
Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

Efficient and Flexible Component Placement for
Serverless Computing

Shouxi Luo, Member, IEEE, Ke Li, Huanlai Xing, Member, IEEE, and Pingzhi Fan, Fellow, IEEE

Abstract—Nowadays, serverless computing has been widely
employed and viewed as the new paradigm of cloud computing.
Technically, serverless applications are made up of function
components, which are packaged as specific layered files named
container images. In production, different components are de-
signed to partially share layers; and during the deployment, the
hosting servers have to download the missing layers first, which
might dominate the application startup delay.

In this paper, we look into optimizing the deployment of
serverless applications under the operational goals of energy
saving and load balance, by exploring the reusability among
involved container images to conduct content-aware component
placements explicitly. We find that the two involved optimization
problems can be formulated as multi-objective (mixed) integer
linear programs, and prove that their common building block of
minimizing the weighted sum of deployment cost for a given set
of serverless components is NP-hard. To be practical, we develop
an efficient yet flexible heuristic solution named BFGP (Best
Fit Greedy Placement) which involves three variants BFGP-Full,
BFGP-ES, and BFGP-LB for the problem. Performance studies
show that BFGP is effective, expressive, and efficient. It not only
achieves near-optimal placement very efficiently but also supports
high-level operational policies like energy saving and load balance.

Index Terms—Cloud, service placement, serverless, energy
saving, load balance

I. INTRODUCTION

To simplify the use of cloud resources while providing a
more fine-grained cost model for elastic applications, cloud
providers like Amazon, Google, and Microsoft recently pro-
pose the new service model of Function as a Service (FaaS),
making the wave of serverless computing [1, 2]. In emerging
serverless computing, the implementation of an application
is decoupled into multiple stateless, event-driven components
(i.e., functions). During the processing, these function com-
ponents are launched on-demand and in pipeline respecting
the dynamic workload. Instead of peer-to-peer messaging,
they communicate with each other using high-performance

Manuscript received 2 July 2023; revised 12 January 2024; accepted
14 March 2024. The work of Shouxi Luo was supported by NSFC
Project No.62002300; the work of Ke Li was supported by NSFC Project
No.62202392, Project No.NDS2022-1 of Network and Data Security Key
Laboratory in Sichuan Province, and NSFSC Project No.2023NSFSC0459;
the work of Pingzhi Fan was supported by NSFC Project No.U23A20274.
(Corresponding author: Shouxi Luo.)

Shouxi Luo, Ke Li, and Huanlai Xing are with the School of Com-
puting and Artificial Intelligence, Southwest Jiaotong University, Chengdu,
611756, China, and with the Engineering Research Center of Sustainable
Urban Intelligent Transportation, Ministry of Education, China (e-mail:
sxluo@swjtu.edu.cn, keli@swjtu.edu.cn, hxx@swjtu.edu.cn).

Pingzhi Fan is with the Key Laboratory of Information Coding and
Transmission, CSNMT Int Coop. Res. Centre, Southwest Jiaotong University,
Chengdu, 611756, China (e-mail: p.fan@ieee.org).

Layer 0

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

OS related base image e.g., Ubuntu 22.04

Dependencies/drivers e.g., libslang, libc, cuda

Framework code/bin e.g., PyTorch, TensorFlow

APP code/bin e.g., ResNet, LSTM

System updates e.g., Ubuntu 22.04.3

Layer 1

Components to deploy

Different components
share layers partially

Fig. 1: An example of deploying containerized components
for serverless applications in clouds.

back-end storage and message services provided by the cloud
provider (e.g., AWS S3, Amazon SQS). Such a paradigm
makes the deployed applications super easy to scale from
zero to “infinity”, and greatly simplifies the operation needed
by developers, thus becoming more and more popular. In-
deed, serverless computing is predicted as the dominant cloud
computing paradigm in the near future [1], and has already
been widely employed for applications like web service, data
processing, internet-of-things, machine learning, etc [3, 4]. Ac-
cordingly, optimizing the performance of serverless platforms
has become a crucial objective for cloud providers [2].

Nowadays, serverless computing platforms like AWS
Lambda, Azure Function, IBM OpenWhisk, and Kubeless,
typically use Container, a lightweight virtualization technique,
to manage their function instances [5, 6]. According to the
workflow of how a containerized function component comes
online, the lifecycle of a serverless function, on either a
physical or virtual machine, can be split into two phases as
Figure 1 shows: 1) fetch the involved component’s container
image(s) to deploy, then 2) instantiate the function instance(s)
on-demand to run, which together dominate the startup delay
of serverless application. In production, these two processes
are triggered in multiple scenarios including fresh deployment,
service migration, and scaling-up. As a shorter startup time
yields a lot of advantages to both the system and application,
optimizing the deployment delay is important and urgent [7].

Recently, a lot of efforts have been put into the aforemen-
tioned optimization [8–14]. Basically, these proposals mainly
focus on designing schemes to mask the deploy time by
pipelining the delivery of container images and cold-start
of function instances [7, 15], or to accelerate the transfers
of container images in deployment using advanced transport
protocols [11, 12] or peer-to-peer system [13, 14]. Unfor-
tunately, these solutions overlook the fact that the choice
of the hosting servers for application components essentially
has significant impacts on the deployment, as it determines

1

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

the traffic volumes that the fetch of container images would
trigger, resulting in performance loss. More specifically, as
Figure 1 shows, in practice, a container image is made up
of multiple layers; different functions’ images are likely to
share layers partially and a server generally hosts multiple
function instances by design. Hence, by carefully co-locating
function instances with shared layers on the same server, it is
possible to reduce the amount of data to transmit during the
deployment. Indeed, as we will show in §II, a well-designed
service deployment scheme not only reduces the startup delay,
but also leads to smaller storage- and network- footprints,
and alleviates the impacts of service deployment on other
co-located running applications. Thus, serverless platforms
desire performance-optimized service deployment schemes.
Although recent works [16] and [17] try to explore the layered
and shareable structures of docker images to speed up the
startup of service, they ignore the high-level operational goals
like energy saving and load balance that the system might also
pursue, thus are far from optimal for these operational goals.

To fill the gap, in this paper, we look into the problem
of how to optimize the deployment of serverless applications
respecting the operational goals of energy saving and load bal-
ance, with content-aware component placement. Indeed, be-
sides FaaS-based serverless computing, our proposed schemes
can be applied to other container-based platforms like Platform
as a Service (PaaS) and Container as a Service (CaaS) as well.

