
Accepted to appear in IEEE Network ©2021 IEEE

Softwarized IP Multicast in the Cloud
Shouxi Luo, Huanlai Xing, Pingzhi Fan

Abstract—In this article, we revisit the problem of how to
provide “native” IP multicast support to enterprise distributed
applications in today’s clouds, without touching neither the ap-
plication implementation nor underlying network hardware. We
propose SDM, Software-Defined IP Multicast, to explore the
idea of performing Multicast-to-Unicast (M2U) and Unicast-to-
Multicast (U2M) translations at the virtualized network edge. At
the data plane, with novel architecture designs, SDM achieves
efficient M2U and U2M translations by only using Open vSwitch
(OVS), an OpenFlow-compatible open-source software switch
widely deployed in modern clouds. At the control plane, SDM
dynamically adopts multicast trees respecting the join and leave
of receivers with flexible cost-based algorithms. SDM is very
easy to deploy and use, as its required features are already
supported by off-the-shelf OVS software (version ≥ 2.3) and
OpenFlow protocol (version ≥ 1.1). Performance evaluations
of its control-plane algorithms also imply that SDM is flexible
to construct throughput and latency/height optimized multicast
trees respecting task requirements.

Index Terms—IP multicast, software-defined networking, cloud

I. INTRODUCTION

Nowadays, an increasing number of enterprises are mi-
grating their applications deployed in private self-maintained
data centers to public clouds for cost savings. Off-the-
shelf advanced virtualization techniques like Virtual Machine
(VM) and Linux container have made the migration of the
computation-related parts easy. However, the migration of the
involved network-related parts is quite challenging. For in-
stance, many distributed applications have employed native IP
multicast to implement the point-to-multipoint data deliveries
they widely involve; the lack of the support of native multicast
among today’s cloud networks makes such migrations quite
hard [1]. Despite a lot of effort has been focused on designing
IP- or overlay- based solution to support multicast in large-
scale data center networks, they cannot help, as they i) require
new switch hardware, ii) introduce incompatible network
programming APIs thus non-trivial application modification
is required, or iii) both [1–5]. Accordingly, we ponder a
fundamental question: Is it possible to provide “native” IP
multicast support to distributed cloud applications without
modifying neither the application implementation nor the
underlying cloud network?

In this article, we provide a cautiously optimistic answer
via the case design of SDM (Software-Defined IP Multicast).
Motivated by the observation that applications in public clouds
are generally packaged in VMs or containers which inter-
connect to the external cloud network via software switches
like Open vSwitch (OVS) [6], SDM provides “native” IP
multicast supports to these virtualized distributed applications

The authors are with Southwest Jiaotong University, China (Corresponding
author: Shouxi Luo).

Many enterprise

distributed applications

employ IP multicast.

Cloud

Network
migrate to clouds

VM/

container

VM/

container

VM/

container

Open vSwitch (OVS)

o multicast unicast

o unicast  multicast

OVSes perform M2U/U2M translations

at the virtualized network edge.

no support of

native IP multicast

Fig. 1: The motivation and insight behind softwarized IP
multicast in the cloud.

by employing their OVSes to perform Multicast-to-Unicast
(M2U) then Unicast-to-Multicast (U2M) translations at the
virtualized network edge, as Figure 1 shows. Essentially, the
core idea of SDM is to establish a tree-like overlay for each
multicast task upon the involved OVSes through M2U and
U2M translations, such that multicast traffic could be correctly
delivered using the already existing unicast forwarding rules.

Indeed, we are not the first to employ M2U and U2M
translations for IP multicast. For instance, many data center
networks only support a limited number of active IP multicast
groups; in case the available IP multicast addresses run out,
MCMD employs the design of mapping subsequent multi-
cast operations to unicasts [7]. To further balance the load,
DuSM suggests only conduct translations on mice flows [5].
Compared with them, SDM involves two types of novelties,
making it excellent to provide native IP multicast services in
large-scale multi-tenant public clouds. To sum up, the main
contributions, as well as the novelties of SDM, are two-fold:

• Architecture (§III): Different from [5, 7], which con-
duct both M2U and U2M translations through either a
customized network stack [7] or a hypervisor [5], SDM
directly implements the translations upon existing OVSes
with novel data plane architecture designs. As OVS is
open-source, production-quality, and widely-employed,
SDM is much easier to deploy and use.

