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Abstract—In this paper, we revisit the optimization problem of construct-
ing multicast trees for cloud applications in the context of leaf-spine data
center network (DCN). On one hand, we find that, the maximum multi-
cast rate a network can provide equals to the minimum of the maximum
unsplit throughput it can provide to each of the receivers. On the other
hand, by taking the characteristic of leaf-spine DCN into account, we prove
that the optimal construction of multicast tree in leaf-spine DCNs is equiv-
alent to the well-known problem of minimum set cover, distinguished from
the conventional wisdom that models the problem as a general-purpose
directed minimum Steiner. Based on these findings, we develop simple yet
near-optimal algorithms to construct multicast trees and deal with network
failures.

Index Terms—Data center network (DCN), multicast, set cover.

I. INTRODUCTION

In modern data centers, distributed systems commonly trigger one-
to-many group communication workloads for tasks, such as file dissem-
ination, data replication, distributed messaging etc. [1]–[3]. For these
types of workload, network-layer multicast is widely considered as the
best solution since it natively involves less traffic load and server over-
heads [2]. Luckily, recent advantages of software-defined networking
(SDN)-based data center multicast have made this vision a reality. For
example, with techniques, such as controller-assisted forwarding rule
optimization [3] and source-routed forwarding [2], data center networks
(DCNs) can dynamically set up and control a large number of explicit
multicast trees for data center workloads on demand.

With this ability of flexible multicast control, the follow-up question
is—for a multicast request, how to construct a multicast tree to meet its
demands, regarding that applications generally have QoS requirements
(e.g., bandwidth) while there are abundant equal cost paths between
hosts in modern data centers? Although many previous papers have
worked on this topic, they either only consider the case where conges-
tions are allowed and switch and link never fails [1] or employ general
models (e.g., directed minimum Steiner) which are sub-optimal because
of the ignorance of data center characteristics [4]–[6].

In this paper, we theoretically revisit this optimization problem of
constructing multicast trees in the context of leaf-spine DCN and try to
answer the following fundamental questions.

Q1. What is the maximum multicast rate that the network can
provide?

Q2. Which multicast tree is best for a specified bandwidth
requirement?
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Q3. How to reconstruct multicast trees efficiently upon switch and
link failures?

For the first question we find that the maximum multicast rate a
network can provide equals to the minimum of the maximum unsplit
throughput it can provide to each of the receivers along (Theorem 1
in Section II-A). Regarding question 2 choosing the tree involving the
minimum number of spine switches is preferred, since the amount of
both uplink traffic and occupied forwarding table size could be mini-
mized. Although the problem of minimum multicast tree construction
is well studied in the general case, we employ a novel model by taking
the characteristic of leaf-spine DCN into account, and thus, obtain new
results and design a near-optimal algorithm for tree construction (Theo-
rem 2 and Algorithm 1 in Section II-B). Based on these findings, we fur-
ther develop a failure recovery scheme that could reconstruct multicast
trees for admitted requests by providing fairly downgraded performance
guarantees upon switch and link failure (Algorithm 2 in Section II-C).

A. Novelty of the Proposed Algorithms

The optimization of multicast tree construction is the well-known
NP-hard directed Steiner problem [5], [6]. A large number of papers
have worked on developing algorithms with good approximation ratios
by using either sophisticated greedy designs [5], [7] or Lasserre re-
laxations of linear program (LP) [6]. Basically, these general-purpose
algorithms are either too sophisticated in implementation thus are time-
inefficient to deal with the massive number of multicast requests in
large-scale data centers [6], or inapplicable in DCN scenes, since all
alternative paths are with the equivalent cost (e.g., these shortest path-
based heuristics would degenerate to simple random constructions [5],
[7]). Distinguished from the prior wisdom, we focus on constructing op-
timized multicast trees for today’s de facto leaf-spine DCNs. We prove
that finding the optimal multicast tree in leaf-spine DCN is equiva-
lent to the well-investigated NP-hard problem of minimum set cover
(Theorem 2). Motivated by this, we propose Algorithms 1 and 2, two
simple yet near-optimal algorithms, for the construction and reconstruc-
tion of trees, based on the greedy set covering [8], respectively.