Specifically, we build mathematical models to explicitly
formulate the problem of cost-efficient placement of container-
ized serverless applications under these two operational goals
and find that they are NP-hard in theory. Accordingly, we
design BFGP (Best Fit Greedy Placement), an efficient yet
flexible heuristic algorithm involving the variants of BFGP-
Full (for purely deployment cost minimization), BFGP-ES (for
deployment cost optimization & energy saving), and BFGP-
LB (for deployment cost optimization & load balance) to
conduct practical placements. The key design insights behind
BFGP is that, by placing components on servers one-by-one
and limiting the candidate set for each round of placement
appropriately, we can pursue the scheduling goal of either
energy saving or load balance with the same scheduling
framework. Simulation results based on synthesized traces
confirmed that BFGP achieves near-optimal performances in
terms of the involved traffic volume, and is expressive to
implement high-level operational policies like energy saving
and load balance. Hence, it is able to reduce both the startup
delay and network interference in co-located running services.

The main contributions of this paper are four-fold:
• A thorough analysis that identifies the benefits of content-

aware placement of containerized components, along with
the challenges for the design of a practical solution (§II).

• Math models that formulate the content-aware component
placement optimization problem under the operational
goals of energy saving and load balance explicitly for
serverless application (§III).

• BFGP, an efficient and flexible algorithm framework,
together with the variants of BFGP-Full, BFGP-ES, and
BFGP-LB, to achieve effective placements of container-
ized components, respecting policies like energy saving

and load balance (§IV).
• Extensive simulations that assess the effectiveness, ex-

pressiveness, and efficiency of the proposed BFGP (§V).
Finally, a short discussion of related works follows in §VI.

Conclusions and possible future works are presented in §VII.

II. BACKGROUND AND MOTIVATION

A. Reusability Among Layered Container Images

In serverless computing, the implementation of a function
component involved in service, along with all its dependencies,
is usually packaged as a container image. Based on this image,
container runtime platforms like Docker can create and launch
instances to handle the dynamic workload on-demand [1]. As
Figure 1 shows, in production, a container image is generally
made up of multiple layers. According to the container’s
design, these images must remain self-contained; as a result,
the images of different function components might rely on
common dependency files such as the same libraries and
software frameworks. For example, they may run on Ubuntu
22.04, require the same libraries such as libslang, libstdc++,
libc, and GPU drivers, or use the same version of Java run-
time virtual machine. Thus, different container images share
layers, saving both the storage and network footprints.

Moreover, with the employment of emerging layer opti-
mization techniques [18], we argue that the reusability of
layers among container images would continue to increase;
hence, content-aware containerized component deployment is
attractive to modern cloud systems.

B. Benefits of Context-aware Component Placement

Specifically, when different container images share layers,
by co-locating function components whose images share layers
on the same server, we can obtain the following benefits.

• Smaller storage and network footprints: The direct
advantage of content-aware placement is that, for each
layer, the hosting server would just download the layer
only once and hold one copy for it in the local storage,
resulting in saved network and storage footprints.

• Lower startup delays: According to most of the current
commercial designs, a container instance could not be
launched until its involved container image is already.
A smaller network footprint means that the time needed
for “downloading” is reduced. Thus, content-aware place-
ment would lead to smaller startup delays as well.

• Less network interference: In production, there are
generally many other services coexisting in the same
cluster, some of which might provide user-facing services,
and thus are very sensitive to network delays introduced
by burst traffic. A smaller network footprint also means
reduced network impacts of image downloading over co-
located active time-sensitive applications.

C. Limitations of Existing Schemes

Regarding the placement of containerized components for
continually incoming requests, modern industrial-grade server-
less computing platforms like OpenWhisk, AWS Lambda, and

2

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

Azure Functions, generally rely on simple greedy schemes—
despite various advanced optimization designs having been
developed [10, 19, 20], at their core, multiple deployment
tasks are treated as being able to reuse images, if and only
if they are triggered by the invocations of the same function,
without taking advantage of the partial reusability of layers
among different functions’ container images. For example, the
default scheduler of OpenWhisk places the duplicated requests
of the same function to the same yet randomly selected server
to reduce cold start in a load-agnostic way [19]; AWS Lambda
employs a similar consolidation policy but would select a new
server in case those servers already in use do not have enough
remaining resources [19].

Recently, an increasing amount of effort has been put
into conducting layer-aware placement optimization of con-
tainerized components and services in the context of mobile
edge computing (MEC) [21–23]. However, there are several
significant differences between these prior studies and our
work, making these existing proposals unable to deal with the
problem this paper aims to solve.

Firstly, in MEC, edge servers are geographically distributed
and networked with bandwidth-limited and heterogeneous
WAN connections. As a result, the communication cost be-
tween the related components (e.g., those belonging to the
same application) and the final end-users (e.g., mobile phones)
must be taken into account[21–23]. While in intra-datacenter
serverless computing, the underlying physical servers are net-
worked with ultra low-latency, high-bandwidth, non-blocking
datacenter networking techniques (e.g., RoCEv2 [24]); differ-
ent functional components of the same application generally
communicate with each other using the high-performance
back-end storage and message services provided by the cloud
provider, and the locations of components have little impact
on the communication cost to the users outside the cloud.

Secondly, besides reducing the cost of downloading con-
tainer images, modern cloud providers might also pursue
changeable high-level operational goals like energy saving
and load balance [20, 25]. More specifically, to improve
performance efficiency and accelerate the completion of tasks,
the operators might prefer to distribute the workload to more
machines. However, more active machines generally lead to
larger energy consumption and thus higher overall costs. Thus,
to enhance the pricing competitiveness for service providers
and sustainable computing, the operational policies of energy
saving might be preferred in some cases [26, 27]. Moreover,
nowadays, an increasing number of cloud service providers are
powered by renewable yet unstable energy such as solar, wind,
and hydro; and once the renewable energy is insufficient, the
stored or brown energy would be used [26, 28]. Accordingly,
the price of energy is likely to be unstable, leading to the
shift of operational policies from load balance to energy
saving; and vice versa. Hence, we argue that supporting the
operational goal of energy saving and load balance is attractive
for deploying containerized components for modern intra-
datacenter serverless computing.

D. Design Challenges

All the above observations motivate us to design efficient al-
gorithms to conduct content-aware placement for containerized
serverless applications. However, to be a practical solution, the
proposed scheme should hold the following properties.

• Effectiveness: First of all, since content-aware applica-
tion deployments could bring with us the aforementioned
excellent benefits, to obtain these advantages as much as
possible, the proposed algorithm should be effective to
achieve optimized service deployment.

• Expressiveness: Secondly, large-scale data centers gen-
erally involve more than one type of computing and
network hardware, each with a different capacity. For
instance, a portion of the servers might get equipped with
the newest or a specific version of GPU, FPGA, or TPU
cards, which are required by some of the applications
in turn. Also, in different time periods, operators might
prefer diverse high-level policies like consolidation for
energy saving, or dispersion for load balance. Accord-
ingly, the proposed solution should be expressive to deal
with heterogeneity of hardware and diversity of policy.