• Algorithm (§IV): Given a task, there are multiple choices
for the construction of its multicast overlay/tree, yielding
different throughputs and latencies. To provide customiz-
able multicast services to applications, when receivers

1

Accepted to appear in IEEE Network ©2021 IEEE

join and leave, SDM employs pTree, a suite of novel
algorithms, to optimize the multicast overlay/tree with
respect to application-specified requirements. In contrast,
trees conducted by previous algorithms like [5, 7, 8]
are inflexible thus far from optimal, as the heterogeneity
among the application requirements is overlooked.

We prototype SDM upon Mininet [9], confirming that it
is readily-deployable. Also, we develop a simulator based
on Python 3 to analyze the performance of SDM’s control-
plane algorithms. We find that i) all its required features are
already supported by OVS (version ≥ 2.3), and ii) SDM
can implement the multicast overlay/tree by installing a few
standard OpenFlow rules (version ≥ 1.1) on involved OVS
switches [6, 10]; moreover, iii) numerical results indicate
that SDM is flexible to achieve optimized multicast trees for
dynamic point-to-multipoint communication requests.

The rest of the article proceeds as follows. Section II first
sketches the design of SDM. Then, Section III and IV present
the design detail of the data plane and control plane of SDM,
respectively. A preliminary performance evaluation follows in
Section V; and finally, Section VI summarizes the article.

II. SDM OVERVIEW

Basically, SDM achieves flexible “native” IP multicast
without the support of hardware switch by performing M2U
and U2M translations at the network edge. For each multicast
transfer, SDM duplicates its packets and rewrites the packet
headers to translate the multicast transfer into multiple unicast
flows at the network ingress (Besides header rewrite, SDM
can alternatively employ OpenFlow-supported encapsulations
like IP-in-IP to perform the translation in practice.); then,
following the existing unicast routes, these “unicast” pack-
ets are delivered to their destinations efficiently; finally, at
the network egress, SDM rewrites the packet headers back
and forwards them to the final receivers. For performance
optimization, some network egresses are selected as relaying
nodes as well. Thus, besides sending multicast packets to
their directly connected receivers, like a network ingress, a
selected relay node also duplicates and redirects packets to
other receivers via unicast following the multicast tree.

Such a design has many advantages, making SDM readily-
deployable, flexible, and very efficient. In summary, SDM is:
• Easy and ready to deploy. First of all, in production,

multicast endpoints are generally virtual nodes like VMs
or containers, rather than physical servers. These virtual
nodes connect to the host and cloud network using high-
performance software switches like OVS. As §III will
show, with novel designs, the data plane needed by
SDM can be implemented upon OVS, without touching
hardware switches. Hence, SDM is readily-deployable.

• Efficient at establishing multicast trees. Second, ac-
cording to the design (§III), to establish a multicast tree,
SDM only needs to install a few standard OpenFlow
rules on OVSes located at the involved servers, greatly
reducing the number of switch operations, as no internal
routing modification is needed anymore. Thus, SDM is
much simpler than other solutions [1, 2]. Moreover, as

a performance-optimized software [6], configuring the
forwarding rules of an OVS is much faster than that
of a hardware switch, since no TCAM movement will
be triggered [11]. Hence, SDM can establish trees for
dynamically-arriving multicast requests very efficiently.

• Highly-scalable. Third, as is known, today’s hardware
switch has a very limited size of forwarding table [11];
with OVS-based M2U translation, SDM consumes no
additional rules in the underlying network. Regarding
OVS, it can support a huge amount of rules respecting
the server’s capacity; meanwhile, each OVS only needs
to maintain rules for its directly-connected virtual nodes.
All these facts make SDM easy to scale up, becoming
increasingly attractive for large-scale networks.

• Expressive. Fourth, the SDM data plane is built upon
OVS, which supports OpenFlow protocols by design.
With a logically centralized controller, SDM can easily
implement high-level policies (e.g., access controls, QoS,
fine-grained measurements, etc.) for multicast transfers.

• Collaborative. Last but not least, the M2U-translation-
based design also enables SDM future-proof to jointly
work with the abundant existing and newly-proposed
advanced flow scheduling proposals designed for unicast
(e.g., flowlet-based load balance, fast-failover, etc. [12]).