II. TOWARD OPTIMAL MULTICAST TREE

In this section, we give theory-based answers to aforementioned
questions and design efficient near-optimal algorithms.

Before looking into the details, let us overview the data center archi-
tecture considered in this paper first. To provide very scalable through-
put and predictable latencies in a uniform manner, today’s data centers
widely adopt the leaf-spine architecture (see Fig. 1) for networking or
as its basic building blocks [9], [10]. In this architecture, NR severs
are interconnected with each other and to the external network via R
leaf- and M spine- switches (denoted by VR and VM , respectively),
who themselves are connected in a full bipartite graph in turn. For ease
of analysis, we consider the simplified two-layered spine-leaf DCN in
this paper without loss of generality.
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Fig. 1. Leaf-spine DCN architecture. R leaf switches and M spine switches
are connected in a full bipartite graph, and each leaf switch is attached with N
host servers.

A. Maximum Multicast Rate Computation

Intuitively, the maximum multicast rate that a network can provide
from sender s to a group of receivers D, would not exceed the max-
imum (unsplit) bandwidth each receiver can achieve along. Indeed,
as Theorem 1 says, by selecting the minimum value among all re-
ceivers’ maximum possible throughput, we get the optimal solution
to question 1.

Theorem 1: Let Ps,d be the set of all simple paths from source s
to destination d, and Bp be the available bandwidth on path p; then
the maximum multicast rate from sender s to a group of receivers D,
saying Bmax

s,D , is mind∈D maxp∈Ps,d
Bp.

Proof: The proof is straightforward. We first show that
mind∈D maxp∈Ps,d

Bp is the upper bound of multicast rate that the
network can provide for s and D. Since multicast only employs a sin-
gle path for each receiver, the maximum possible rate from source s
to a destination d, could never exceed the maximum bandwidth among
all the available paths between them, i.e., maxp∈Ps,dBp . Moreover, all
receivers share the same streaming in multicast; then the maximum pos-
sible multicast rate Bmax

s,D would never exceed the minimum rate among
all receivers, i.e., mind∈D maxp∈Ps,d

Bp.
Next, we show how to build a tree to achieve this optimal multi-

cast rate for s and D. Generally, there exists one or more paths with
the available bandwidth of mind∈D maxp∈Ps,d

Bp for each receiver
d ∈ D. We randomly choose one qualified path for each and merge
these |D| selected paths into a directed graph (note that they share
the same source node s). Then, by generating a spanning tree from
this generated graph, we get a tree with available multicast bandwidth
mind∈D maxp∈Ps,d

Bp from root s to leaves D. �
Suppose that the available bandwidth on link (u, v) is Bu,v and

the leaf switch of server s is L[s]. According to the structure of leaf-
spine DCN (see Fig. 1) if sender s and receiver d are under the same
leaf switch (i.e., L[s]=L[d]), there is only a simple path (with two
hops) between them, and thus, maxp∈Ps,d

= min(Bs,L[s], BL[d],d).
Otherwise, there are M alternative simple paths (with four hops)
crossing over the M spine switches, and thus, maxp∈Ps,d

=
maxo∈VM

min(Bs,L[s], BL[s],o, Bo,L[d], BL[d],d), in which VM is the
set of spine switches. Obviously, for a leaf-spine data center with M
spines, it is easy to obtain the maximum supported multicast rate from
s to D within O(M |D|) time.

B. Minimum Tree Construction

For a multicast task crossing multiple leaf switches, there might be
multiple choices on constructing its tree, due to the abundant equal-cost
alternative paths provided by leaf-spine DCN. As an example, consider

Fig. 2. Example of constructing multicast tree: (b) is better than (a).

the case shown in Fig. 2, where an application needs to disseminate
a file from the sender belonging to leaf switch L1 to three receivers
(not shown in figure for simplicity) belonging to leaf switches L2, L3,
and L4, respectively. Since there are many fabric links that satisfy the
bandwidth requirements, the network can multicast the data file by using
all available spine switches [see Fig. 2(a)], or just one [see Fig. 2(b)].
To reduce traffic loads and the number of forwarding rules with the
power of multicast, the optimal tree is the one involving the minimum
number of spine switches.