• Efficiency: Last but not least, the time cost of the
decision process might introduce non-trivial delays to the
deployment of cloud service, especially when the scale of
both the underlying data center cluster and deployment
task is huge. To be practical, the proposed algorithm
must run fast enough to obtain optimized deployments
for online requests within a reasonable time.

III. PROBLEM DESCRIPTION

In this section, we build two multi-objective (mixed) in-
teger linear program (ILP) models to precisely describe the
problems of content-aware service deployments (§III-A) under
the operational goals of energy saving and load balance,
respectively. We find that they are expressive to support
hardware heterogeneity (§III-B), and the problems are NP-hard
in theory (§III-C). Table I summarizes all the used notations.

A. Model

Without loss of generality, let’s consider the task of de-
ploying n function components to a cluster consisting of
m machines/servers. These containerized components might
belong to the same application, or multiple applications in case
batched service deployments are employed. For component i,
we use Si to denote the set of its available candidate hosting
servers, di to denote its resource requirement and binary
variable xi,j to indicate whether function component i would
be deployed at server j, respectively. In case multiple instances
are needed to launch for a component, we can simply duplicate
the component and treat them as individuals in deployment.
As each component must be hosted by a server, we have the
following constraints:∑

j∈Si

xi,j = 1, ∀i. (1)

For these m servers, suppose that some of them have already
hosted applications and others have not thus are in the low

3

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

TABLE I: Table of notations

Term Meaning

n Number of function components
m Number of machines/servers
l Number of distinct layers
i, j, k Indexes of function components, servers, and distinct layers
aj,k 1 if layer k is hosted on server j already, or 0 otherwise
bj 1 if server j is active already, or 0 otherwise
cj Remaining capacity of server j
cj Total capacity of server j
di Resource demand of component i
gj Energy cost of activating server j
wj,k Cost of delivering layer k to server j
Li The set of layers involved by component i
Si The set of servers that can host component i

xi,j 0-1 variable, whether component i is hosted by server j
yj,k 0-1 variable, whether layer k should be delivered to server j
zj 0-1 variable, whether server j is active after the deployment
ρ Real-valued variable, the maximum server load after deployment

power state for energy saving. We use bj with the value of 1
or 0 to denote the current status of server j (i.e., whether it
is active or not), and gj to denote the additional energy cost
if server j is active. We further assume that the remaining
capacity of server j is cj , and define the binary variable
zj to denote whether this server must be activated after the
deployment. Then, we have:

bj ≤ zj , ∀j, (2)

and the aggregated resource demand of its hosted components
should not exceed this limit:∑

i:j∈Si

dixi,j ≤ cjzj , ∀j. (3)

We assume that there are l distinct image layers in total and
the set of required layers for the i-th component is denoted by
set Li. On the server side, we use ai,k, a constant binary with
the value of 1 or 0, to indicate whether this server already
holds layer k or not, and employ the 0-1 variable of yj,k to
indicate whether server j needs to fetch layer k. In case the
target server does not have some required image layers, it
has to download them from the image registry, yielding the
following constraints for aj,k, xi,j , and yj,k.

xi,j ≤ aj,k + yj,k, ∀(i, j, k). (4)

Minimum deployment cost & energy saving. By taking all
the above into account, it is straightforward to formulate the
problem of finding the component placement with both the
minimum fetching cost (e.g., time cost) for fast startup and
the minimum number of active servers for energy saving, for
the given set of serverless components as a multi-objective
integer linear program of (6). Here, wj,k is a tunable parameter
denoting the cost it takes for the server j to fetch layer k.

xi,j , yj,k, zj are binary, ∀(i, j, k), (5)

Minimize

 m∑
j=1

l∑
k=1

wj,kyj,k,

m∑
j=1

gjzj

 s.t. {(1)− (5)} . (6)

Minimum deployment cost & load balance. Suppose that the
original capacity of server j is cj . By using the variable of ρ to
denote the maximum server load after the deployment, we have
the constraints of (7). Accordingly, the problem of finding the
optimal component placement yielding the minimum fetching
cost (i.e., time cost) and balanced loads can be formulated as
the multi-objective mixed-integer linear program of (8).

ρ ≥
cj − cj +

∑
i:j∈Si

dixi,j

cj
, ∀j, (7)

Minimize

 m∑
j=1

l∑
k=1

wj,kyj,k, ρ

 s.t. {(1)− (5), (7)} . (8)

Note that the original and remaining capacity of server j are
denoted by cj and cj , respectively; thus,

cj−cj+
∑

i:j∈Si
dixi,j

cj
in the constraint (7) represents server j’s normalized load after
this round of complement deployments. Besides the fetching
cost, i.e.,

∑m
j=1

∑l
k=1 wj,kyj,k, the model of (8) also tries to

minimize the maximum load among all servers, i.e., ρ.

B. Expressiveness

Notably, for the i-th task, Si is configured by the operator,
implying the set of server nodes that this function component
could be placed at. Likewise, the value of involved wj,k is con-
figurable as well, denoting the normalized cost of downloading
layer k to server j. In production, large-scale data centers often
involve multiple types of hardware configurations, resulting
in heterogeneous compute- and forwarding- capacities among
server nodes. By selecting Si, the set of candidate servers
for each task i, properly, constraints (1) and (3) can precisely
capture the specific hardware requirements involved by each
component. In addition, let us denote the normalized through-
put of fetching layer k with volume vk to server j by tj,k,
and further define wi,j as vk

tj,k
. Then, the heterogeneity of the

bandwidth has been embodied in the objectives of (6) and (8)
and a deployment with less fetching cost is preferred.

C. Hardness

It is obvious that the common building block of models (6)
and (8) is to minimize the deployment costs for the given
components with proper placements, which is an Integer
Linear Program (ILP). As Theorem 1 clarifies, it is NP-hard.

Theorem 1. The common building block of (6) and (8), i.e.,
minimizing the weighted sum of deployment cost for the given
components, is NP-hard.

Proof. Indeed, determining the feasibility of the problem is
NP-hard as well. We conduct the proof by reducing the well-
known NP-complete subset-sum problem [29] to it. Consider
that there are two homogeneous servers A and B, whose
remaining capacities are cA and cB , respectively. Then, the
task is to deploy n components whose resource demands are

4

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

d1, d2, · · · , dn, to these two servers, respectively. Without loss
of generality, we assume that cA, cB , and di(i = 1, · · · , n)
are all integers and their values satisfy:

∑n
i=1 di = cA+cB . In

such a situation, to figure out whether there exists a feasible
placement, we have to solve the NP-hard subset-sum problem
of finding a subset of tasks summing to cA.

