Even in the case that the rule-space is
the bottleneck, the controller can still pre-split updates to reduce the
demands of extra rule-space (Katta et al., 2013), or employs rule aggre-

gation techniques to get more available rule spaces (Luo et al., 2014,
2015c).

References

An open-source sdn controller framework, https://osrg.github.io/ryu/.
ApS, M., 2016. MOSEK Fusion for Python Version 7.1 (rev. 57). http://docs.mosek.com/

7.1/pythonfusion/index.html.
Bifulco, R., Matsiuk, A., 2015. Towards scalable SDN switches: enabling faster flow table

entries installation, SIGCOMM. Comput. Commun. Rev. 45 (5), 343–344, https://
doi.org/10.1145/2829988.2790008.

Chen, H., Benson, T., 2017. Hermes: providing tight control over high-performance sdn
switches. In: CoNEXT, ACM, pp. 283–295.

Foerster, Klaus-Tycho, Schmid, Stefan, Vissicchio, Stefano, 2018. Survey of consistent
software-defined network updates. IEEE Commun. Surv. Tutorials. ISSN: 1553-877X,
https://doi.org/10.1109/COMST.2018.2876749 11.

Gurewitz, O., Cidon, I., Sidi, M., 2006. One-way delay estimation using network-wide
measurements. IEEE Trans. Inf. Theory 52 (6), 2710–2724, https://doi.org/10.
1109/TIT.2006.874414 ISSN (0018-9448).

Handigol, Nikhil, Heller, Brandon, Jeyakumar, Vimalkumar, Lantz, Bob, McKeown,
Nick, 2012. Reproducible network experiments using container-based emulation. In:
CoNEXT, pp. 253–264, https://doi.org/10.1145/2413176.2413206.

Han, Jong Hun, Mundkur, Prashanth, Rotsos, Charalampos, Antichi, Gianni, Dave, Nirav
H., Moore, Andrew William, Neumann, Peter G., 2015. Blueswitch: enabling
provably consistent configuration of network switches. In: Proc. ACM/IEEE ANCS,
pp. 17–27, https://doi.org/10.1109/ANCS.2015.7110117.

Hong, Chi-Yao, Kandula, Srikanth, Mahajan, Ratul, Zhang, Ming, Gill, Vijay, Nanduri,
Mohan, Wattenhofer, Roger, 2013. Achieving high utilization with software-driven
WAN. In: SIGCOMM, pp. 15–26.

Jain, Sushant, Kumar, Alok, Mandal, Subhasree, Ong, Joon, Poutievski, Leon, Singh,
Arjun, Venkata, Subbaiah, Wanderer, Jim, Zhou, Junlan, Zhu, Min, Zolla, Jon,
Holzle, Urs, Stuart, Stephen, Vahdat, Amin, 2013. B4: experience with a
globally-deployed software defined wan. In: SIGCOMM, pp. 3–14, https://doi.org/
10.1145/2486001.2486019.

Jin, Xin, Liu, Hongqiang Harry, Gandhi, Rohan, Kandula, Srikanth, Mahajan, Ratul,
Zhang, Ming, Rexford, Jennifer, Wattenhofer, Roger, 2014. Dynamic scheduling of
network updates. In: SIGCOMM, pp. 539–550, https://doi.org/10.1145/2619239.
2626307.

Kahn, A.B., 1962. Topological sorting of large networks. Commun. ACM 5 (11),
558–562, https://doi.org/10.1145/368996.369025.

Katta, N.P., Rexford, J., Walker, D., 2013. Incremental consistent updates, in: proc. 2nd
ACM HotSDN, pp. 49–54, https://doi.org/10.1145/2491185.2491191.

Kuzniar, Maciej, Peresini, Peter, Kostic, Dejan, 2015. What You Need to Know about
SDN Control and Data Planes. Tech. rep., EPFL-REPORT-199497, pp. 347–359.

Lam, V.T., et al., 2012. Netshare and stochastic netshare: predictable bandwidth
allocation for data centers. SIGCOMM Comput. Commun. Rev. 42 (3), 5–11, https://
doi.org/10.1145/2317307.2317309.

Liu, Hongqiang Harry, Kandula, Srikanth, Mahajan, Ratul, Zhang, Ming, Gelernter,
David, 2014. Traffic engineering with forward fault correction. In: SIGCOMM, pp.
527–538, https://doi.org/10.1145/2619239.2626314.

Liu, Hongqiang Harry, Wu, Xin, Zhang, Ming, Yuan, Lihua, Wattenhofer, Roger, Maltz,
David, 2013. zUpdate: updating data center networks with zero loss. In: SIGCOMM,
pp. 411–422, https://doi.org/10.1145/2486001.2486005.