1) Equivalent to Minimum Set Cover: To make the analysis
specific, we denote the multicast request as f : 〈s,D, b〉, which means
a multicast tree from s to a group of receivers D with bandwidth b is
desired. For server s, let S[s, b] denote the set of spines switches, to
whom, there are uplinks with available bandwidth b from server s, i.e.,
(1). And for spine switch x, let S[x, b] denote the set of leaf switches,
to whom, there exists downlinks with available bandwidth b from spine
switch x, i.e., (2)

S[s, b] = {j ∈ VM : BL[s],j ≥ b} (1)

S[x, b] = {y ∈ VR : Bx,y ≥ b} (2)

Lf = {L[d] : d ∈ D ∧ L[d] �= L[s]}. (3)

Recall that, the routes between intra-leaf servers are fixed. Thus, for
ease of description, we directly focus on constructing a tree for receivers
that do not share the leaf switch with the sender and only consider
the bandwidth limits of fabric links during our analysis without loss
of generality. For request f , let Lf denote the set of receivers’ leaf
switches distinct from that of the sender, i.e., (3). Obviously, the spine
switches that could be employed in f ’s multicast tree, must belong to set
S[s, b]. By using a binary variable xj to indicate whether spine switch j
is involved in the optimized multicast tree, this minimum spine switch
selection problem can be formulated as the following integer LP (ILP),
which is equivalent to the well-known NP-hard problem of minimum
set cover as Theorem 2 says

minimize
∑

j∈VM

xj (4a)

subject to xj ∈ {0, 1} , ∀j ∈ VM (4b)
∑

j∈S[s,b]:k∈S[j,b]

xj ≥ 1, ∀k ∈ Lf . (4c)

Theorem 2: Finding the multicast tree involving the minimum num-
ber of spine switches in leaf-spine DCNs, is equivalent to the problem
of minimum set cover [8].

Proof: For each spine switch j ∈ S[s, b], we let Hj = S[j, b] ∩
Lf , denoting the subset of receiver’s leaf switches, to whom this spine
switch has b-capacity downlinks. Then, {j ∈ S[s, b] : k ∈ S[j, b]},
the set of spines that have sufficient uplink and downlink bandwidth to
setup b-capacity paths from sender s to receiver d, can be described
as {j : d ∈ Hj}. By further letting H = {Hj : ∀j ∈ S[s, b]}, the
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Algorithm 1: mscTree: Minimum Set Cover Tree Construction.

Constants: VM , VN , VR, L[] (the map from VN to VR)
Inputs: request f : 〈s,D, b〉, Bu,v for each link
Outputs: T the constructed tree for f

1: Lf ← {L[d] : d ∈ D,L[d] �= L[s]}
2: S[s, b]← {j ∈ VM : BL[s],j ≥ b}
3: H← ∅, H∗ ← ∅
4: for all j ∈ S[s, b] do
5: Hj ← {k ∈ Lf : Bj,k ≥ b}
6: H← H ∪ {Hj}
7: while Lf �= ∅ do � Greedy Set Cover [8]
8: select an Hj ∈ H that maximizes Lf ∩Hj

9: π[j]← Lf ∩Hj

10: Lf ← Lf \Hj

11: H∗ ← H∗ ∪ {Hj}
12: H← H \ {Hj}
13: T ← {(s, L[s])} ∪ {(L[d], d) : d ∈ D}
14: for all j ∈ {j : Hj ∈ H∗} do
15: T ← T ∪ {(L[s], j)} ∪ {(j, k) : k ∈ π[j]}
16: return T

aforementioned ILP (4) can be reformulated as follows, which is
exactly the well-known problem of minimum set cover [8] �

minimize
∑

j:Hj∈H

xj (5a)

subject to xj ∈ {0, 1} , ∀Hj ∈ H (5b)
∑

j:k∈Hj

xj ≥ 1, ∀k ∈ Lf . (5c)