As there is no free lunch, the softwarization and overlay
based design of SDM also introduces processing overheads to
the involved servers, bandwidth overheads to the data center
network, and latency overheads to the multicast transfer. More
specifically, for a point-to-multipoint transfer whose receivers
distributed among n servers, compared with the legacy design
of configuring the underlying network to achieve IP multicast,
SDM would install about 2n + 1 to 3n forwarding rules at
involved OVSes in total to conduct the M2U and U2M transla-
tions, respecting the multicast tree’s structure. According to the
current design of OVS, increased numbers of rules and active
flows would impact the forwarding throughput [6, 8, 13].
Meanwhile, about n times of more access uplink bandwidth
would be consumed at the edge because of the translation.
To limit both the processing and bandwidth overheads, proper
optimization is to distribute the operations of M2U translation
among involved servers to balance their loads. For example,
constructing each multicast tree as a chain would yield the
minimum overheads. However, such a design also enlarges
the multicast delay, as more hops are involved.

To address these issues, SDM employs a suite of policy-
based algorithms named pTree for the construction of multi-
cast trees. In practice, data center traffic is fragile and both the
multicast requests themselves and their involved receivers are
likely to arrive and depart online; thus we argue that letting
the network stick to the optimal multicast configuration for a
snapshot network state is less attractive; instead, greedy-yet-
flexible algorithms are preferred. To be customizable, SDM
allows applications to specify the desired latency bounds
along with their multicast requests and allows operators to
configure the number of M2U translations that each server
would conduct through filters, such that both the processing
and bandwidth overheads could be controlled and balanced.

2

Accepted to appear in IEEE Network ©2021 IEEE

decouple

1 2 x

OVS

OVS-B

OVS-T

1 2 x

NIC

Integrated OVS-pairSingle OVS

… …

……

1 y 1 y

1 k+12 …

VM, container, etc.

Table 0

Convert multicast pkts  unicast pkts, or

vice versa; then goto other tables, or OVS-B

Other Tables
OVS-T

Table 0

Duplicate multicast pkts to

selected egresses

Other Tables
OVS-B

…

…

M2UT and U2MT upon OpenFlow

k

Fig. 2: The architecture of SDM’s OVS-based data plane.

III. SDM DATA PLANE

As Figure 2 shows, consider that there are x virtual nodes
(e.g., VMs, containers) hosted on a server interconnecting
to the data center networks with y network interface cards
(NICs). By default, these virtual nodes might be attached to a
single OVS; by decoupling the function of this single OVS into
an integrated OVS-pair, SDM can implement the needed data
plane functions using standard OpenFlow features supported
by OVS (version ≥ 2.3). Meanwhile, such a data-plane design
is very easy to implement and deploy, since it only requires
each server to launch two OVS instances and configure their
virtual links along with forwarding rules properly.

In this section, we first show how such an integrated OVS-
pair achieves M2U and U2M translations at the network edge
(§III-A), then discuss how to repopulate rules residing in the
original single OVS to fit the decoupling (§III-B).

A. Integrated OVS-Pair

Inside an integrated OVS-pair, these two OVSes at the top
and bottom, interconnected with k+1 virtual links as Figure 2
sketches, are named OVS-T and OVS-B, respectively. Here, k
is a reconfigurable parameter indicating the maximum fanout
of the M2U-translated tree allowed by the SDM data plane.
For these k + 1 internal virtual links labeled 1, 2, · · · , k + 1,
SDM employs the first k links to transmit the duplication
of multicast packet, and the last one to transmit other traffic.
For each multicast, this integrated OVS-pair performs M2U
translations when its packets enter, and then performs U2M
translations just before packets leave.

1) Multicast-to-Unicast Translation (M2UT): Basically, for
a received multicast data packet, M2UT involves two basic
operations: i) duplicate the packet at OVS-B, then ii) rewrite
the multicast IP address in each duplication to the right unicast
IP address at OVS-T, respectively, both of which are already
supported by OpenFlow-compatible switches like OVS (ver-
sion ≥ 2.3) [6, 10]. In modern OpenFlow-supported switches
(OpenFlowVersion ≥ 1.1), there are multiple pipelined flow
tables in the format of match-action that packets could go
through. To implement the packet duplication at an OVS-
pair (say u for instance, whose k-parameter is with the value
of Ku), SDM installs a go-to-group OpenFlow rule at the
first table of u’s OVS-B to match the multicast packet, then

multicast the packet to a group of egresses selected from
virtual link 1, 2, · · · ,Ku, through standard OpenFlow features.
Suppose that the packet is multicasted to κ (κ ≤ Ku) egresses.
On getting these κ duplicated packets, based on their ingress
indexes, OVS-T rewrites their destination IP addresses with
unicast IP addresses, to redirect them to κ unvisited receivers
selected from the multicast task’s receiver pool. Notably, these
header-rewrite rules reside in the first table of OVS-T; each
modified packet continues to go through other tables just like
a normal unicast packet. Thus, there is no need for SDM to
touch the delivery of these translated packets; they are free to
enjoy the abounded network optimizations already deployed
(e.g., flowlet-based load balancing, fast-failover, etc. [12]).