IV. SOLUTIONS

As (6) and (8) are NP-hard problems, we propose BFGP
(Best Fit Greedy Placement), a heuristic yet expressive place-
ment algorithm involving the variants of BFGP-Full, BFGP-
ES, and BFGP-LB, based on the problem characteristics.

In production, industrial-grade container platforms like K8S,
Docker Swarm, and Mesos [30], and serverless computing
platforms like OpenWhisk and Azure Function [10, 19, 20]
generally employ inner controllers for workload and resource
management in the control plane. Thus, it is straightforward
to deploy our proposed schemes in these controllers, and en-
gineering efforts are needed to carry out the implementation.

A. Design Insights

Obviously, the main benefits of the content-aware placement
come from the facts that: 1) given a function component if
a server already hosts parts or all of the layers it involves,
deploying the component on this server would be a good
choice as there is no need to transmit these hosted layers;
2) likewise, in case two function components share many lay-
ers, then placing them on the same server would greatly reduce
the deployment cost as well. Based on these observations,
a reasonable heuristic design is to i) find the placement of
function components one by one; and ii) for each component,
place it on the server with the smallest cost greedily. In our
design, we use tuples to denote the weights used for server
comparison. Just like the tuple type in Python programming
language, two tuple values are compared lexicographically
using the comparison of their corresponding elements.

Regarding the objectives like energy saving and load bal-
ance, we find that by dynamically selecting the candidate
server set of each component to encode such high-level
requirements, we can straightforwardly achieve multi-objective
complement placement. To do so, for the i-th component’s
candidate server j with the remaining capacity of cj , we define
its selection weight as pj , which is a tuple value related to the
values of di, cj , and the type of targeted operation objectives
(i.e., energy saving or load balance). Then, for the deployment
of component i whose candidate servers for the deployment
are Si, we only consider the ⌊κ|Si|⌋-largest servers from Si,
where 0 < κ ≤ 1. Here, κ is a tunable parameter controlling
the trade-offs BFGP would make between the two objectives
involved in models (6) and (8). A larger κ would bring
more benefits to the minimization of deployment cost: when
⌊κ|Si|⌋ = 1, BFGP degenerates into the design that pursues
the single goal of either energy saving or load balance; and
once κ = 1, BFGP would neglect the other objective.

As we will show, by controlling the way how pj is calcu-
lated, we can achieve the objectives of energy saving and load
balance with an algorithm originally designed for the common

NO

YES

Have all components
in O been placed?

Return {xi,j}

End

Initialize j* with nil and t*
 with inf, pop a component,

saying i, to place

Get Si, the set of candidate
servers for component i,

whose resource demand is di

No

YES
Have all servers in
Si been checked?

Compute t, the utility of
deploying component i to

machine j

YES

t<t* ?

j*=j, t*=t

NO

Place component i to
machine j* , by letting

xi,j*=1, cj*=cj*-di,and dj* =1

For each layer k involved in
this component, let aj*,k=1

Start
Get the involved

inputs and system
inner states

Set xi,j to 0 for all
components i and

machine j

Get O, the list of ordered
components, to deploy

Fig. 2: The block diagram of BFGP specified by Algorithm 1.

building block problem of minimizing the weighted sum of
deployment cost for the given components (i.e., BFGP).

B. Algorithm Details

Algorithm 1 along with the block diagram of Figure 2
sketches the workflow of the proposed BFGP (Best Fit Greedy
Placement) algorithm, which is able to achieve optimized
deployment cost for the common building block problem of
models (6) and (8).

Basically, BFGP places function components one-by-
one (Line 5); and for the placement of each compo-
nent, BFGP greedily embeds it at the server that intro-
duces the minimum additional deployment cost (Lines 8-
12). Here, the deployment cost is evaluated by the tu-
ple of

〈
max(0, di − cj),

∑
k∈Li

wj,k(1− aj,k)
〉

rather than∑
k∈Li

wj,k(1 − aj,k). This is to handle the case when there
does not exist a deployment that satisfies all their resource
demands without overloading servers. With such a design,
BFGP would let the system admit all deployment requests
and balance their loads among all available servers in such
situations. Given that it would be much easier to find a
server with sufficient capacity to host a component with
small resource demands, BFGP processes components in non-
increasing order of their demands (Line 4). Moreover, as
§III-B has discussed, by configuring wi,j values appropriately,
BFGP supports hardware heterogeneity.

As Algorithm 2 shows, the implementation of getS() is
the key to achieving the objectives of energy saving and load
balance with BFGP. Here, H() is the Heaviside function as (9)
defines. When energy saving is desired, Algorithm 2 prefers to
select the top-k heaviest-loaded servers with enough remaining
resources to host the component (i.e, BFGP-ES); while when
load balance is pursued, the top-k lightest-loaded servers
are preferred (i.e., BFGP-LB). Besides, we also consider the
design that getS(di, Si) directly returns Si, purely pursuing
the goal of deployment cost minimization without concerning

5

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

Algorithm 1: Best Fit Greedy Placement (BFGP)
Input: {di}, {Si}, {Li};
Data: {aj,k}, {bj}, {cj}, {wj,k};
Output: {xi,j};

1 foreach i← 1, 2, · · · , n do
2 foreach j ← 1, 2, · · · ,m do
3 xi,j ← 0;

4 O ← getOrderedComponentsToDeploy();
/* in non-increasing order of their dis */

5 foreach i ∈ O do
6 j∗ ← nil; t∗ ← +∞;
7 Ŝi ← getS(di, Si); /* get candidate servers */

8 foreach j ∈ Ŝi do
9 t← ⟨max(0, di − cj),

∑
k∈Li

wj,k(1− aj,k)⟩;
10 if t < t∗ then
11 j∗ ← j; t∗ ← t;

12 xi,j∗ ← 1; cj∗ ← cj∗ − di; bj∗ ← 1;
13 foreach k ∈ Li do
14 aj∗,k ← 1;

15 return {xi,j} ;

Algorithm 2: The Implementation of getS()
Input: di, Si;
Data: {bj}, {gj}, κ, policy, {cj};
Output: Ŝi;
/* H() is the Heaviside function of (9) */

1 if policy is Pure_Cost_Minimimization then
/* BFGP-Full */

2 return Si;
3 else if policy is Energy_Saving then

/* BFGP-ES */

4 foreach j ∈ Si do
5 pj ← ⟨H(cj − di), bj ,

cj
gj
⟩;

6 else if policy is Load_Balance then
/* BFGP-LB */

7 foreach j ∈ Si do
8 pj ←

〈
H(cj − di),

cj
cj
, bj

〉
;

9 k ← ⌊κ|Si|⌋; /* 0 < κ ≤ 1 */

10 Ŝi ← select the top-k servers in Si respecting their pjs;
11 return Ŝi;

operational goals (i.e., BFGP-Full).