While NP-complete, a greedyO(
∑

Hj∈H |Hj |) algorithm provides the
good approximation of H(maxHj∈H |Hj |) for minimum set cover,
where H(n) is the nth harmonic number, i.e., H(n) =

∑n
k=1

1
k
≤

lnn+ 1 [8]. Suppose that the optimal cover involves opt spine
switches. By repeatedly selecting the spine that contains the largest
number of uncovered receivers until all of them get covered, we find a
set cover involving min(|VM |, ln(maxHj∈H |Hj |) + 1)× opt spines
at most. Motivated by this, we develop mscTree to achieve near-optimal
tree generation for leaf-spine DCN, thus answering question 2.

2) Near-Optimal Algorithm: The procedure of mscTree is as
Algorithm 1 shows. Basically, to construct the multicast tree for f ,
mscTree first extracts the qualified spine switches and gets the set of
leaf switches of receivers that each of these spine switches can cover
(Lines 1–6). Then it employs the greedy set cover algorithm [8] to find
the near-optimal spine switches (Lines 7–12). During the greedy se-
lection, mscTree also records the set of leaves covered by spine j in
π[j] (Line 9). Finally, it collects all the selected links to generate the
near-optimal multicast tree for f (Lines 13–15).

C. Tree Reconstruction Upon Network Failure

To be reliable, once switch or link failures occur, the DCN con-
troller must reconstruct trees for these affected multicast requests. The
straightforward design is to rerun mscTree for them in turn. However,
in case the network is in its high load, these requests might not be
satisfied any more. To deal with this, it is reasonable to provide only
downgraded multicast bandwidths by scaling their multicast rates down
fairly. Indeed, based on Theorem 1 and the proposed mscTree, it is easy
to reconstruct trees for affected multicast requests.

Algorithm 2: Tree Reconstruction Upon Network Failure.

1: For each involved request fi ∈ F , find its maximum
multicast rate that the network can provided, i.e., Bmax

si,Di
;

2: For request fi ∈ F , reconstruct its multicast tree based on Ti,
which is the results of mscTree running for demand
〈si,Di,min(bi, B

max
si,Di

)〉;
3: For each congested link (u, v), compute the scale factor λu,v

that could remove its congestion; obversely,
λu,v = min(1, Bu,v

/∑
i:fi∈F∧(u,v)∈Ti

bi);
4: For request fi ∈ F , scale its multicast rate from bi down to

bi ×min(u,v)∈Ti
λu,v , such that congestions are eliminated.

Let F be the set of multicast requests broken by the failure, in which
the ith request is denoted by fi : 〈si,Di, bi〉; and suppose the remaining
bandwidth on link (u, v) is Bu,v; then our reconstruction processes are
in four steps as Algorithm 2 shows. Following these, broken multicast
trees are reconstructed with the support of downgraded rates. One may
notice that, if all links are already fully used, there does not exist feasible
links for tree reconstruction. To avoid this in practice, a simple yet
useful design is to let links have capacity slacks, 5% for instance, when
accepting multicast requests.

III. EVALUATION

As mscTree is the key of both the construction and reconstruction
of multicast tree, in this part, we verify its benefits by employing it to
construct trees for synthesized requests.

A. Methodology

To highlight the comparison, we consider the capacity limits on
fabric links and focus on the optimized selection of spine switches
in constructing multicast trees. For multicast request f : 〈s,D, b〉, the
task is to construct a tree with available multicast bandwidth b, from
its sender’s leaf switch s to its receives’ leaf switches D. For each
request, we first check whether the maximum multicast rate that the
network could provide to it (Theorem 1), satisfies its requirements b or
not. If so, we admit it and build up its tree via mscTree. For the con-
struction of multicast tree, we use the most widely deployed multicast
routing protocol, protocol independent multicast (PIM), as the base-
line. On admitting a request, PIM builds a shortest unicast path tree
to multicast. However, since all alternative paths are with the equiva-
lent cost in leaf-spine DCNs, the process of PIM (and other shortest
path-based heuristics [5], [7]) is essentially to select a random spine for
each receiver; thus we refer it as random. Besides, we also consider the
least-load-spine-first (LLSF) greedy which chooses the spine involving
the least used downlink bandwidth to d as d’s parent node to construct
trees.