Ludwig, Arne, Rost, Matthias, Foucard, Damien, Schmid, Stefan, 2014. Good network
updates for bad packets: waypoint enforcement beyond destination-based routing
policies. In: Proc. ACM HotNets, https://doi.org/10.1145/2670518.2673873
15:115:7.

Ludwig, Arne, Marcinkowski, Jan, Schmid, Stefan, 2015. Scheduling loop-free network
updates: it’s good to relax!. In: Proc. ACM PODC, pp. 13–22, https://doi.org/10.
1145/2767386.2767412.

Luo, S., Yu, H., Li, L., 2014. Fast incremental flow table aggregation in sdn. In: Proc.
23rd ICCCN, pp. 1–8.

Luo, L., Yu, H., Luo, S., Zhang, M., 2015. Fast lossless traffic migration for SDN updates.
In: IEEE ICC, pp. 5803–5808.

Luo, S., Yu, H., Li, L., 2015. Consistency is not easy: how to use two-phase update for
wildcard rules? IEEE Commun. Lett. 19 (3), 347–350, https://doi.org/10.1109/
LCOMM.2015.2388754.

Luo, S., Yu, H., Li, L., 2015. Practical flow table aggregation in SDN. Comput. Networks.
92, 72–88 Part 1, https://doi.org/10.1016/j.comnet.2015.09.016.

Luo, Shouxi, Yu, Hongfang, Luo, Long, Li, Lemin, 2016. Arrange your network updates
as you wish. In: 2016 IFIP Networking Conference (IFIP Networking) and
Workshops, pp. 10–18, https://doi.org/10.1109/IFIPNetworking.2016.7497214.

Luo, S., Yu, H., Vanbever, L., 2017. Swing state: consistent updates for stateful and
programmable data planes. In: Symposium on SDN Research, SOSR 17, ACM, New
York, NY, USA, pp. 115–121, https://doi.org/10.1145/3050220.3050233.

Luo, Long, Li, Zonghang, Wang, Jingyu, Yu, 2019. Simplifying flow updates in
software-defined networks using atoman. IEEE Access IEEE.

Mahajan, R., Wattenhofer, R., 2013. On consistent updates in software defined networks.
In: Proc. ACM HotNets, pp. 20:1–20:7, https://doi.org/10.1145/2535771.2535791
(College Park, Maryland).

114

https://osrg.github.io/ryu/
http://docs.mosek.com/7.1/pythonfusion/index.html
http://docs.mosek.com/7.1/pythonfusion/index.html
https://doi.org/10.1145/2829988.2790008
https://doi.org/10.1145/2829988.2790008
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref4
https://doi.org/10.1109/COMST.2018.2876749
https://doi.org/10.1109/TIT.2006.874414
https://doi.org/10.1109/TIT.2006.874414
https://doi.org/10.1145/2413176.2413206
https://doi.org/10.1109/ANCS.2015.7110117
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref9
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2619239.2626307
https://doi.org/10.1145/2619239.2626307
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2491185.2491191
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref14
https://doi.org/10.1145/2317307.2317309
https://doi.org/10.1145/2317307.2317309
https://doi.org/10.1145/2619239.2626314
https://doi.org/10.1145/2486001.2486005
https://doi.org/10.1145/2670518.2673873
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1145/2767386.2767412
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref20
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref21
https://doi.org/10.1109/LCOMM.2015.2388754
https://doi.org/10.1109/LCOMM.2015.2388754
https://doi.org/10.1016/j.comnet.2015.09.016
https://doi.org/10.1109/IFIPNetworking.2016.7497214
https://doi.org/10.1145/3050220.3050233
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref26
https://doi.org/10.1145/2535771.2535791

S. Luo et al. Journal of Network and Computer Applications 141 (2019) 104–115

Miserez, J., et al., 2015. Sdnracer: detecting concurrency violations in software-defined
networks. In: Proc. ACM SOSR, https://doi.org/10.1145/2774993.2775004
22:122:7.

Mizrahi, T., Saat, E., Moses, Y., 2015. Timed consistent network updates. In: Proc. ACM
SOSR, https://doi.org/10.1145/2774993.2775001 21:121:14.

Pathak, Abhinav, Pucha, Himabindu, Zhang, Ying, Hu, Y. Charlie, Mao, Z. Morley, 2008.
A measurement study of internet delay asymmetry. In: Proc. 9th PAM, pp. 182–191.

Raza, S., Zhu, Y., Chuah, C.-N., 2011. Graceful network state migrations. IEEE/ACM
Trans. Netw. 19 (4), 1097–1110, https://doi.org/10.1109/TNET.2010.2097604 Issn
(1063-6692).