H(x) =

{
1 x ≥ 0

0 x < 0
. (9)

C. Time Complexity

Obviously, given m servers, it is easy for Algorithm 2 to
obtain the top-(κm) candidate servers within O(m2) times,
where 0 < κ ≤ 1. Based on this, the worst-case time
complexity of BFGP is about O(n log n + n(m2 + lm + l)).

According to the property of O-notation [29], we would have
O(n log n+ n(m2 + lm+ l)) = O(n log n+ n(m2 +ml)) =
O(n(log n+m(m+ l))). Since m(m+ l) is generally larger
than log n, we would further obtain O(n(log n+m(m+ l)) =
O(nm(m+ l)) for the proposed BFGP algorithm.

V. PERFORMANCE EVALUATION

To study the performance of BFGP, in this section, we
use it to deploy synthesized containerized components and
analyze the deployment cost, computation time, proportions
of used/active servers, and the maximum server load in detail.
Extensive results indicate that the proposed BFGP is very
flexible and efficient: it is able to achieve near-optimal place-
ment of containerized components in terms of the deployment
cost very efficiently (within O(nm(m + l)) time) with the
variant of BFGP-Full, and is expressive to achieve high-level
policies like energy saving and load balance with the variants
of BFGP-ES and BFGP-LB, respectively.

A. Methodology

Workloads. According to the design, our proposed algorithms
can work properly for the case of deploying any number (i.e.,
n) of components to any number (i.e., m) of servers. We
find that despite the various absolute result values obtained,
consistent conclusions are observed when the relationship
between m and n changes. Thus, without loss of generality
and motivated by related works [16], we consider the case
of deploying n containerized function components into a
cluster with n servers (i.e., m = n). For each component,
both the number of its involved container image layers and
the size of each layer are randomly generated following the
distributions obtained from Docker Hub, a popular public
image registry [31]. In practice, different components might
share layers. We suppose that all these n components involve
Lt layers in total, which are made up of Ld diverse layers.
Here, both Lt and Ld are configurable parameters used in
tests. We define the value of 1 − Ld

Lt
as sr, i.e., the sharing

ratio of layers between components. In tests, the total number
of distinct layers in the cluster (denoted by Ld) is generated
by Lt ∗ (1 − sr). For each server, we further assume that
it already hosts ⌊sr ∗ Ld⌋ randomly selected image layers.
As for the cluster loads, we assume that each server is with
the capacity of c and the demands of components follow the
truncated uniform distribution of cmin(1, λU [0.9, 1.1]), where
λ is a controllable parameter and λc denotes the average
resource demand of a component and it can be placed on any
server. Regarding the current server states, we consider that
b# of them are active with an average load of b∗ before the
deployment. For the j-th server, its activation energy cost is
gi. By default, the values of n, sr, λ, c, κ, b#, b∗, and gj
are set to 100, 0.2, 0.2, 100, 0.3, 0, 0, and 1, respectively.
In tests, we vary the values of these parameters to study their
impacts on the deployment cost, computation time, proportions
of used/active servers, and maximum server load. For each
parameter setting, we run 20 trials and calculate both their
average, minimum, and maximum values to report.

6

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

Metrics. We mainly use the deployment cost calculated by
Equation (10), i.e., the weighted sum of the total container
image volumes to transfer. Here, B is a large penalty factor
with a default value of 1010. As the level of network interfer-
ence can be captured by the amount of triggered traffic, thus,
we can use the defined “cost value”, computed by E.q. (10),
as the metric of network interference. In some cases, we also
record the running time for the study of algorithm efficiency,
the proportion of used servers for the evaluation of energy
saving, and the maximum server load for the evaluation of load
balance. Our tests are conducted on a 64-bit Ubuntu 20.04
server equipped with 32GB RAM and one Intel(R) Core(TM)
i7-8700 (3.20GHz) CPU.

cost({xi,j}, {yj,k})=
m∑
j=1

l∑
k=1

wj,kyj,k

+Bmax(0,max
j

∑n
i=1dixi,j−cj

cj
)

(10)

Baselines. As we have analyzed in Section II-C, existing
schemes either have not made usage of the partial reusability
of layers among different containerized components [10, 19],
or do not support the changeable operational policies of energy
saving and load balance [16, 17, 21–23]. Thus, in tests, we
mainly consider the following schemes for performance study:

• MILP: components are deployed according to the opti-
mal results of the augmented model of (11), which is a
Mixed-Integer Linear Programming (MILP);

• MILP-Relax: components are deployed following the
rounded results of the relaxation of model (11);

• BFGP-Full: variant of BFGP, in which getS(di, Si)
returns Si, purely pursuing the goal of cost minimization;

• BFGP-ES: variant of BFGP, respecting the operational
goal of energy saving;

• BFGP-LB: variant of BFGP, respecting the operational
goal of load balance.

Minimize cost({xj,k}, {yj,k}) s.t. (1), (4), (5), (10). (11)

All the above schemes are implemented in Python 3 and
employ single-threaded designs. For both MILP and MILP-
Relax, the involved models are solved with the commercial
Mosek solver with default settings [32].

B. Results

BFGP is expressive. Figure 3 shows the performance of
deploying n components to n servers, under the control of
different schemes, when n increases from 100 to 400. Results
in Figure 3a indicate that when the operational goal of either
energy saving or load balance is not considered, compared
with the optimal deployments conducted by MILP, both
BFGP-Full and MILP-Relax achieve near-optimal deployment
costs. Even though pursuing totally different operational goals,
BFGP-ES and BFGP-LB obtain almost the same deployment
costs (gap ≤ 3%), which are about 1.8 − 2.1× of those of
MILP. Regarding the proportion of used servers and their
maximum load shown in Figures 3c and 3b, as expected,
BFGP-ES and BFGP-LB are the best solutions, respectively.