We assume that the multicast rate b follows a power-law
alike distribution, where each request’s rate is randomly selected
from a pre-defined set {α2i : 0 ≤ i ≤ nr} with the probability of
P (b = α2i) = 2nr

2nr+1−12
−i: 0 < α� 1 is a small positive constant.

Besides, the sender’s leaf s and receiver’s leaves D are randomly
chosen, in which the size of D follows the uniform distribution of
U [2, rmax]. Therefore, the mean multicast throughput of all requests is
(1 + 0.5rmax)bE , where bE=

∑nr
i=0 α2

i ∗ 2nr

2nr+1−12
−i= α(nr+1)2nr

2nr+1−1 .
We consider a cluster containing M spines and R leaves, and assume
that each fabric link has the normalized bidirectional bandwidth of 1. In
each test, we generate MR

(1+0.5rmax)bE
requests to fulfill the network, then

calculate the number of accepted requests, their multicast throughputs,
and the corresponding loads on fabric uplinks.
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Fig. 3. mscTree provides larger multicast throughput by accepting more wider
requests, and reduces uplink loads greatly. (a) Accpeted requests. (b) Accepted
throughput. (c) Load on fabric uplinks.

B. Results

We feed the tests with different parameters and repeat the simu-
lation 100 times for each parameter setting. Extensive results imply
consistent conclusions. Due to the limits of space, we showcase the
results of instances where M = 16, R = 48, nr = 5, α = 0.01, and
rmax = �R−33

+ 1� = 16. Basically, the network has a total throughput
of 768. And we try to fulfill it with 2799 generated multicast requests.

As Fig. 3(a) and (b) shows, mscTree is able to provide a higher multi-
cast throughput with a fewer accepted requests. For instance, it accepts
about 2633 requests in average, which occupy about 0.940 of the total
multicast requests, and are about 0.007 and 0.034 less than these of
the random and LLSF strategies. However, regarding the total provided
multicast throughput, in most cases, mscTree outperforms the random
and LLSF strategies with the average value 0.005 and 0.024, respec-
tively. Recall that, for each request, its multicast throughput, b|D|, is a
fixed value that cannot be optimized through tree construction, repre-
senting the total fabric downlink bandwidth it needs. Thus, the simu-
lation results imply that, mscTree provides more multicast throughput
by accepting multicast requests that have more receivers and making
more efficient use of downlink bandwidth.

The most important, as Fig. 3(c) shows, with theory-based optimiza-
tion of tree construction, mscTree is able to reduce the redundant traffic
on uplinks greatly. Those saved bandwidth can be employed by external
transfers to accelerate their completions. The absolute values depend
on the parameter settings of both the network size and multicasts. And
in this case, mscTree can reduce the load on fabric uplink to 0.11, which

is about six times better than that of both the random and LLSF strate-
gies. For each tree construction strategy, we also compute the ratio of
all accepted requests’ total loads on fabric uplinks and their total mul-
ticasting rates. Such a ratio indicates the number of spine switches a
multicast request involves on average. The results of mscTree, random,
and LLSF are 1.1, 6.6, and 6.5, respectively. That is to say, the mul-
ticast tree constructed by mscTree requires a few forwarding rules for
multicasting since most requests involves only one spine.

IV. CONCLUSION

In this paper, we studied how to compute the maximum possible mul-
ticast tree for a one-to-many transfer and investigated how to construct
and recover multicast trees in leaf-spine DCN. By using the charac-
teristic of leaf-spine architecture, we proved that the optimization of
multicast tree in such a context equals to the minimum set cover prob-
lem, and proposed simple algorithms that could greatly reduce the load
on uplinks.
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