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Efficient File Dissemination in Data Center
Networks with Priority-based Adaptive Multicast
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Abstract—In today’s data center networks (DCN), cloud ap-
plications commonly disseminate files from a single source to
a group of receivers for service deployment, data replication,
software upgrade, and etc. For these group communication tasks,
recent advantages of software-defined networking (SDN) provide
bandwidth-efficient ways—they enable DCN to establish and
control a large number of explicit multicast trees on demand.
Yet, the benefits of data center multicast are severely limited,
since there does not exist a scheme that could prioritize multicast
transfers respecting the performance metrics wanted by today’s
cloud applications, such as pursuing small mean completion times
or meeting soft-time deadlines with high probability.

To this end, we propose PAM (Priority-based Adaptive Mul-
ticast), a preemptive, decentralized, and ready-deployable rate
control protocol for data center multicast. At the core, switches in
PAM explicitly control the sending rates of concurrent multicast
transfers based on their desired priorities and the available link
bandwidth. With different policies of priority generation, PAM
supports a range of scheduling goals. We not only prototype
PAM upon the emerged P4-based programmable switch with
novel approximation designs, but also evaluate its performance
with ns3-based extensive simulations. Results imply that PAM is
ready-deployable; it converges very fast, has negligible impacts
on coexisting TCP traffic, and always performs near-optimal
priority-based multicast scheduling.

Index Terms—SDN, data center multicast, flow scheduling, P4.

I. INTRODUCTION

LTHOUGH IP multicast has been proposed more than
two decades and is widely supported, it was rarely used
in data center due to its high cost on routing construction and
maintenance [[]]-[B]. Fortunately, the situation is changing: re-
cent advantages of software-defined networking (SDN) enable
data center networks (DCNs) to set up and control a large
number of explicit multicast trees in very efficient ways [2]-
[@]. For instance, through controller-assisted address partitions
and local multicast forwarding rule aggregations, X. Li and M.
Freedman scale IP multicast to support thousands of multicast
groups in data center []; likewise, by encoding the multicast
tree information in each packet’s header at the sender, while
employing customized forwarding at switches, M. Shahbaz et
al. enable DCNs to precisely control how packets would get
duplicated and routed to their receivers on demand [3].
These advantages of data center multicast indeed open
the door to achieve the widely-existing group communication
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tasks for cloud applications in more efficient ways. In modern
data centers, cloud applications commonly need to disseminate
files from a single source to groups of receivers. For instance,
to deploy a new job or microservice, the cluster manager
would distribute the corresponding docker image file(s) from
the registry to all selected slave servers [8]; to improve the
reliability of critical data, backup systems would replicate each
data chunk to multiple nodes [6]; and to perform software
or OS upgrades for a cluster, the operator would disseminate
patch files to all involved hosts. Obviously, for these tasks,
network-level multicast is the best solution as it naively saves
network bandwidth and reduces server overheads [I]-[3].

Despite the construction of multicast tree in data center has
been solved already, using multicast to achieve efficient file
disseminations in DCNss is still non-trivial. Mainly, similar to
the schedule of unicast [[Z]-[H], data center applications typi-
cally want their disseminations to complete in some prioritized
orders, for a smaller average completion time or a smaller
maximum lateness, or to meet some soft-real-time deadlines
with high probability. Accordingly, they prefer priority-based
bandwidth allocations, while the designs widely adopted by
today’s multicast protocols are far from optimal since they
pursue TCP-alike fair sharing [[U]-[I2]. In contrast to the
abundant research on the schedule of unicast transfers [[Z]-[9],
to the best of our knowledge, no prior effort has looked into
the priority-based schedule of multicast yet. Moreover, dif-
ferent from unicast flow, multicast transfers generally involve
more than one receivers and they do not employ per-packet
ACKs. Thus, all those schemes designed for prioritized unicast
scheduling [[]-[9] can not deal with multicast.

To achieve priority-based multicast for file dissemination
in modern data center, several critical challenges must be
carefully addressed. Firstly, file dissemination transfers in
data center commonly coexist with other time-sensitive traffic,
making a link’s bandwidth that multicast transfers can use
varying with time; to make efficient use of bandwidth while
adapting to traffic dynamic quickly, the proposed multicast
scheduling scheme must perform adaptive rate allocations in
RTT scales [[Z]. Secondly, current data centers might involve up
to hundreds of thousands of servers and millions of concurrent
transfers; to avoid the single point of failure and be scalable,
the proposed scheme should adopt decentralized designs [I3].
Thirdly, existing commodity switches only provide a very
limited number of priority levels and there might be only one
queue left for multicast [[], [9]; to be practical, the proposed
design could not rely on specified hardware priority queues.
Last but not least, current commodity switch does not support
complex computations in dataplane; to be efficient and ready-
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deployable, the proposed scheme must be implementable and
the introduced hardware overheads must keep small [T4], [I5].

In this paper, we address above challenges and design
PAM (Priority-based, Adaptive Multicast), a preemptive, de-
centralized, ready-deployable rate control protocol for data
center multicast. At its core, PAM lets multicast transfers carry
with scheduling headers specifying their desired priorities
during the multicast; then, based on their priority orders and
the real-time link loads, switches explicitly compute each
transfer’s sending rate for next epoch in a preemptive manner;
finally, with the feedbacks from receivers, the multicast source
knows at what rate it should send the data in next epoch.
Indeed, with this design, by generating multicast transfer’s
desired priorities according to policies like Smallest Remaining
Size First (SRSF), Earliest Deadline First (EDF), and even
First-come First-reserve (i.e., FIFO), the system can minimize
the average completion time, the number of missed deadlines,
and the maximum lateness for data center file disseminations
in decentralized manners, respectively.

To make PAM implementable on today’s commodity switch,
we not only simplify its computation of preemptive rate alloca-
tion based on observations,” but also reform the corresponding
switch operations with novel hardware-based approximation
designs (e.g., match-action table based division). To reduce
the overheads of explicit rate controls, we let transfers that
get rate zero generate probe packets adaptively, and configure
receivers to trigger feedbacks only when @) the change of rate
is larger than the configured threshold, or i) previous rate
feedbacks are likely to get lost. These optimizations make
PAM implementable on the emerged P4-based programmable
hardware [I6], [T7] and greatly reduce the scheduling over-
head of PAM without deteriorating the performance.

We prototype PAM in both P4 and ns-3. Through extensive
simulations, we find that PAM is flexible and efficient to
achieve priority-based multicast. Even though switches make
preemptive bandwidth allocations only for the most critical
transfers, PAM is near-optimal, providing strong benefits over
existing data center multicast mechanisms. For instance, on
minimizing the average transfer completion times (or missed
deadlines, respectively), the gap between PAM and its op-
timal/ideal variant is less than 3.7% (2.1%, respectively),
outperforming the default fair sharing scheme up to 5.7x
(75%, respectively). Moreover, PAM has negligible impacts
on the completion of coexisting TCP flow and always reacts
to network dynamic in RTTs.

In summary, the key contributions of this paper are:

o We design and implement PAM, a distributed, priority-
based, preemptive scheduling layer for data center mul-
ticast, which can approximate a range of scheduling dis-
ciplines while reacting to network dynamic very quickly.