2) Unicast-to-Multicast Translation (U2MT): At the re-
ceiver side, by looking into the detailed header fields, it is
easy to identify which packets are originally converted from
multicast packets. Accordingly, SDM installs OpenFlow rules
at the first table of the receiver’s OVS-T to convert these
packets back to their multicast formats and redirect them to
OVS-B. On getting a multicast packet, OVS-B multicasts it to
the directly-connected receiver nodes, and other virtual links
for M2UT if there are still unvisited receivers.

The above-mentioned data plane functions are easy and
ready to deploy, as only standard OpenFlow (version ≥ 1.1)
rules are employed. We prototype the design upon Mininet [9],
confirming the ready-deployability of SDM.

B. Rule Repopulation

Besides the OpenFlow rules installed by SDM, many other
forwarding rules are residing in the original single OVS. As
SDM has decoupled this OVS into an integrated OVS-pair, the
corresponding rules and tables should be repopulated into the
integrated OVS-pair as well. For this problem, a promising
solution is to i) let the network controller be aware of this
augmented topology and ii) restrict that all other traffic except
the multicast duplications made by OVS-B only uses the last
virtual link, such that services like link discovery and MAC-
learning can work properly. Also, as SDM mainly installs
OpenFlow rules into the first ingress table, all other rules
can just occupy tables starting from the second. Regarding
the group rules specified by SDM, they can share the group
tables with others.

3

Accepted to appear in IEEE Network ©2021 IEEE

IV. SDM CONTROL PLANE

By configuring all OVS-B switches to redirect Internet
Group Management Protocol (IGMP) messages to the con-
troller which reacts following the corresponding RFCs [14],
SDM can capture both the join and leave of multicast
receivers. By redirecting unknown multicast traffic to the
controller, SDM could also precisely know and control which
senders could multicast. Triggered by these node dynamic
events, SDM can reconfigure all involved OVS-pairs to con-
struct the delivery trees for multicast tasks on demand.

In this section, we look into the detail of how SDM
constructs optimized multicast trees respecting node dynamics.
We first analyze the design choose adopted by SDM (§IV-A),
then describe the network abstraction and problem formulation
of SDM (§IV-B), and finally move to pTree, the algorithm
suite that SDM employs to deal with node dynamic and
perform continual tree optimizations (§IV-C).

A. Analysis

To achieve efficient one-to-many delivery, SDM needs to
maintain an optimized multicast tree upon the overlay for
every multicast task, respecting the join and leave of receivers.
Recent studies have shown that data center traffic is fragile and
many load balancing techniques such as Equal-Cost Multi-Path
(ECMP), Valiant Load-Balancing (VLB), and Conga, have
been widely deployed or developed for unicast traffic [15]. In
consideration that SDM traffic is translated into unicast at the
network edge, we argue that oblivious routing, i.e., picking
routes for pairs without knowledge of the traffic/demand
matrix, is good enough for the construction of SDM trees in
practice. Nevertheless, there are still several other constraints
that dominate the algorithm design.

First of all, based on the design of the SDM data plane, for
a multicast transfer, saying Ti for instance, deg+i (u), the out-
degree of node u, is bounded by the OVS-pair configuration
Ku. Moreover, the M2UT operations at OVS-pair u would
amplify Ti’s traffic volume deg+i (u) times, significantly in-
creasing the load on the server’s uplinks, especially if each
server only employs a single NIC. Suppose that the hosting
server of OVS-pair u is with the uplink capacity of bu and
the set of all active multicast transfers is denoted by T. In
case that OVS-pair u is the single global bottleneck and
flow-based max-min fairness is employed by multicast trans-
fers, each translated unicast would obtain the bandwidth of
bu/