100 200 300 400
Number of components/servers

10000

20000

30000

40000

De
pl

oy
m

en
t c

os
t BFGP-ES and BFGP-LB

MILP, MILP-Relax, and BFGP-Full

(a) Deployment costs

100 200 300 400
Number of components/servers

0.4

0.6

0.8

1.0

1.2

M
ax

im
um

 se
rv

er
 lo

ad

MILP
MILP-Relax
BFGP-ES

BFGP-LB
BFGP-Full

(b) Maximum server loads

100 200 300 400
Number of components/servers

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 u
se

d
se

rv
er

s

BFGP-ES
MILP, MILP-Relax, and BFGP-Full

BFGP-LB

(c) Proportions of used servers

100 200 300 400
Number of components/servers

0

50

100

150

200

250

Co
m

pu
ta

tio
n

tim
e

(s
) MILP

MILP-Relax
BFGP-ES
BFGP-LB
BFGP-Full

(d) Computation time

Fig. 3: [Effectiveness and Expressiveness] Compared with
MILP, when the operational goals like energy saving or load
balance are not considered, both BFGP-Full and MILP-Relax
achieve near-optimal deployment costs. Moreover, BFGP-ES
and BFGP-LB obtain the best performance respecting their
design goals, respectively, showing that our BFGP algorithm
is expressive and flexible. Also, as expected, BFGP is very effi-
cient as all its variants are able to obtain results for large-scale
deployment tasks within tens or hundreds of milliseconds.

For example, to host 200 components, BFGP-ES employs
about 24% of the servers with a maximum load of 100%,
while BFGP-LB uses almost all servers with a balanced load
smaller than 40%. As a comparison, due to the unawareness
of the operational goal, MILP, MILP-Relax, and BFGP-Full
occupy about 60% of the servers with highly-skewed loads,
as their maximum server load approximates 100%.

BFGP is efficient. Figure d shows the computation times
these algorithms take. Roughly, with the increase of problem
scale, the time costs of MILP grow exponentially, up to about
240s per instance when m reaches 400. While BFGP-ES,
BFGP-LB, and BFGP-Full are very fast, taking less than about
0.08s, 0.09s, and 0.55s, respectively. Theoretically, as it is built
upon linear programming, MILP-Relax is able to obtain its
solutions within polynomial time by using off-the-shelf high-
performance solvers. However, we observe that its LP model
generally involves a large number of variables and constraints,
growing super-linear with the number of components and
servers. For instance, when deploying 200 components, the
model involves about hundreds of thousands of variables and
constraints, which increases to millions when the problem
scale grows up to 400. We also notice that, in some cases, due
to the relax-then-round designs, some servers’ loads under the
control of MILP-Relax are likely to exceed 100% even though
there are still servers with enough capacities. Accordingly,
those heuristic designs built upon LP relaxation do not suit
our problems. All the above results imply that the proposed
BFGP is not only very effective, but also expressive to support
the operational goals of energy saving and load balance.

Impacts of κ. To study the expressiveness of BFGP, we

7

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

0.0 0.2 0.4 0.6 0.8 1.0

5000

10000

15000

20000

25000

30000
De

pl
oy

m
en

t c
os

t MILP
MILP-Relax
BFGP-ES
BFGP-LB
BFGP-Full

(a) Deployment costs

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 u
se

d
se

rv
er

s

(b) Proportions of used servers

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 se
rv

er
 lo

ad

(c) Maximum server loads

Fig. 4: [Impacts of κ] There are trade-offs among the deploy-
ment cost, the proportion of used servers, and maximum server
load. With the increase of κ, both BFGP-ES and BFGP-LB
would degenerate to BFGP-Full. By tuning κ, both BFGP-ES
and BFGP-LB would achieve the desired high-level deploy-
ment policies of energy saving and load balance according
to their designs, with the cost of higher yet controllable
deployment costs.

vary κ, the ratio of servers selected from the candidates for
the deployment of BFGP-ES and BFGP-LB, then record its
impacts on the deployment cost, maximum server load, and
proportion of used servers. Predictably, as Figures 4b and 4c
show, when κ|Si| = 1, BFGP-ES and BFGP-LB achieve
their best performances, in terms of the proportion of used
servers, about 20% for BFGP-ES, and maximum server load,
about 20% for BFGP-LB, respectively. In such settings, they
ignore the goal of minimizing the deployment cost, leading
to very high deployment costs. As Figure 4a shows, with the
increase of κ, their deployment costs decrease significantly
and finally approximate those of MILP, MILP-Relax, and
BFGP-Full when κ = 1. However, results in Figures 4b and 4c
also imply that the improvement in the deployment cost is
with the price of more used servers for BFGP-ES, and higher
maximum server load for BFGP-LB. Interestingly, for BFGP-
ES, the growth of the proportion of used servers is likely to be
linear, while for BFGP-LB, the pattern of the increase of the
maximum server load can be split into three stages: it 1) firstly
increases from about 0.2 to 0.38 almost exponentially before
κ reaches 0.04, then 2) grows very slowly and linearly to 0.4
until κ = 0.7, and 3) finally rises to meet with the result of
BFGP-Full at κ = 1.

We also observe that the proportion of used servers for
BFGP-LB and the maximum server load for BFGP-ES also
drop with the increase of κ and finally meet with the results
of BFGP-Full. The above results show that there are trade-offs
among the deployment cost, proportion of used servers, and
maximum server load, among which κ is the key to control. By
tuning the value of κ, both BFGP-ES and BFGP-LB can make
a balance between their two optimization goals detailed in (6)
and (8) with respect to the use instances. The law of κ’s impact

0.2 0.4 0.6 0.8
Sharing ratio (sr)

0

10000

20000

De
pl

oy
m

en
t c

os
t

= 0.1
BFGP-ES
BFGP-LB
BFGP-Full

(a) Deployment costs

0.2 0.4 0.6 0.8
Sharing ratio (sr)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 u
se

d
se

rv
er

s = 0.1
BFGP-ES
BFGP-LB

BFGP-Full

(b) Proportions of used servers

0.2 0.4 0.6 0.8
Sharing ratio (sr)

0.4

0.6

0.8

1.0

M
ax

im
um

 se
rv

er
 lo

ad

= 0.1

BFGP-ES
BFGP-LB
BFGP-Full

(c) Maximum server loads

0.2 0.4 0.6 0.8
Sharing ratio (sr)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 u
se

d
se

rv
er

s = 0.5

BFGP-ES
BFGP-LB

BFGP-Full

(d) Proportions of used servers

Fig. 5: [Impacts of sr] A higher sharing ratio results in less
deployment costs for BFGP-Full, BFGP-ES, and BFGP-LB,
with the price of slightly increased proportions of used servers.

depends on the cluster configurations and workload patterns
and in the cases studied here, just letting κ = 0.1 yields
good balances between the introduced benefits and penalties
of deployment cost for both BFGP-ES and BFGP-LB.

In all these tests, the performances of BFGP-Full are very
close to those of MILP and MILP-Relax. As the solving of
both MILP and MILP-Relax is time-costly, in the following
study, we mainly use BFGP-Full as the baseline.