'Ideally, PAM switch should allocate each link’s capacity to active multicast
transfers in descending of their priorities. However, such a procedure is too
complex to run at line-rate, thus unimplementable in switch data plane [I4],
[I5]. Instead, motived by the observation that, under priority-based scheduling,
the most critical transfer generally occupies almost the entire bandwidth of
bottleneck links [H], PAM performs preemptive allocation only for the most
critical transfer, and lets others share the remaining bandwidth fairly. Tests in
§M confirm that this simplification has little impact on performance.

o We use novel hardware-based approximation designs to
make PAM implementable on emerged P4-based pro-
grammable switches, enabling the schedule computation
of PAM switch to run at line-rate.

e We build on PAM to implement multicast scheduling dis-
ciplines that minimize the average multicast completion
times and missed deadlines. Extensive simulations show
that PAM is near-optimal, outperforming the default fair
sharing scheme up to 5.7x and 75%, respectively.

The rest of the paper is organized as follows. Section O
first introduces the theory and design challenges of data
center multicast scheduling, then overviews the design of
PAM. Section M presents PAM in detail and Section M
implements it upon the emerged programmable hardware with
approximations. After that, extensive simulations are presented
in Section M. Finally, related work and conclusions follow in
Section M and Section T, respectively.

II. PROBLEM ANALYSIS

In this section, we first introduce the model and optimal
theory of file dissemination oriented multicast (§I=Al), then
analyze the practical limits and design challenges for achieving
optimized multicast in current data center networks (SI=RI),
and finally overview our proposed solution (§II=0).

A. Problem in Theory

For file dissemination tasks, once their multicast trees are
established, the remaining task is to dynamically adjust their
multicast rates respecting the scheduling goal and the network
workloads without overloading links. Consider that F is the
set of file dissemination tasks, in which task 7 (i.e., transfer f;)
is to disseminate a file with volume v; from the source node to
a group of receivers via tree 7;. Let st; and ct; be this transfer’s
start/appear date and completion duration, respectively. In
some cases, the transfer might also have an expired time et;,
implying the duration time by which the dissemination should
expire. We further let 7;(¢) be the sending rate of f; at time ¢,
which is determined by the slowest receiver, and let C,, ,(¢)
be the available bandwidth for multicast at time ¢ on link
(u,v). Then, in theory, the problem of minimizing their total
completion times and missed deadlines can be formulated as
minimizing >, o~ ct; and 3, . - [ct; > et;], respectively,
as Program () shows.

minimize Z ct; (or [et; > et;], respectively) (la)
i fi €F

stitet;
/ ’I’i(t)dt =uv,Vfi € F
st;

> rilt) < Cunlt), V4, Y(u,0)  (1o)
i:(u,w)ET;

subject to (1b)

ri(t) > 0,ct; > 0,Y(i,t) (1d)

The reader might notice that, even though the route of
multicast is much more complex than that of unicast, they
do share the same mathematical model on the optimization of
bandwidth allocations. Indeed, over the last decade, a lot of


https://doi.org/10.1109/JSAC.2020.2986616

Published in TEEE Tonrnal_on Selected Areas in_ Communicafiond ©2020 IEEE

transport protocols and enhancements have been proposed to
optimize the average (or total) flow completion time [Z]-[Y],
[CR]-[20], missed deadlines [[Z], [R], [2ZO]-[2Z], or a mixed of
these two targets [R], [Z3] for intra-datacenter unicast transfers.
They show that finding the optimal solutions is NP-hard
in theory; however, near-optimal results can be obtained by
heuristically allocating bandwidth to transfers following the
policy of SRSF or EDF [[]-[9], [20], [23].

Thus, same to the schedule of unicast transfers, to achieve
efficient file disseminations for cloud applications, DCNs need
a transport protocol that supports priority-based multicast.

B. Design Challenges

To realize prioritized multicast in DCNs, many design
challenges must be addressed.

Dynamic of available bandwidth. Generally, compared with
flows triggered by online applications such as web search, key-
value stores, and data processing, file dissemination transfers
are much less time-sensitive, acting as background traffic. Due
to the highly dynamic nature of intra-datacenter traffic [24]-
[2€], the bandwidth that file disseminations can use varies
with time. Thus, the proposed scheme must quickly adapt to
bandwidth dynamic without hurting other critical flows.

Decentralized scheduling. Intuitively, DCN can enable mul-
ticast prioritization with a central scheduler. However, cen-
tralized scheduling ¢) suffers from a single point of failure,
1) introduces non-trivial scheduling latency which results in
bandwidth under-utilization, and 7¢) might impact other traffic
as it is agnostic on burst link congestion. Hence, to make
efficient use of link capacities and react to bandwidth dynamic
quickly, decentralized designs are preferred.

One queue available. By letting each multicast packet carry a
unique priority value according to the task’s remaining transfer
size and deadline [R], one could approximate SRSF and EDF
scheduling distributively. However, modern switch hardware
supports only 2 ~ 8 priority queues per port, and even worse,
many of them might be reserved for other purposes [9], [T9],
or already occupied by other unicast protocols [R], [I3], [T9],
[77], [28]. Therefore, there is only one queue left for multicast
scheduling and this queue might also be used by other traffic.

Line-rate processing. One possible way to implement decen-
tralized multicast prioritization is to let bottleneck switches
compute then allocate bandwidth to concurrent transfers ex-
plicitly in the descending order of their priorities like PDQ [[7].
However, to compute each transfer’s new rate, PDQ switches
must loop through the list of all active flows for each packet’s
processing. Such operations are time-consuming and expen-
sive, thus could not run at line rate and are hard to implement
on today’s switch hardware [I5]. To be practical and ready-
deployable, the proposed scheme must be simple enough to
run at line rate and work upon today’s commercial hardware.

Low feedback overheads. To converge to network dynamic
quickly, the proposed protocol must provide a time-efficient
mechanism to notify each transfer sender with the latest
path condition (e.g., level of congestion [I¥], available band-
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Fig. 1: PAM Overview

width [[Z]). For unicast transfers like TCP, this is easy to imple-
ment since the feedback can be piggybacked on ACKs. How-
ever, this design is not applicable to multicast—a multicast
transfer generally involves more than one receiver and employs
negative-ACK (NACK) to retransmit lost packets [29], [B0].
Thus, to avoid serious link overheads, the feedback mechanism
used for multicast scheduling must be light-weighted.

To support priority-based multicast scheduling in DCNs,
we propose PAM, a preemptive, decentralized, adaptive rate
control protocol, for multicast transfers. Similar to prior rate
based protocols designed for unicast transfers [[Z], [3T], PAM
explicitly controls each transfer’s multicast rate based on the
values calculated by switches.

C. Solution Overview

The core idea of PAM is as Figure [ shows. Basically, each
multicast data packet carries a scheduling header, made of the
transfer’s desired priority (p), current sending rate (r), and
the possible next sending rate for negotiation (b), along the
journey. Based on the desired priority as well as the link’s
available bandwidth, each switch computes the maximum
bandwidth it can allocate to this transfer and update b in the
packet header. When this packet reaches receivers, feedback
is triggered to inform the sender with the new sending rate.
Then, the sender updates its multicast rate accordingly. If the
sending rate is zero, instead of data packets, the sender sends
probe packets involving only scheduling headers at predefined
intervals to get rate information from the switches.