∑
Ti∈T deg

+
i (u) at most. Hence, on constructing multiple

trees for concurrent transfers, SDM should not only limit
the out-degree of each multicast tree but also balance their
needed M2UT operations among different OVS-pairs/servers
for better throughputs. Second, in practice, both the multicast
tasks themselves and their involved receivers are likely to
arrive and depart online. In this case, letting the network
stick to the optimal multicast configuration for a snapshot
network state is unattractive; instead, SDM should i) establish
multicast routes for new tasks/receivers within a short time,
then ii) optimize their multicast trees continually. Third, it is
oblivious that the most bandwidth-efficient way for multicast
might be maintaining each tree as a chain. However, chains

introduce non-trivial multicast latencies to receivers especially
those close to the tail. Thus, SDM should try to let the height
of the constructed (rooted) tree meet the task’s requirement on
latency bounds.

B. Formulation

Given a cloud network, SDM abstracts it out as a complete
directed graph, G, in which each node denotes an OVS-pair,
and eu,v , or (u, v), the abstracted link from node u to v,
involves a weight cu,v representing the cost of delivery one
unit of data from u to v. In this paper, SDM directly employs
the (average) hop count of the candidate forwarding paths as
the weight. Indeed, the abstracted weight from u to v can be
any customizable metrics like the value of bu,v/du,v , where
bu,v and du,v are the available throughput and average hop
count from u to v, respectively. Obviously, such an abstraction
is powerful, making SDM generic to support various kinds
of cloud network architectures including Fat-tree, Leaf-Spine,
Xpander, DCell, etc [15]. Accordingly, the problem of con-
structing optimized out-trees for the i-th multicast task is to
find a routed out-tree Ti ⊂ G with low summarized weight,
high throughput, and controlled height, over the abstracted
overlay.

Formally, a multicast task (say ti, the i-th task, for instance)
which is to deliver data from root si to a group of receivers
Ri, can be described by the tuple of 〈si, Ri, τi〉, in which τi
indicates the upper bound of its desired height (latency) of
constructed multicast tree. Let T be the set of multicast trees
already established in the network G, and χ[u] be the total
number of unicast flows translated from multicast at u; the
multicast cost of the i-th task’s tree Ti in T, which is made up
of the level of height-violation, throughput, and summarized
weight, can be defined by the triple tuple of

~(χ, Ti):=

〈
max(0, H(Ti)−τi)

τi
, max
u∈V (Ti)

χ[u]

bu
,

∑
e∈E(Ti)

ce
ρi

〉
(1)

Here, H(Ti) is the weighted height of Ti, χ[u] is the sum of
the out-degree of node u among active trees defined by (2),
bu is the uplink capacity of node u’s hosting server, ce is the
cost of delivery one unit of data over abstracted link e, and ρi
is the minimum weight of the corresponding tree for multicast
task i provided the constraint of out-degree is released.

χ[u] =
∑

Ti∈T:u∈V (Ti)

deg+i (u) (2)

C. Algorithms

Now, we present how SDM adopts multicast trees to deal
with the join and leave of receivers in detail. We name the
scheme as pTree (policy-based overlay multicast Tree), which
involves two sub-parts, as Table I summarises.

The intuition is that in case the latency/height requirement is
satisfied, SDM prefers the multicast tree with larger through-
put and less total weight; otherwise, it prefers the one with
a lower level of latency (height) violation. To reduce the
network load and simplify multicast trees, on constructing and

4

Accepted to appear in IEEE Network ©2021 IEEE

TABLE I: The schemes that pTree employs for the join and leave of receiver.

Operation Description (consider m multicast tasks each involving no more than n receivers) Time complexity
JOIN Link the newly joined receiver to the existing node yielding the minimum cost respecting (1). O(n)

LEAVE
DELTA Reconstruct only the involved tree by using JOIN to process its receivers in their arrival orders. O(n2)

FRESH Reconstruct all multicast trees by using JOIN to process all receivers in their arrival orders. O(mn2)

maintaining the tree for a task, we limit SDM to not use
extra nodes beyond its source sender and current receivers.
Note that, for each OVS-pair, there might be multiple directly-
connected receivers and the traffic from the OVS-pair to them
is internal. Accordingly, the core of SDM’s control plane is
to build multicast trees at the level of OVS-pairs.