Impacts of sr. By default, the value of the sharing ratio
parameter is set to 0.2. To investigate its impact, we vary the
sr value from 0.1 to 0.9. As Figure 5 shows and as expected,
a larger sharing ratio would result in less deployment cost
for all the test schemes; yet, for both BFGP-ES and BFGP-
LB, the level of sharing has few impacts on their proportions
of used servers and maximum server loads. In consideration
of the fact that more and more advanced layer optimization
techniques are on their way [18], we argue that the proposed
BFGP algorithm(s) would bring increased benefits to future
applications. Also, it shows that, for BFGP-Full, the growth of
sr leads to a slight decrease in their proportion of used servers
and increases in the maximum load. This is reasonable. Recall
that BFGP-Full repeatedly places each component to the server
introducing the minimum deployment cost; when the sharing
ratio is high, minimizing the deployment cost leads to the goal
of content-aware component consolidation, yielding reduced
used servers and increased maximum server loads. As shown
in Figure 4, with the increase of κ, both BFGP-ES and BFGP-
LB will degenerate to BFGP-Full. Thus, we further test the
behaviors of BFGP-ES and BFGP-LB by increasing κ to 0.5;
the results in Figure 5d confirm our analysis.

Impacts of b#. Next, we look into the case in which b#m
randomly selected servers are already active and are hosting
other applications with an average load of b∗. In tests, the
loads of pre-active servers are randomly generated following
the uniform distribution of [0, 0.6] (i.e., b∗ = 0.3), and we vary
the value of b# from 0.1 to 0.8. Figure 6 shows the impact

8

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

0.2 0.4 0.6 0.8
b#

0
5000

10000
15000
20000
25000

De
pl

oy
m

en
t c

os
t

b * = 0.3
BFGP-ES
BFGP-LB

BFGP-Full

(a) Deployment costs

0.2 0.4 0.6 0.8
b#

0.4

0.6

0.8

1.0

M
ax

im
um

 se
rv

er
 lo

ad

b * = 0.3

BFGP-ES
BFGP-LB
BFGP-Full

(b) Maximum server loads

0.2 0.4 0.6 0.8
b#

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n
of

 a
ct

iv
e

se
rv

er b * = 0.3

BFGP-ES
BFGP-LB
BFGP-Full

(c) Proportions of active servers

0.2 0.4 0.6 0.8
b#

0.0
0.2
0.4
0.6
0.8
1.0

Pr
op

or
tio

n
of

 u
se

d
se

rv
er

s b * = 0.3

BFGP-ES
BFGP-LB
BFGP-Full

(d) Proportions of used servers

Fig. 6: [Impacts of b#] The ratio of pre-active servers has few
impacts on the deployment cost; while there is still room for
the optimization of the proportion of used servers for BFGP-
LB under the operational goal of load balance.

of b#. As Figure 6a implies, for all schemes, the deployment
costs remain stable with the change of b#, i.e., about 6000 for
BFGP-Full, and about 11900 for both BFGP-ES and BFGP-
LB, respectively. Regarding the maximum server load, as
shown in Figure 6b, the results of BFGP-Full and BFPG-
LB keep consistent values of almost 1, and 0.6, respectively.
However, for BFGP-ES, more pre-active servers would lead
to a smaller maximum server load—with the value of b#

increasing from 0.1 to 0.9, the maximum server load under
the schedule of BFGP-ES decrease from the high value of
about 1 to approximate the results of BFGP-LB, i.e., 0.6. This
is consistent with the design of BFGP-ES: it would prefer to
select servers that are already active or used as candidates in
Algorithm 2; accordingly, with the growth of b#, BFGP-ES
would evolve into a design close to that of BFGP-LB.

As expected, the results in Figure 6c also show that, for both
BFGP-ES and BFGP-Full, the proportion of active servers
after the deployment is increasing with b#, starting from about
0.25 and 0.63 to about 0.83 and 0.95, respectively. However,
as shown in Figure 6d, for BFGP-LB, the proportion of servers
that are actually used to host these n components decreases,
from about 0.9 to about 0.6, and finally approximates the
results achieved by BFGP-Full. Such results imply that, for the
operational goal of load balance, there is still room to reduce
the number of used servers without enlarging the maximum
server load. We leave this as future work. Regarding BFGP-
ES, the proportion of its actually used servers also increases
slowly from about 0.3 to about 0.6, since these pre-active
servers already host applications with an average load of b∗,
thus the usage of more pre-active servers leads to a larger
number of used servers. As for BFGP-Full, the proportion
of actually used servers remains stable since these pre-active
servers are not heavy-loaded.

Impacts of b∗. Last but not least, we also change b∗, the
average load of these pre-active servers, to study its impact on

0.1 0.2 0.3 0.4 0.5
b*

0
5000

10000
15000
20000
25000

De
pl

oy
m

en
t c

os
t

b# = 0.4
BFGP-ES
BFGP-LB

BFGP-Full

(a) Deployment costs

0.1 0.2 0.3 0.4 0.5
b*

0.4

0.6

0.8

1.0

M
ax

im
um

 se
rv

er
 lo

ad

b# = 0.4

BFGP-ES
BFGP-LB
BFGP-Full

(b) Maximum server loads

0.1 0.2 0.3 0.4 0.5
b*

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n
of

 a
ct

iv
e

se
rv

er b# = 0.4

BFGP-ES
BFGP-LB

BFGP-Full

(c) Proportions of active servers

0.1 0.2 0.3 0.4 0.5
b*

0.0
0.2
0.4
0.6
0.8
1.0

Pr
op

or
tio

n
of

 u
se

d
se

rv
er

s b# = 0.4

BFGP-ES
BFGP-LB

BFGP-Full

(d) Proportions of used servers

Fig. 7: [Impacts of b∗] The loads of pre-active servers have
few impacts on the deployment cost; while there is still room
for optimizing maximum server load for BFGP-LB under the
operational goal of energy saving.

the deployment performances. To highlight the comparison,
in tests, we fix the value of b# to 0.4 and increase b∗

from 0.1 to 0.5. As Figure 7a shows, like the increase of
b#, the deployment costs achieved by all schemes remain
stable. And in this case, the maximum server load would
increase, even for BFGP-LB. Indeed, confirmed by Figure 7b,
the growth of maximum server load is mainly caused by
our workload settings: for each pre-active serve, its load is
randomly synthesized following the uniform distribution of
U [0, 2b∗], which will dominate the maximum server load of
the entire cluster in the tests once b∗ ≥ 0.2. In addition,
according to the current design of Algorithm 2, BFGP-LB will
prefer to select pre-active servers as candidates, this results in
a reduced proportion of used servers with the growth of b∗ as
Figure 7d shows. We also find that, as only 40% of the servers
are configured to be active, the proportions of active servers
remain stable for BFGP-Full and BFGP-LB. Finally, like the
case of BFGP-LB shown in Figure 6, results show that, for
BFGP-ES, with the increase of b∗, even though the maximum
server load increases (Figure 7b), the proportion of actually
used servers remains almost the same (Figure 7d), suggesting
that there is still room for optimizing their maximum server
load under the operational goal of energy saving. We leave
this as future work.