Such a design enables PAM to perform distributed schedul-
ing without the need of priority queues. We further use three
novel designs to address the remaining challenges listed in
§I=B, which make PAM distinguished from the prior art.
Firstly, PAM receivers generate rate feedbacks only when they
have to. This design avoids unnecessary feedbacks, making the
introduced overheads low. Secondly, PAM switches allocate
bandwidth to multicast transfers based on the measured load of
non-multicast traffic and real-time queue occupies. With this,
multicast transfers can be aware of burst congestions and is
able to make efficient use of a link’s remaining bandwidth im-
mediately without hurting other traffic’s performance. Thirdly,
on each egress port/link, PAM switch performs preemptive
bandwidth allocations only for the most critical multicast
transfer; all other transfers then share the remaining bandwidth
fairly. Such a design is inspired by the observation that, under
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priority-based scheduling, the most critical transfer generally
occupies almost the entire bandwidth of bottleneck links [J].
Based on this observation, we greatly simplify the logic that
each PAM switch performs for multicast scheduling, and
further make the corresponding design runnable at line rate and
implementable on emerged P4-based programmable dataplane.

In the following, we first introduce the protocol details in
§IM then present how the switch logic can be implemented
with the P4-based switch dataplane in §IV.

III. PROTOCOL DESIGN

As Figure [ sketches, PAM is a rate/congestion control pro-
tocol for data center multicast. During past decades, numerous
multicast protocols such as PGM [2Y], NORM [B{], have
been proposed for reliable multicast. Similar to them, PAM
employs SYN packets for multicast transfer initializations,
FIN packets for terminations, and receiver-triggered NACKSs
for lost packet retransmission. Moreover, PAM senders and
receivers also maintain standard data structures for reliable
transmission, such as sequence numbers, estimated round-trip
times and states (e.g., timer) for in-flight packets. In the rest,
we focus on the design of congestion control algorithm and
describe the corresponding designs implemented at the PAM
sender (§II=Al), receiver (§HI=H), and switch (§II=0) in detail.

A. PAM Sender

For each multicast transfer f;, the PAM sender maintains
several state variables for rate control: the transfer’s current
sending rate (r;, initialized to zero), remaining size (s;), flow
deadline (d;, which is optional), desired priority (p;), inter-
probing time multiplexer (I;), the set of receiver IDs (D;),
the current measured RTT of each receiver (RTT",x € D;)
along with their maximum value (RT'T; = max,ecp, RTT}),
and the sending rate for next epoch reported by each receiver
b7,z € D;, initialized to zero).

For active dissemination tasks, the PAM sender sends trans-
fer f;’s data packets at rate r; = min,ep, b7. If r; is zero, it
sends a probe containing only the scheduling header without
data content every I; RTTs to get the available bandwidth
of the multicast tree. To reduce the bandwidth overhead of
probing, I; is set based on the transfer’s remaining size. When
packet departures, the sender attaches a scheduling header
containing the transfer’s desired priority value p;, current
sending rate r;, and next sending rate value b; to the packet
header. b; is initialized as the maximal sending rate the sender
can allocate to this multicast transfer, which is the NIC rate
for simplification.2

Once the packet is sent out successfully, the PAM sender up-
dates the transfer’s remaining size and corresponding desired
priority, respectively. Thanks to the power of priority-based
scheduling [[7], [8], by generating multicast transfers’ desired
priorities according to different formulates (see Table ), PAM
is able to support various scheduling goals such as minimizing
the average completion time, minimizing the number of missed
deadlines, and minimizing the maximum lateness, for the
schedule of file disseminations.

2Indeed, to handle the case of edge bottleneck, each sender’s NIC could
runs the same rate control logic to allocate the bandwidth on edge links.

Algorithm 1 PAM receiver operation

Inputs: (p;,r;,b;): the received packet’s schedule header;
b*: the maximal rate that the receiver can process and
receive; bﬁ»‘”t: this receiver’s available mulitcast rate for
this packet’s transfer measured in last turn.
Outputs: updated bl2*%; send a rate feedback or not
b; < min(b;, b*)
if there is a NACK to send then

béast — bz

attach b; to the NACK, and send it back
else if |b; — bl*5t| > ~ - blest or rand() < 7; then

bliast — bi

generate a rate feedback packet for b; and sent it back
after a random delay

NN RN

On getting a rate feedback from receiver z, the PAM sender
updates b7, the available bandwidth of the multicast path to
this receiver, with the echoed value, and updates the multicast
rate r; with min,ep, b7. At the same time, the cached RTT
to this receiver x (i.e., RTT}"), and the current maximum
measured RTT among all receivers (i.e., RTT;), would get
updated based on the packet’s arrival time as well.

When a multicast transfer completes, or it turns out that
its deadline can not be met even if data packets are sent at
NIC rate, the PAM sender would terminate it and multicast a
FIN to its receivers. On receiving this FIN, switches along
the multicast tree release the bandwidth allocated to this
transfer immediately. As we will show latter, PAM switches
can tolerate the loss of FIN packets by design (see §IV=Al).

B. PAM Receiver

The role of PAM receiver in congestion control is to echo
the newest bandwidth that this transfer could get along the
path back to its sender with feedback messages. Recall that a
multicast transfer generally involves more than one receiver.
The sender, as well as the links in the reversed path, would get
overloaded if all the receiver send feedback for every received
packet (like TCP). To avoid this, PAM receivers generate
feedback messages smartly following Algorithm 0. Basically,
if there happens to be a NACK to send, the PAM receiver
directly piggybacks the available bandwidth value b; on it;
otherwise, the PAM receiver generates a rate feedback packet
1) definitely when the change of available bandwidth is greater
than the tunable threshold ~, or i) with the probability of 7;
to tolerate the loss of feedback. Thus, the expected feedback
overhead is significantly reduced by the factor of 7;. To
make the feedback overheads of large scale multicast groups
controllable, in practice, the 7; of transfer ¢ is recommended be
to set according to their group sizes: Igi\‘ As well, to prevent
the sender from being flooded by the new rate messages
triggered by the same bottleneck link, multicast receivers

3Similar to PDQ’s Early Start [@], if the transfer will complete in the next
RTT, the sender would emit a special FIN early and tag remaining data packets
with the FIN_STAGE flag, such that other transfers could take its released
bandwidth to achieve seamless flow switching. To highlight the performance
of PAM we do not implement this optimization in ns-3 simulation.
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TABLE I: The policy of how desired priorities are generated defines the scheduling goal

# | Scheduling goal | Policy of bandwidth allocation | Value of desired priority

1 ‘ Minimize average completion times ‘ Smallest remaining size first (SRSF) ‘ Transfer’s remaining size X receiver number

2 | Minimize missed deadlines | Earliest deadline first (EDF) | Transfer’s remaining time to deadline

3 \ Minimize maximum lateness \ First come first reserve (FIFO) \ Radix complement of the transfer’s started time
4 | Fair sharing | Fair sharing on bottleneck links (FS) | The value of the lowest priority

5 \ Predefined priories \ In customized priority order \ Predefined priority value

would add random delays within [0, RT'T;] before sending the
feedback. In our simulation, v and 7, are set to 0.05 and 0.01
by default.

Besides the notification of the corresponding path’s avail-
able bandwidth, new rate messages in PAM could also work
for flow controls. In case the rate of multicasting is too fast for
the receiver to receive and process reliably, it could generate
a conservative new rate to slow the sender down.

C. PAM Switch

PAM switches achieve priority-based bandwidth allocation
with explicit rate controls. However, today’s switch dataplane
only provides a limited set of primitive operations without
the support of complex computations such as sorting and
list traversal. To be implementable on current programmable
switches, we employ a simplified yet efficient design: for
each link, PAM switch heuristically ) lets the most critical
multicast transfer (i.e., the one with the lowest desired priority
value) occupy the available bandwidth as much as possible,
and then ¢) allocates the remaining bandwidth to all other
active multicast transfers fairly. Since the most critical transfer
generally occupies almost the entire bandwidth of bottleneck
links, for the remaining link capacity, there is little difference
between prioritized allocation and fair sharing. Indeed, for the
schedule of average transfer completion time minimization and
missed deadline minimization, our extensive simulations imply
that their performance gaps are negligible (§M).