1) Receiver Join: On receiving the join request of the new
receiver node, SDM finds a parent OVS-pair node among
the interested tree’s candidate set to let it join, such that the
involved multicast cost computed by (1) is minimized. By
employing a selected set of, instead of all, the available nodes
as the candidate parents, SDM is flexible to support user-
specified filters. For instance, by filtering out nodes whose
out-degrees are larger than a predefined threshold, SDM can
control the maximum out-degree of nodes precisely. Obvi-
ously, the time complexity of appending a new receiver to
a tree already involving n receivers with JOIN is O(n).

2) Receiver Leave: When a receiver leaves, SDM recon-
stitutes multicast trees correspondingly. As Table I shows,
SDM supports two strategies, named DELTA and FRESH,
respectively. Basically, DELTA only reconstructs the involved
tree: it first initializes the tree to only contain the source
node, then repeatedly selects the receiver that would involve
the minimum multicast cost from all unprocessed remaining
receivers and add this receiver to the tree with JOIN, until
all receivers are joined. In contrast, FRESH is more thorough
and reconstructs all active trees by using JOIN to process
all active receivers in their arrival orders. SDM can make
combined use of them: call DELTA to deal with a receiver’s
leave immediately and then call FRESH periodically. Assume
that there are m active multicast trees and the largest one
involves n receivers. Accordingly, the time complexity Delta
and Fresh involve is about O(n2) and O(mn2), respectively.

V. PERFORMANCE EVALUATION

In this section, we study the performance of SDM control
plane algorithms through numerical simulations. Results show
that SDM could construct trees with near-optimal multicast
throughput and latency.

A. Methodology

1) Metrics and baselines: For multicast tasks, we mainly
care about their throughput and maximum latency, which
mainly depend on the number of multicast transfers going
through the same link, and the weighted height of their
multicast trees, respectively. To highlight the performance of
SDM, we mainly consider two baselines, which are supposed
to achieve the best multicast throughput and latency in theory:
• Star: active receivers connect to the sender directly

without caring about the limits of Ku; such a design

achieves the best multicast latency (This is exactly the
scheme employed by [5, 7]).

• Chain: active receivers form a chain in their arrival orders
without caring about the latency/height requirements and
weights; such a design is likely to achieve the best
multicast throughput in theory.

More specifically, for each multicast tree, its throughput is
determined by the slowest receiver; we assume that all flows
in the network share link capacities in the manner of perfect
per-flow max-min fairness. As for the multicast latency, we
use the involved tree’s weighted height as the metric.

2) Network and Workloads: To drive the analysis, we
consider that SDM needs to maintain trees for 300 randomly
generated multicast tasks in a cloud cluster involving 1000
servers. These servers are interconnected via a flat, non-
blocking data center network abstracted as one big switch, in
which bandwidth competition appears only at the ingresses or
egresses of the servers and all ports have the same normalized
unit capacity. For each server, we assume that it launches
one OVS-pair and the corresponding Ku parameter is large
enough to support any multicast trees. Both the source and
the receivers we consider here are OVS-pairs (i.e., servers). In
the case of receiver join, we assume that the source of each
multicast task needs to multicast a long-live stream to other n
randomly selected servers; and in the case of receiver leave,
after all aforementioned receivers have joined, half randomly
selected receivers in the cloud would leave then. During the
test, for all multicast trees, we vary τ , the height limit of
their multicast trees, from 1 to n, and measure the throughput
and latency of each active multicast task when all joins or
leaves have been conducted. As the workload is synthesized
randomly, we perform 40 trials for each parameter setting.
We vary the value of n from several to hundreds and obtain
consistent results. The results we show in this article are these
when n = 10.

B. Results

Figure 3 shows the details of how the average throughput
of active multicast tasks changes with the increase of the limit
of tree height (τ). Obviously, as Figure 3a indicates, when the
limit of tree height is set to 1, pTree and Star achieve the
same performance; however, the multicast throughput SDM’s
pTree algorithm achieves increases rapidly with the release of
τ ; and in the test, once the height limit is larger than 3, the
average throughput reaches a performance point very close
to that of the Chain. Similar results are observed in the case
when half of the receivers left as Figure 3b sketches. We find
that when dealing with receiver leave, the throughput achieved
by pTree (Fresh) is better than that of pTree (Delta); this is
reasonable since pTree (Fresh) reconstructs all active multicast

5

Accepted to appear in IEEE Network ©2021 IEEE

2 4 6 8 10
Limit of tree height (overlay)