Reitblatt, Mark, Foster, Nate, Rexford, Jennifer, Schlesinger, Cole, Walker, David, 2012.
Abstractions for network update. In: SIGCOMM, pp. 323–334, https://doi.org/10.
1145/2342356.2342427.

Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar,
G., 2010. Can the production network be the testbed? In: OSDI, pp. 1–14.

Tarjan, R., 1971. Depth-first search and linear graph algorithms. In: 12th Annual
Symposium on Switching and Automata Theory, pp. 114–121, https://doi.org/10.
1109/SWAT.1971.10 issn (0272-4847).

Wikipedia, 2015. Multi-objective optimization. [Online; accessed 23-Nov-2015] https://
en.wikipedia.org/wiki/Multi-objective_optimization.

Zheng, J., Xu, H., Chen, G., Dai, H., 2015. Minimizing transient congestion during
network update in data centers. In: Proc. 23rd ICNP.

Zheng, Jiaqi, Ma, Qiufang, Tian, Chen, Li, Bo, Dai, Haipeng, Xu, Hong, Chen, Guihai, Ni,
Qiang, 2018. Hermes: utility-aware network update in software-defined
wans. In: IEEE 26th International Conference on Network Protocols (ICNP), pp.
231–240.

Zhou, Wenxuan, Jin, Dong, Croft, Jason, Caesar, Matthew, Brighten Godfrey, P., 2015.
Enforcing customizable consistency properties in software-defined networks. In:
NSDI, pp. 73–85. https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/zhou.

Shouxi Luo received his B.S. degree in Communication Engi-
neering and Ph.D. degree in Communication and Information
System from University of Electronic Science and Technology
of China in 2011 and 2016, respectively. From Oct. 2015 to
Sep. 2016, he was an Academic Guest at the Dept. of Infor-
mation Technology and Electrical Engineering of ETH Zurich,
Switzerland. His research interests include data center net-
works and software-defined networks.

Hongfang Yu is a Professor at University of Electronic Sci-
ence and Technology of China. She received the BS degree in
electrical engineering in 1996 from Xidian University, and the
MS and PhD degrees in communication and in formation engi-
neering in 1999 and 2006 from the University of Electronic
Science and Technology of China, respectively. From 2009 to
2010, she was a visiting scholar at the Department of Com-
puter Science and Engineering, University at Buffalo (SUNY).
Her research interests include SDN/NFV, data center network,
network for AI system and network security.

Long Luo is currently working toward the PhD degree from
the University of Electronic Science and Technology of China
(UESTC). She received the BS degree in communication engi-
neering from Xian University of Technology in July 2012 and
MS degree in communication engineering from the UESTC in
July 2015. Her research interests include software-defined net-
works, traffic engineering and data-driven net working.

Lemin Li received his B.S. degree in Electrical Engineering
from Jiaotong University, Shanghai, in 1952. Then, he was
with the Dept. of Electrical Communications at Jiaotong Uni-
versity until 1956. Since 1956 he has been with Chengdu Insti-
tute of Radio Engineering (now the UESTC). During Aug. 1980
to Aug. 1982, he was a Visiting Scholar in the Dept. of Elec-
trical Engineering and Computer Science at the University of
California at San Diego. Currently, his research interests are in
the area of communication networks.

115

https://doi.org/10.1145/2774993.2775004
https://doi.org/10.1145/2774993.2775001
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref30
https://doi.org/10.1109/TNET.2010.2097604
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1145/2342356.2342427
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref33
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1109/SWAT.1971.10
https://en.wikipedia.org/wiki/Multi-objective_optimization
https://en.wikipedia.org/wiki/Multi-objective_optimization
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref36
http://refhub.elsevier.com/S1084-8045(19)30167-5/sref37
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/zhou
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/zhou

	Customizable network update planning in SDN
	1. Introduction
	2. Flexible CUP
	2.1. High-level language
	2.2. Dynamic translator
	2.2.1. Estimating time cost of traffic migration
	2.2.2. Mapping requirements to each flow

	3. Efficient solver
	3.1. Order Scheduler
	3.1.1. The MIP model
	3.1.2. Heuristic scheduler based on relaxed LP

	3.2. Rate Manager
	3.3. Tricks for scalability

	4. Discussion
	4.1. Solvability
	4.2. Multi-tenant
	4.3. Concurrent updates

	5. Evaluation
	5.1. Implementation
	5.2. Case study
	5.3. CUP flexibility
	5.4. CUP efficiency

	6. Related work
	7. Conclusion
	Acknowledgements
	Appendix A. Why CUP adopts two-phase for rule consistency
	References