To achieve the above design, PAM switch maintains four
types of states for each egress port/link: i) the most critical
transfer through it, i4) the available capacity for multicast
transfer, i7i) the total traffic load, and iv) the number of
currently active multicast transfers. Based on these states, it
allocates bandwidth to multicast transfers according to their
priorities following Algorithm 0.

Let F' and N be the set and the number of currently active
multicast transfers on this link, k, pg, and r; be the transfer
ID, priority value, and current sending rate of the most critical
transfer through this link, respectively. Then, on getting a
FIN packet (i.e., T; is FIN), which means this transfer has
completed, the PAM switch would directly remove it from
the active transfer set F' and update N (Line B). Moreover,
provided that the transfer to be removed happens to be the
most critical one, PAM switch would eliminate its information
cached on the switch at the same time (Line BH). On getting
a normal multicast packet (i.e., T; is MULTICAST_DATA),
PAM switch first adds it to the active transfer set and updates
the corresponding N if it is not in it (Line B). If this packet’s

Algorithm 2 PAM switch operation

Inputs: 7, (p;, 74, b;), and T;: the received packet’s transfer
ID, schedule header, and packet type;

k, pr, and rg: the transfer ID, priority value, and sending
rate of the most critical transfer through this link;

F and N: the set and the number of currently active
multicast transfers through this link/port;

C(t): the current available bandwidth for multicast;
Output: updated scheduling header values (p;,r;, ;)

1: if T; €{FIN, PROBE} then

2: if i € F then

3: F+« F\{i}; N~ N-1

4: if £ =i then

5: k(—O;TkFO;pk%inf

6: else if T; is MULTICAST_DATA then

7: if i ¢ F then

8: F+—FU{i}; N~ N+1

9: if T; €¢{PROBE, MULTICAST_DATA} then
10: if p; <pr || ¢ =k then

11: b; +— min(bi, C(t))

12: if T; is MULTICAST_DATA then

13: k< i, 1L < 755 pE < Di

14: else if T; is MULTICAST_DATA then
15: b; < min(b;, max(0,C(t) — rg)/(N — 1))
16: else if 7T is PROBE then

17: b; < min(b;, max(0,C(t) —ri)/N)

18 b; « min(b;, O)
19: return (p;,7;,b;)

> C is the link’s capacity.

transfer is the most critical one (Line [d), b;, the transfer’s
new sending rate after a RTT, is updated according to the prior
bottleneck and the available bandwidth on this link (Line @ITI).
Also, the most critical (active) transfer’s states cached in
the switch would get updated correspondingly (Line @3).
Otherwise, the transfer would share the remaining bandwidth
(i.e., C(t) —ry) with all other N —1 transfers fairly (Line [3).

Recall that, if the sending rate of a multicast transfer is zero,
the corresponding PAM sender would periodically send probe
packets to ¢) release the allocated bandwidth on each link,
and ¢7) estimate the available bandwidth that it can use (after
a RTT). To release the allocated bandwidth of paused transfer,
PAM switch first processes the probe packets as FINs (Line D-
B). As for the estimation of available bandwidth, the process
of the probe is similar to that of normal multicast packets.
However, since the probe packet’s transfer is inactive and has
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been removed from the active flow set F', probe packets would
not cause cache updates (i.e., Line [3), even if it would be the
most critical transfer. By the same reason, if it belongs to
the case of fair sharing, the number of transfers sharing the
remaining C(t) — ry, with it is N rather than N — 1 (Line [7).

Link capacity estimation. In a network, the sending rate
of a transfer is determined by the available bandwidth of
its bottleneck link, while different transfers generally involve
various bottlenecks. On each link, the bandwidth left by other
traffic and the most critical transfer is split “equivalently”
to the remaining active transfers. When transfers involve
different bottlenecks, such a design might cause a waste of link
utilization. As an example, consider Figure I, in which there
are three links named L1, L2, and L3. After allocating to other
traffic (e.g., TCP) and their most critical transfers (which are
omitted for simplification), each link has 1 unit of bandwidth
left. Then {fa, fB, fc, fp} would use these left capacities
to complete their tasks. Obviously, the bottleneck link of f4
and fp are L3 and L1, respectively; f4 and fp would get
the sending rate of min(1,4) = 1 and min(3,3) = %
according to Algorithm [ Thus, the load on bottleneck link
L3is £+% = 2, resulting in under-utilization. Such a problem
is confirmed in ns-3 simulations as Figure B4 shows, in which
each link has the remaining bandwidth of 300Mbps but f4 and
fp are failed to make efficient use of them all, resulting in a
waste of 50Mbps. On the other hand, a burst of new transfers
could cause the switch to temporarily allocate more bandwidth
than its capacity, resulting in queuing buildup. Moreover, as
background traffic, the bandwidth that multicast transfers can
use would vary with the load of non-multicast traffic.

To account for all these cases, PAM switch borrows from
[2T] and adjusts a link’s capacity for multicast based on the
observed link utilization and queuing occupancy in every 2
RTTs as following:

C(t) < a(C— B(t) - Bmax(0,q() —q) (@)
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1 2m) 4
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Here, C is the link’s capacity; B(t) and B,,(t) are the
observed loads of non-multicast and multicast traffic respec-
tively; ¢(t) is the instantaneous queue size; g is the desired
maximum queue size; and 7,, 3 are chosen for stability and
performance.? As the ns-3 simulation results in Figure BH
show, such a design enables PAM switches to make work-
conversing bandwidth allocations gracefully.

FIN loss. In rare cases, a multicast transfer’s FIN might get
lost; or the routing of a multicast tree might get changed
because of fail-over. To guarantee that the link capacities
allocated to such terminated or rerouted transfers could get
released correctly, PAM switch also maintains an idle timeout
for each multicast transfer. Once a transfer has received no
packets in the given number of seconds, the switch removes
it from the active transfer set and updates the corresponding
states (see §IV=Al for data-plane implementation details).

IV. PROTOTYPE IN P4

As the previous section has shown, with the cooperation of
PAM sender, switch, and receivers, the network can perform
priority-based explicit rate controls for multicast. In practice,
the designs of PAM sender and receiver are easy to implement
in software. However, PAM switch requires non-trivial modi-
fications to the forwarding hardware. In this section, we show
how to implement PAM switch’s logic on emerged P4-based
programmable switches with approximation designs.

Basically, as Figure B illustrates, the P4 language [I6]
along with recent programmable chips [[/], enables network
engineers to write data-plane programs to specify how packets
are parsed, matched, processed, and forwarded on switches,
enabling customized protocols. To support PAM, we define a
new type of header upon UDP for rate control and implement

“Indeed, go and $ control the target queue occupy and the speed PAM
react to queue buildups, respectively. Motivated by [Z], [E], [2Z1], go can be

set to one BDP, 7, can be set to 0.02, and 3 can be set to ﬁ.
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Fig. 5: PAM header example

the function of Algorithm B at the egress switch pipeline.
Although most of them (e.g., selecting the most critical
multicast transfer, updating each transfer’s next sending rate
based on the available bandwidth on this link) are simple
and straightforward to implement in P4, there are still some
types of data structures (such as floating value, collection)
and arithmetic operators (e.g., multiplication, division) that
can not be directly implemented in dataplane because of the
line-rate processing requirements of switch dataplane [I4],
[S]. In the following, we first describe the novel designs
and approximate techniques that we employ for Algorithm I
(§IN=Al), then analyze its overheads (§IV=R)), and demonstrate
its effectiveness via case studies (SIN=CJ).