0.08

0.10

0.12

0.14

0.16

Av
er

ag
e

th
ro

ug
hp

ut
 (n

or
m

al
ize

d) Receiver Join

Chain
Star
pTree

(a) Throughputs when all receivers joined

2 4 6 8 10
Limit of tree height (overlay)

0.18

0.20

0.22

0.24

0.26

0.28

Av
er

ag
e

th
ro

ug
hp

ut
 (n

or
m

al
ize

d) Receiver Leave

Chain
Star

pTree (Delta)
pTree (Fresh)

(b) Throughputs when half of the receivers left

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Details of multicast trees (pTree)

Join
Leave (Delta)
Leave (Fresh)

(c) Without the limit of tree height

Fig. 3: The multicast trees constructed by pTree achieve near-optimal throughput concerning the limit of tree height. Note that,
the limits of tree height do not take effect on Star and Chain, according to their designs.

2 4 6 8 10
Limit of tree height (overlay)

2

4

6

8

10

Av
er

ag
e

tre
e

he
ig

ht
 (o

ve
rla

y)

Receiver Join

Chain
Star
pTree

(a) Tree heights when all receivers joined

2 4 6 8 10
Limit of tree height (overlay)

1

2

3

4

5

Av
er

ag
e

tre
e

he
ig

ht
 (o

ve
rla

y)

Receiver Leave

Chain
Star

pTree (Delta)
pTree (Fresh)

(b) Tree heights when half of the receivers left

1 2 3 4 5 6 7 8
Tree height (overlay)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Details of multicast trees (pTree)

Join
Leave (Delta)
Leave (Fresh)

(c) Without the limit of tree height

Fig. 4: The heights of most multicast trees constructed by pTree are small. Note that, the limits of tree height do not take
effect on Star and Chain, according to their designs.

trees, resulting in increased throughput for most active tasks
as the throughput distributions in Figure 3c demonstrates. In
this test case, τ = 10; i.e., the limit of tree height is totally
removed as a multicast tree’s height would never exceed the
number of its receivers. Since reconstructing all multicast trees
would involve a lot of network updates, in practice, pTree
(Fresh) can be configured to run periodically.

We also obviate that, in Figure 3b, once the limit of tree
height is larger than 3, pTree (Fresh) even outperforms Chain.
Note that, after half of the receivers left, each task involves
about 5 receivers on average. Then, there are only about
5 ∗ 300/1000 = 1.5 multicast-translated unicast flows on each
egress or ingress, indicating that the performance of pTree-
constructed trees outperforms the Chain when the number
of concurrent active flows is small. All these phenomena
indicate: even with greedy algorithm designs, pTree achieves
near-optimal multicast throughput concerning the height limits
specified by requests.

Despite the limit of tree height is set to τ , the actual tree
height constructed by pTree is far from this limit, especially
when τ is large, as Figure 4 shows. Basically, once τ is
larger than 3, the multicast tasks’ average tree height seems
to stay consistent, implying that the multicast latency of trees
generated by pTree is well-optimized as well. From Figure 4b,
we also notice that when dealing with receiver leaves, the
multicast trees conducted by pTree (Fresh) involve higher

heights than those constructed by pTree (Delta), indicating
that the gain of throughput achieved by pTree (Fresh) over
pTree (Delta) shown in Figure 3b, is with the cost of higher
tree heights (i.e., larger multicast latency). In the end, Fig-
ure 4c shows the distributions of multicast trees’ heights
constructed by pTree when the limit of τ is removed (i.e., set
to 10). Detailed results confirm that SDM achieves optimized
tree heights by keeping the height of most trees small.

VI. CONCLUSIONS AND DISCUSSIONS

This article presents SDM, a software-defined system that
provides virtualized “native” IP multicast support to distributed
applications in the cloud by performing multicast-to-unicast
and unicast-to-multicast translations at edge servers. SDM
is easy to deploy and use, as its data plane directly builds
upon the OVS switches widely existing in data center servers.
Also, the performance of SDM is near-optimal since its
control plane algorithm pTree constructs throughput and la-
tency/height optimized trees with respect to the requirements
of multicast tasks.