A. Key Designs

Identification of multicast traffic. Figure B shows the cus-
tomized header that PAM switch employs for bandwidth
allocation. In our prototype implementation, PAM header
occupies 10 bytes, which, along with the multicast data, is
encapsulated in UDP payload. To distinguish PAM traffic with
the other, once a UDP’s payload size is equal or larger than 10
bytes, the switch’s parser tries to explain it as a PAM packet
and this PAM header would take effect in egress processing
only when it does match with some multicast rules at the
ingress. Basically, each PAM transfer can be identified by
the 4-tuple of its source IP address, source UDP port, target
IP address, and target UDP port. With such a design, PAM
switch can recognize concurrent transfers and control their
sending rates separately.

Count of active transfer. As Algorithm @ shows, for many
multicast transfers, the bandwidth they can obtain on a link
partly depends on the number of active multicast transfers
through the same link. To precisely count the number of active
transfers and react to transfer join (i.e., MULTICAST_DATA),
pause (i.e., PROBE), and leave (e.g., FIN), PAM switch should
maintain which transfers are active. In practice, P4 does not
support the data structure of collection; thus, we employ
bloom filters to approximate [37]. Basically, we use a bit array
(i.e., P4 register) to store transfer’s appearance and hash each
multicast transfer to k array locations. On getting a multicast
packet, if all the bits stored in its k locations are ones, it means
this transfer has been counted already; otherwise not. By using
bloom filter, PAM switch increases, keeps, or decreases the
number of currently active transfers based on the received
packet’s type. Basically, each egress port should have a distinct

5 According to the workflow of PAM protocol, there are five kinds of PAM
packets: normal data packet (i.e., MULTICAST_DATA), the last few data
packet (i.e., FIN_STAGE), PROBE, ACK, and FIN.
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Fig. 7: The maximum truncation error of match-action approx-
imated division rapidly decreases when more right shifts are
used; 4 shifts are able to make the error under 6.1%.

counter. To make compact use of data-plane memories, we let
egress ports residing in the same pipeline [B3] share bloom
filters by taking each packet’s egress port index as inputs for
index hashing as well.

Toleration of lost FIN. It should be noted that, in some cases,
FIN packets might get lost (or absent in case of rerouting) or
arrive at a switch prior to the last several data packets because
of packet reordering. Then, the measured count of active
transfer might be larger than the correct value, or even worse,
the bandwidth allocated to the most critical transfer can not get
reclaimed because the switch would not see its FIN, resulting
in low bandwidth utilization. To address this, the PAM switch
1) records the most critical transfer’s last reference time in a
register to detect then remove the expired critical transfer, and
i1) measures the number of active multicast transfers with two
suites of bit arrays and counters named A and B as Figure B
illustrates. At any time, either A or B is active. Then, a control
plane program periodically swaps the activeness of A and
B every T,,pirea seconds, and resets the counter and all bit
array values to zeros, once their corresponding suite becomes
inactive. On getting a PAM packet, A and B update their own
bit arrays and counters independently; and the switch uses the
active one’s counter value for bandwidth allocation. Following
this, PAM switch is robust to remove expired transfer’s states.

Division in data plane. On each link, multicast transfers
except the most critical one share the remaining bandwidth
C(t) — ri equally. However, division is not supported by P4
data plane. It is oblivious that, the division of two positive
integers can be transformed into the sum of several right
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shifts. As an example, given a positive integer M, we have
B =(M>>3), 8 =(M>>4)+(M>>6)+ (M >>
10) + - - -, where >> is the operator of right shift supported
by P4-compatible hardware. Motivated by this observation,
PAM switch approximates division operations with match-
action table lookups, in which the divisor acts as the matching
key and the action is to sum the dividend’s right shifts.
To guarantee line-rate packet processing, the number of bit
shifts the data-plane action can perform should be limited,
which would impact the quotient’s precision in turn. Figure [
shows the maximal truncation error decreases greatly with
the number of used right shifts. For example, the maximum
errors of approximate division with 3, 4, and 5 right shifts
are less than 12.4%, 6.1%, and 3%, respectively. Thus, the
approximation of 4 right shifts is fair enough for many cases.
As for the design of matching types, current hardware switches
are easy to support a large number of exact matching rules.
In consideration of there might be only tens to hundreds of
active multicast transfers (unlike mice flows), we use an exact
match-action table to approximate division precisely in our
prototype implementation.?

Measurement of link load. Recall that (see Equation (D))
a link’s capacity for multicast is based on the observed link
utilization, which is determined by both the load of non-
multicast traffic (i.e., B(t)) and multicast traffic (i.e., B,,(t))
in turn. To achieve these measurements, PAM switch directly
employs the Discounting Rate Estimator (DRE) proposed by
Conga [B4]. Basically, DRE maintains a register, say X, for
each type of traffic and increments X by the packet size it sent
over the link/port. At the same time, a control plane program
located at the switch decrements X with vX periodically
(every Tyre): X + X —~X, where « is a multiplicative factor
between 0 and 1. Then, based on the measured B(t), By, (t),
and queue instance length ¢(t), the local control program
updates the link’s C'(¢) according to Equation (D).

B. Analysis of Hardware Overheads

PAM leverages a match-action table with exact matchings
to achieve division computations for multicast packets, and a
couple of registers to cache the information of the current most
critical multicast transfer, and the show-up and the number of
active multicast transfers for each egress.

Generally, the size of the division table should not be less
than the maximum number of active multicast transfers going
through the same egress. According to PAM’s preemptive
designs, such a value would be quite small as the most
critical transfer would occupy almost whole the available
bandwidth, making other multicast transfers paused (i.e., in-
active). Moreover, PAM is designed to achieve efficient file
dissemination among servers; it is easy to limit the maximum
number of concurrent multicast transfers among switches from
the application controller. In addition, recent advantages of
reconfigurable switches have shown that modern hardware can
support a quite large number of exact match-action entries in a

SIn practice, exact match uses much fewer memories than LPM and ternary.
If the number of active multicasts is quite huge, one can replace this exact
matching-based division with ternary-based matchings on a log table [T4].

memory-efficient way [35], [B&]. Hence the hardware overhead
introduced by PAM’s division table is trivial and controllable.

Regarding the occupancy of register, for each egress port,
PAM switch needs i) four register cells to record the ID,
priority, last packet time, and current sending rate of the
selected most critical multicast transfer, i) two register cells
to measure the load of non-multicast and multicast traffic, and
141) two suites of registers, each of which contains a transfer
counter and a bloom filter, to count the number of active
multicast transfer in a ping-pong manner. A straightforward
design is to let each egress use distinct registers for bloom
filter. Suppose that the switch consists ¢ egress ports, the
average number of active multicast transfer is n, and the bloom
filter involves k hash functions and a bit array with m cells.
Then, there are 2c bloom filters, taking 2mc bits of registers in
total, and the probability of a false positive is (1—6_% )F [32].
To make more efficient use of register memories for bloom
filter, we let all egress port belonging to the same pipeline
share the same bit array by taking the egress port’s index into
account when computing locations. Say that the average fanout
of multicast is ¢*, where ¢* < c¢. Then, with the same size of
registers, the probability of a false positive is improved to
(1 — e = )* now, which is always less than (1 — e~ ).
Recall that, the number of concurrent multicast transfers are
limited in practice, say 1000 for instance; then, just with 2MB
of on-chip memories and 3 distinct hash functions, PAM could
make the false positive probability of multicast transfers who
have the average fanout of 20 outputs on the PAM switch, less
than 4.2 x 10~".

C. Case Study

To evaluate the effectiveness of PAM, we feed the bmv2
simple switch [I6], [B7] with our P4 program and conduct
a toy example consisting of three file dissemination tasks
on Mininet as Figure Bd shows. Different from production-
grade software switch like Open vSwitch, the bmv2 simple
switch is designed as a software tool for P4 development
and has very poor performance in terms of throughput and
latency [37]. Moreover, in the Mininet environment, all virtual
hosts and the bmv2 switch use the shared CPU for simulation.
Thus, to avoid resource competition between them and to
highlight the results, we scale each task’s file sizes down
to 120KB, 200KB, 50KB, respectively, and set each link’s
bandwidth to 500 Kbps. Limited by the performance of bmv2
simple switch, the One-Way Delay (OWD) between hosts is
not very consistent, which is about several microseconds. We
let paused multicast transfers send probes every 0.1 seconds.
These three multicast tasks, f4, fB, and fc, start at time 1s,
0Os, and 2s, and would expire at 4s, 6s, and 5s, respectively. To
highlight the comparison, auto-termination of expired transfer
is disabled. PAM senders generate desired priorities according
to the policies listed in Table I. On receiving multicast packets,
the PAM switch allocates bandwidth following Algorithm D.

Figure BH to B4 illustrate the corresponding results of how
their sending rates change. It is obvious that, PAM is flexible
to achieve various scheduling goals. During the scheduling,
once the number of active requests changes, PAM transfers
can converge to the new allocations immediately (in one RTT).
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Fig. 8: PAM is flexible to schedule multicast transfers respect-
ing various policies; note that, auto-termination of expired flow
is disabled here.

For example, Figure KB shows that the completion times
of these three transfers under the setting of fair sharing are
1.79s, 4.16s, and 5.57s, respectively, resulting in the average of
3.84s. As fair sharing is the fundamental bandwidth allocation
principle of TCP, thus, such a result yields a lower bound of
all the widely existing single-rate multicast schemes that adopt
slowly TCP-alike congestion controls (e.g., PGMCC [I0],
ERMCC [1T], MCTCP [I2]). As a comparison, when generat-
ing desired priorities with the SRSF policy, multicast transfers
occupy the available bandwidth on each link respecting to their
remaining sizes, resulting in an optimized average completion
time. At the very beginning, fp takes all the available band-
width for multicast; then, f4, who has the smaller remaining
size, seizes the bandwidth of link S; — Hgs, thus pausing
fB, at time 1s. Again, fo starts at time 2s and takes over
the bandwidth of link S; — Hy; f4 hangs and the released
bandwidth enables fp to continue its multicast, immediately.
Once fo completes, f4 becomes the one with the smaller
remaining size on all links; it occupies the bandwidth on link
S1 — Hs and S1 — H, and resumes its multicast. Finally, all
these transfers get finished at 0.95s, 3.15s, 5.72s, respectively;
their average value is 3.27s, yielding the improvement of 15%
over the default—fair sharing.

As another example, when deadlines are enabled, these
transfers would expire at 4s, 6s, and 5s. Only the earliest
deadline first scheduling (EDF) ensures that they all meet
their deadlines: f4 misses its deadline under all other schedul-

ings. Besides fair sharing, SRSF, and EDF, we also change
the policy to FIFO for minimizing the transfers’ maximum
lateness and rerun the tests. Results in Figure B confirm
that the corresponding scheduling goal is achieved: transfers’
maximum lateness is reduced to 4.65s, better than these (5.57s,
5.72s, 5.62s) achieved by all other scheduling schemes.

V. PERFORMANCE EVALUATION

In this section, we use ns-3 simulations to evaluate the

performance of PAM and find that:

o PAM is near-optimal; on minimizing the average trans-
fer completions and missed deadlines, the performance
gaps between PAM and the optimal schedule that make
preemptive priority-based bandwidth allocation for all
transfers, are less than 3.7% and 2.1%, outperforming the
default fair sharing up to 5.7x and 75%, respectively.

e PAM has low overhead and is TCP-friendly. The op-
timization design PAM employs could eliminate most
of the rate feedbacks. And with proper configurations,
PAM makes efficient use of the remaining bandwidth left
by TCP while letting coexist TCP flows feel as PAM
transfers did not exist.

Simulation setup. To evaluate PAM’s performance, we con-
sider two typical multicast file dissemination scenarios namely
Data Replication and Service Deployment in simulation. These
two types of multicast tasks abstract out the common com-
munication pattern of the data replication process of today’s
distributed file systems [B], and the file dissemination process
of service deployment (and upgrade), respectively.

Basically, in Data Replication, each server in the cluster
are continuing to receive some data chunks/files; to improve
reliability, these files are replicated to R randomly selected
servers with multicast. Here, we denote the receiver number
of a multicast (i.e., R) as its fanout and set the typical value
to 3. As for Service Deployment, a fixed subset of hosts in
the cluster would work as the software repository; they need
to efficiently disseminate the same software files (e.g., docker
images) to a random group of nodes to deploy or upgrade
distributed services. Similar to Data Replication, the number
of receiver nodes are defined as the multicast fanout; we
assume it follows an exponential distribution with the mean of
3 by default. Regarding the file/data sizes, they are synthesized
based on the transfer size distribution measured from a (web
search) data center [R]. Since, PAM is not designed for the
dissemination of tiny file, for a network whose edge link
has the capacity of ¢ x 1Gbps, we scale the file sizes to
¢ x [1,100]MB, accordingly. In tests, we vary ¢ from 0.5 to
16 to study the robustness of PAM. For a network involving
N hosts, we synthesize 7N multicast tasks for tests. In line
with prior study [B], [3], these tasks are assumed to arrive in
Poisson and the arrival rate is varied to obtain a desired level
of network load. We use 0.9 as the default level of network
load. For each parameter setting, we run 10 instances.

To highlight the schedule of multicast rates and eliminate
the effects of routing, we abstract the cluster network as a big

7Ideally, these three values should be equal; however, they are not because
the performance of bmv2 is not very stable.
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switch following prior study [E], [BR]. Indeed, this is a rea-
sonable abstraction of today’s production data center network
architectures since non-blocking Clos typologies are widely
adopted and congestion generally occurs at the edge [¥], [T3].
By default, the cluster involves 48 servers and the capacity and
latency of each edge link are 2Gbps and 10us, respectively.
In the following, we first investigate the performance of
PAM under various network loads, multicast fanouts, cluster
scales, and link capacities in §IV=Al, then examine its feedback
overheads, impacts on coexisting TCP traffic, and convergence
speed in §V=B. As for the performance metrics, similar to
prior work [[], [B], we mainly consider i) the Average of
their normalized Transfer Completion Times (ATCT)® for the
minimization of average completion time, and i) the propor-
tion of transfers that miss their deadlines for the minimization
of missed deadlines. Let X4 and Xp be the average of
normalized transfer completion times under the schedule of
scheme A and B, respectively; then in this paper, we define the
performance gap between scheme A and B by %
and the performance gain of A over B by %‘f As for the
schedule of deadline-constrained transfers, let Y4 and Yy be
the ratio of missed deadlines under the schedule of scheme A
and B; we define the performance gap between A and B by
|Y4 —Yg| and the performance gain of A over B by Y —Ya.