Indeed, the high-level idea of the SDM data plane is generic
and not bounded to OVS; it is possible to port the design to
other OpenFlow- or P4- compatible switches [10, 12]. For in-
stance, if OpenFlow-supported hardware switches are available
at the edge, the M2U and U2M translations original conducted
by OVS-T can be re-implemented in the corresponding egress

6

Accepted to appear in IEEE Network ©2021 IEEE

and ingress pipelines, respectively. A complete design is
beyond the scope of this article and left as future work.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their con-
structive feedback. The work of Shouxi Luo was supported by
the NSFC under Grant 62002300 and the China Postdoctoral
Science Foundation under Grant 2019M663552. The work
of Pingzhi Fan was supported by the NSFC under Grant
61731017 and the 111 Project under Grant 111-2-14.

REFERENCES

[1] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rot-
tenstreich, and M. Hira, “Elmo: Source routed multicast
for public clouds,” IEEE/ACM Transactions on Network-
ing, vol. 28, no. 6, pp. 2587–2600, 2020.

[2] X. Li and M. J. Freedman, “Scaling ip multicast on
datacenter topologies,” in CoNEXT, 2013, pp. 61–72.

[3] S. Luo, H. Yu, K. Li, and H. Xing, “Efficient file
dissemination in data center networks with priority-based
adaptive multicast,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 6, pp. 1161–1175, 2020.

[4] W. Jia, “A scalable multicast source routing architecture
for data center networks,” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 1, pp. 116–123,
January 2014.

[5] W. Cui and C. Qian, “Scalable and load-balanced data
center multicast,” in GLOBECOM, Dec 2015, pp. 1–6.

[6] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado, “The design and implemen-
tation of open vswitch,” in NSDI, May 2015, pp. 117–
130.

[7] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Bir-
man, R. Burgess, G. Chockler, H. Li, and Y. Tock, “Dr.
multicast: Rx for data center communication scalability,”
in 5th EuroSys, 2010, pp. 349–362.

[8] R. Zhu, D. Niu, B. Li, and Z. Li, “Optimal multicast in
virtualized datacenter networks with software switches,”
in IEEE INFOCOM, 2017, pp. 1–9.

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown, “Reproducible network experiments using
container-based emulation,” in 8th CoNEXT, 2012, pp.
253–264.

[10] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and
Y. Wang, “A comprehensive survey of interface protocols
for software defined networks,” Journal of Network and
Computer Applications, vol. 156, p. 102563, 2020.

[11] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer, “Dynamic
scheduling of network updates,” in SIGCOMM, 2014, pp.
539–550.

[12] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The
programmable data plane: Abstractions, architectures, al-
gorithms, and applications,” ACM Comput. Surv., vol. 54,
no. 4, May 2021.

[13] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart,
and G. Carle, “Throughput and latency of virtual switch-
ing with open vswitch: A quantitative analysis,” J. Netw.
Syst. Manage., vol. 26, no. 2, pp. 314–338, Apr. 2018.

[14] S. Floyd and E. Kohler, “Internet Group Management
Protocol, Version 3,” RFC 3376, 2002.

[15] M. Besta, M. Schneider, M. Konieczny, K. Cynk, E. Hen-
riksson, S. D. Girolamo, A. Singla, and T. Hoefler,
“Fatpaths: Routing in supercomputers and data centers
when shortest paths fall short,” in SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2020, pp. 1–18.

Shouxi Luo is currently a Lecturer with the School of Computing and
Artificial Intelligence, Southwest Jiaotong University, China. His research
interests include data center networks, software-defined networking, and
networked systems.

Huanlai Xing is currently an Associate Professor with the School of
Computing and Artificial Intelligence, Southwest Jiaotong University, China.
His research interests include mobile-edge computing, network function
virtualization, software-defined networking, and evolutionary computation.

Pingzhi Fan is currently a Distinguished Professor and the Director of the
Institute of Mobile Communications, Southwest Jiaotong University, China.
His research interests include vehicular communications, wireless networks
for big data, signal design & coding, etc. He is a Fellow of IEEE, IET, CIE,
and CIC.

7

	Introduction
	SDM Overview
	SDM Data Plane
	Integrated OVS-Pair
	Multicast-to-Unicast Translation (M2UT)
	Unicast-to-Multicast Translation (U2MT)

	Rule Repopulation

	SDM Control Plane
	Analysis
	Formulation
	Algorithms
	Receiver Join
	Receiver Leave

	Performance Evaluation
	Methodology
	Metrics and baselines
	Network and Workloads

	Results

	Conclusions and Discussions
	Biographies
	Shouxi Luo
	Huanlai Xing
	Pingzhi Fan