A. PAM Performance

Essentially, the core of PAM is to approximate prioritized
bandwidth allocation for multicast transfers by making pre-
emptive allocations only for the most critical transfer. This
design simplifies PAM switch and makes it ready-deployable.
To check how far this approximation draws us away from the
optimal, we modify PAM switch to cache the detailed states
of all active transfers and perform precisely priority-based
bandwidth allocations for all active transfers like PDQ [Z].

1) Deadline-unconstrained tasks: Figure B shows a case
study of the completion times of multicast transfers under
PAM, the ideal/optimal, and the default fair sharing schedul-
ing schemes. As their absolute average completion times
in Figure B4 and show, in this case, the average TCTs
achieved by PAM for data replication and service replications,
i.e., 0.2603s and 0.2816s, are quite close to or even slightly
better than those of the optimal, i.e., 0.2614s and 0.2785s,
yielding significant improvements of 0.1229s and 0.1558s over
those of the fair sharing. Such performance improvements are
confirmed by the distributions of their normalized completion
times shown in Figure B8 and Bd. Basically, the distribution
of normalized completion times scheduled by PAM is almost
overlapped with that of the optimal. We find that they would
achieve exactly the same average completion completions in
most of the tests. And on terms of the average value their
normalized completion times, PAM achieves more than 2.6 x
and 3.1x improvements over those of the fairness scheduling.

To check whether PAM achieves consistent performances
over various network loads, multicast fanouts, cluster scales,
and link capacities, we override the default parameter settings

8Le., TCT, the completion time of each transfer, is normalized to the ideal
value this transfer could achieve.

10

and rerun the tests. Results in Figure [0 and [ confirm the
effectiveness of PAM.

Impact of network load. Figure 04 and T4 show the average
completion times of the two types of transfers as we vary the
network load from 0.5 to 0.99. The results show that with
the increase of network load, the average transfer completion
times scheduled by all these schemes would increase slightly,
and the increments made by fairness scheduling are worse than
these of PAM and the optimal. There is no surprise: a heavier
loaded network would deteriorate the transfer completion
times, and in that case, priority-based bandwidth allocations
are more crucial for the optimization of average completion
times. Indeed, such findings are consistent with those of the
optimized schedule of unicast transfers [H].

Impact of multicast fanout. Quite similar to the change
of network load, as results in Figure MA and ITH imply,
for both data replication and service deployment, the average
transfer completion times would increase if transfers involve
more receivers. This is reasonable: with larger fanouts, more
multicast transfers would interleave with each other, in which
condition, more bandwidth competitions occur and transfers
need more times to complete then. Furthermore, the inter-
action of multicast transfers also increases the room of rate
scheduling. As a result, prioritized-based scheduling would
obtain increased performers gains in such a case as is shown.

Impact of network scale. Next, we increase the network
scale from 32 nodes to 96 and rerun the tests. Basically,
as Figure and T4 exhibit, given a consistent multicast
fanout and network load, Scheduling schemes would achieve
consistent performance under various network scales. How-
ever, fair sharing involves an exception on scheduling service
deployment transfers as Figure ITd shows. This might be
caused by the traffic pattern of server deployment. In our
simulation, all service deployment transfers are assumed to
be served by three fixed registries. With the network scaling
up, each of them has to server more transfers. However, fair
sharing could not make very efficient use of the network
bandwidth, Thus, transfer completion times would be enlarged
since there would be more transfers for each sender.

Impact of link capacity. In our default settings, the capacity
of each link is set to 2Gbps. To check whether PAM is able
to work well in various network environment, we vary each
link’s capacity from 0.5Gbps to 16Gbps. Results in Figure
and [[Td imply a consistent performance of PAM. This gives us
the insight that, PAM is likely to work well on future 100Gbps
and 400 Gbps networks as well.

All these tests confirm the consistent and stable performance
of PAM on optimizing the average transfer completion times
for multicasts. Among all these tests, the performance gaps
between PAM and the optimal are always less than 3.7%,
outperforming the fair-sharing scheme up to 5.7x.

2) Deadline-constrained tasks: To check the performance
of PAM on scheduling deadline-constrained multicast trans-
fers, we configure both PAM and its optimal variant to
schedule transfers with the policy of EDF. Figure I3 shows
the proportion of transfers that do not complete within their
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Fig. 10: [ATCT minimization, Data Replication] PAM achieves near-optimal performance under various settings on minimizing
the average transfer completion time for data replication transfers: gap < 3.62%.
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Fig. 11: [ATCT minimization, Service Deployment] PAM achieves near-optimal performance under various settings on
minimizing the average transfer completion time for service deployment transfers: gap < 3%.

deadline under various settings. Basically, the deadline of
transfer f; is assumed to be (2 + z) X ¢;, where ¢; is its
minimum completion time in an empty network. Similar to
prior work [[], [R], [22], z follows an exponential distribution
whose mean value is 1.

Consistent with the cases of average completion time min-
imization: these schemes achieve consistent ratios of missed
deadlines for multicast transfers across various network scales
(Figure and [[3d) and link capacities (Figure and [34d);
both their ratios of unfinished transfers and the performance
gaps between PAM and fair sharing grow as we increase
the network loads (Figure [2d and [3d); and again, larger
multicast fanouts would let more transfers miss their deadlines
(Figure A and [3H). Among all these tests, PAM achieves
near-optimal results; its gap to the optimal is always less than
2.1%, outperforming the fair sharing scheme up to 75%.

B. PAM Property

Above tests show that PAM is near-optimal in items of the
average completion times and the number of missed deadlines.
In this part, we further investigate its scheduling overheads,
impacts on TCP traffic, and convergence speed.
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Scheduling overheads. PAM scheduling involves 3 types of
traffic overheads: ¢) a schedule header that each PAM packet
must carry with; i) some probe packets that triggered by
paused transfers; and i) the packets for rate feedbacks. By
design, the schedule header needed by PAM is quite small:
according to our prototype implementation (Figure H), 10
bytes are fairly enough. Also, PAM senders reduce the impact
of probe by letting paused transfers with large remaining
size sent probes less frequently. As for the cost of rate
feedbacks, we measure their numbers; results indicate that
the optimization designs of PAM reduce their loads greatly.
Take the test instance shown in Figure B4 as an example, the
optimization design of PAM (Algorithm M) eliminates about
50% rate feedbacks for probe packets and 96.8% for normal
data packets, resulting in a total reduction of 93%.

Impact on TCP. To check the impact of PAM over TCP
traffic, we randomly replace half of data replication multicast
transfers in the test instance shown in Figure B4 with TCP
flows, then check whether those TCPs’ completion times
would be impacted by PAM traffic. Recall that the original
multicast transfer involves more than one receivers; here, each
TCP only sends data to the one with the lowest node label. As
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Fig. 12: [Missed-deadline minimization, Data Replication] PAM achieves near-optimal performance under various settings on
minimizing missed deadlines for data replication transfers: gap < 2.1%.
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Fig. 13: [Missed-deadline minimization, Service Deployment] PAM achieves near-optimal performance under various settings
on minimizing missed deadlines for service deployment transfers: gap < 1%.
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Fig. 14: The impacts of PAM traffic on the completions of
TCP flows are trivial: the average TCP completion times with-
and without- PAM traffic are 0.0772s and 0.0778s, receptively,
yielding a gap within 0.8%.

Figure 4 shows, even though some TCPs’ completion times
do get affected, the impacts are negligible: the average TCP
completion times with- and without- PAM traffic are 0.0772s
and 0.0778s, receptively, yielding a gap within 0.8%. To look
into the detail of how TCP would get affected, as Figure [54
shows, we let a PAM transfer and a TCP flow go through
the same link whose bandwidth and latency are 10Mbps and
1ms, respectively. The data sizes of both transfers are 40MB.
We measure how the TCP’s congestion window (CWND)
and the PAM transfer’s sending rate change with time. As
Figure 3 shows, with a large S (i.e., %) the PAM transfer
has negligible impact on the TCP flow as if no PAM traffic
coexists, no matter in what order they appear. By design, PAM
switch estimates the link capacity that PAM transfers can use,
based on the observed link utilization and queuing occupancy
(see Equation (1)). When the TCP starts first (Figure [3d), the
PAM switch knows there is no bandwidth left for multicast;
thus, it would keep this PAM transfer paused until the TCP
completes. In case the PAM transfer starts first (Figure [3d),
the new incoming TCP would cause queue build-ups on the
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Fig. 15: PAM has negligible impact on coexisting TCP flow.

PAM switch. Then, the PAM switch gets known immediately
and reduces the PAM transfer’s sending rate accordingly. In a
very short time, the multicast transfer’s sending rate decreases
to zero and the TCP flow occupies the bandwidth of the entire
link/path. We try various TCP congestion control algorithms
like New Reno, Vegas, and Bic in simulations, and obverse
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the consistent results.

Convergence speed. Among all simulations, we also observe
that, similar to other priority-based explicit rate control proto-
cols [], [B1], PAM converges to equilibrium quickly within
one or two RTTs for stable workloads and makes nearly
perfect utilization of bottleneck links. Thus, PAM would be a
perfect multicast protocol for file dissemination tasks widely
existing in today’s high-speed data center networks.

VI. RELATED WORK

Since its first appearance in the 1980s, network layer
multicast has been studied for decades and a large number
of enhancement proposals and applications have been pro-
posed [Z], [M0], [BY]. In this section, we briefly review its
recent advancements in the context of data center networks.

Multicast routing technique. Because of the high costs on
forwarding entries and control messages, legacy distributed
multicast routing protocols designed for wide-area networks
(e.g., IGMP and PIM) fall short of supporting the dynamic,
large-scale, and huge-number multicast groups required by
modern data center networks [2], [3], [40]. To overcome
this, many SDN-based solutions have been proposed by
leveraging the unique topological properties of modern data
center network architectures [B], [4]. For example, D. Li
et al investigated the use of bloom filters to compress the
multicast forwarding states [[], [20]. X. Li and M. Freedman
scaled data center multicast to support thousands of multicast
groups through controller-assisted address partitions and local
multicast forwarding rule aggregations []. And more recently,
M. Shahbaz at el presented Elmo, which takes advantage of
emerging programmable switches and the unique character-
istics of data center networks to entirely encode multicast
group information inside the packet header [B], sharing a
similar design with XCast [&1]. To deal with link and switch
failures, rerouting mechanisms are designed along with these
proposals [, [B], [22], [A3]. Besides the construction of
multicast IP routing, several recent proposals also design
algorithms to manage the optical network topology to optimize
intra- or inter- datacenter multicast transfers [24]—[26]. While
orthogonal to them, PAM aims at controlling the rate of mul-
ticast. The scheduling header adopted by PAM is encapsulated
as UDP payloads; thus, PAM can be integrated with all these
routing techniques by design.

Multicast congestion control. Basically, existing congestion
control mechanisms proposed for multicast can be divided into
two categories. In the first one, multicast source senders are
considered to transmit data at fixed rates. Then, the problem
of congestion control in such cases is reformulated as the
problem of optimizing the construction and embedding of
multicast trees to avoid congestions or make the congestion
bounded [&7], [A8]. This type of design works well for
streaming tasks and virtual network requests, as one can
reserve link bandwidth for each multicast tree and control
each tree’s load via rate limiting. However, they are with
low bandwidth efficiency and limited in use because they
lack the ability to react to dynamic link congestions. Thus,
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they can not be used for the schedule of file disseminations
as there are many other types of coexisting transfers whose
sending rate might vary with time (e.g., latency-sensitive mice
TCP flows [8], [?3]). In the second category, the source
of each multicast tree would perform TCP-alike congestion
control algorithms based on the (dynamic selected) slowest
receiver’s feedbacks [MU]-[I2], [49]. These schemes enable
multicast transfers to remove dynamic congestions. However,
TCP-based scheduling is slow to coverage, and moreover, the
fair sharing they are pursuing is proved to be far from optimal
for file dissemination tasks [[Z], [T3]. As a comparison, by
taking advantages of emerged programmable switches, PAM
designs explicit rate controls to achieve fast and customizable
bandwidth allocations for multicast. Such a design is partly
inspired by the recent advances on the optimized scheduling
of unicast transfers in data center [Z], [9], [2T], [B1]. PAM
enriches this research topic by making priority-based rate
scheduling work for data center multicast and implementable
on P4-based programmable switches.

Multicast in Layer 7. Besides the implementation over IP
layer, many application-layer (i.e., L7) multicast protocols [50]
are also proposed to achieve data streaming [51], file dissemi-
nation [57], [83], and distributed messaging [54] for datacenter
applications. In L7-based approaches, there is no need for
switch supports and reliability is easily achieved by directly
using TCP. However, since L7-based multicast is built on top
of unicast, each packet would be transmitted multiple times,
resulting in low bandwidth efficiency. Other solutions like
Datacast [A] are able to avoid duplicated transmissions by
letting intermediate switches cache the transmitted packets.
However, they rely on clean-slate network architectures like
content-centric networking (CCN), which are quite different
from the data center networks we have today.

VII. CONCLUSION

This paper presents the design, analysis, implementation,
and evaluation of PAM (Priority-based Adaptive Multicast), a
preemptive, decentralized, and ready-deployable rate control
protocol we designed for data center multicast. PAM provides
a distributed mechanism to approximate a range of scheduling
disciplines. By generating multicast transfers’ priorities with
appropriate strategies like SRSF and EDF, it is able to min-
imize the average multicast completion time and the number
of deadline-missed transfers for intra-datacenter file dissem-
ination. We prototype PAM in both P4 and ns-3. Extensive
packet-level simulations indicate that PAM converges fast, has
negligible impact on TCP traffic, and always performs near-
optimal priority-based schedules. For example, in simulations,
it outperforms the default fair sharing widely adopted by
today’s multicast protocols, up to 5.7x and 75%, respectively,
on the two aforementioned scheduling goals.

Although there are abundant proposals for the schedule of
data center unicast [[]-[9], [I5], [IX], [PO]-[23], [B4], the
optimization scheduling of data center multicast has been
neglected for a long time. We identify this important topic
and propose a case design of PAM. Currently, PAM focuses on
optimizing intra-datacenter multicast transfers in clouds owned
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by a single tenant. As the future work, we would extend PAM
to support priority-based yet performance-isolated schedule for
multicast transfers belonging to multiple tenants, in which the
transfer of one tenant would like to not be impacted by those
of another [53]. Moreover, to achieve low latency and high
bandwidth data delivery for time-sensitive application, more
and more data center networks are employing lossless network
infrastructure for remote direct memory access (RDMA) [66],
[87]. How PAM would work in these environments is still
unknown, and we leave it as future work.
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