VI. RELATED WORK

Our work is to optimize the deployment of serverless appli-
cations with content-aware component placement. To put it in
context, we start with describing related research on registry
enhancement, layer pre-distribution, p2p layer delivery, and
on-demand layer transmission, respectively.

Registry enhancement. In production, the centralized con-
tainer image registry is likely to be the bottleneck of the
entire system. To scale the registry out, Anwar et al optimize
registry clusters with techniques like two-level cache and

9

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

layer prefetching, based on the skewed nature of the pull
and push workloads observed in IBM’s clouds [33]. Likewise,
Zhao et al analyzed the structures of the container layers and
images hosted on the public registry of Docker hub [31],
and designed a flexible performance-optimized deduplication
Docker registry architecture by exploiting the observed high
file redundancy among public container layers [34]. Different
from them, CoMICon[35] develops a cooperative registry
system for Docker, enabling nodes to conduct distribution pulls
of the same image, thus reducing the service start times.

Layer pre-distribution. To migrate the bottleneck introduced
by the centralized registry, researchers have explored the idea
of pre-distributing container layers to selected servers to enable
parallel pull. For instance, Smet et al looked into the opti-
mization of placing container layers at strategic storage nodes,
such that more service deploy requests could get served within
the desired response time in edge computing [36]. Likewise,
Darrous et al studied the problem of pre-dispersing layers
and images across selected servers to reduce the maximum
retrieval time of an image to any other edge-server [37].
Although pre-dispersing container layers among the network
would help, the designs involved in [36] and [37] rely on
an unrealistic implicit assumption that the details of future
service deploy requests are known in advance. Moreover, to
accelerate the retrieval upon pre-dispersing, they both suggest
the optimization of downloading different layers of a container
from various strategic nodes in parallel [36, 37], a non-trivial
feature that has not been supported by off-the-shelf container
runtime systems like Docker and LXC.

P2P layer delivery. Another widely considered optimization
for the deployment of containerized service is to accelerate the
delivery of missed container layers. Motivated by the design
and success of peer-to-peer (P2P) file-sharing systems, many
enterprises and cloud providers have employed P2P techniques
like BitTorrent and its varieties to achieve fast dissemination
of container images in large-scale data centers. For example,
Uber and Alibaba have designed and opened source their
production solutions named Kraken [13] and Dragonfly [14],
respectively. Different from the problem of content-aware
service placement, these P2P solutions mainly focus on how
to accelerate the process of a given pull efficiently.

On-demand layer transmission. Based on the observations
that the start of a container usually only depends on a small
part of the entire container images, techniques like remote
image along with on-demand layer transmission have been
proposed. For example, Slacker employs centralized shared
storage to store layers for all images. With customized storage
drivers, works in Slacker can quickly provision container
layers to minimize the startup delay by lazily fetching [7].
To further develop this idea, Dadi even redesigns the structure
of container layers and builds a block-level image service [15].

Orthogonal with the above studies, the idea we explore in
this paper is to reduce the amount that it takes for the pull of
docker images with content-aware service placement. Indeed,
all the above techniques can be integrated with our proposed
content-aware deployment. Recently, there are two very re-
lated works, [16] and [17], that also explicitly exploit the

layered and shareable structures of docker images in service
deployment to speed up the service provisioning and reduce
storage consumption. However, their proposed algorithms are
less expressive since they do not support high-level operational
policies like energy saving and load balance.

VII. CONCLUSION AND FUTURE WORK

Nowadays, container-based serverless computing has
emerged as the new paradigm of cloud computing. This paper
studies the fundamental problem of how to place containerized
function components involved in serverless computing is the
best, in terms of both the deployment cost (e.g., startup delay
and the inter-service/application network interference) and
operational policies like energy saving and load balance. We
prove that the problem is NP-hard and design an efficient yet
flexible heuristic solution named BFGP to solve it. Extensive
simulation results show that the proposed BFGP not only
achieves near-optimal placements but also supports policies
like energy saving and load balance.

For future work, we plan to make a co-design of the
placement of containerized components and the delivery of
missing layers, such that the delay of service deployment could
be further reduced. Particularly, in some cases, a layer absent
at a server might be held by multiple other servers, and on the
contrary, different servers also might need to fetch the same
missing layer; accordingly, it is promising to employ advanced
transport protocols/solutions to achieve efficient transmissions
of layers intelligently.

REFERENCES

[1] P. Castro, V. Ishakian et al., “The rise of serverless com-
puting,” Communications of the ACM, vol. 62, no. 12,
pp. 44–54, Nov. 2019.

[2] S. Kounev, N. Herbst et al., “Serverless computing: What
it is, and what it is not?” Communications of the ACM,
vol. 66, no. 9, p. 80–92, aug 2023.

[3] N. Gottlieb, “State of the serverless community survey
results,” 2020, https://www.serverless.com/blog/state-of-
serverless-community/ [Online; accessed 18-Dec-2020].

[4] J. Jiang, S. Gan et al., “Towards demystifying serverless
machine learning training,” in Proceedings of the ACM
SIGMOD, June 2021, pp. 857–871.

[5] E. Oakes, L. Yang et al., “SOCK: Rapid task provisioning
with serverless-optimized containers,” in Proceedings of
the USENIX ATC, Boston, MA, Jul. 2018, pp. 57–70.

[6] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless
computing: A survey of opportunities, challenges, and
applications,” ACM Computing Surveys, vol. 54, no. 11s,
nov 2022.

[7] T. Harter, B. Salmon et al., “Slacker: Fast distribution
with lazy docker containers,” in Proceedings of the
USENIX FAST, Santa Clara, CA, Feb. 2016, pp. 181–
195.

[8] I. E. Akkus, R. Chen et al., “SAND: Towards high-
performance serverless computing,” in Proceedings of the
USENIX ATC, Boston, MA, Jul. 2018, pp. 923–935.

10

https://www.serverless.com/blog/state-of-serverless-community/
https://www.serverless.com/blog/state-of-serverless-community/

Published in IEEE Systems Journal (Volume: 18, Issue: 2, June 2024)

[9] A. Klimovic, Y. Wang et al., “Pocket: Elastic ephemeral
storage for serverless analytics,” in Proceedings of the
USENIX OSDI, Carlsbad, CA, Oct. 2018, pp. 427–444.

[10] M. Shahrad, R. Fonseca et al., “Serverless in the wild:
Characterizing and optimizing the serverless workload at
a large cloud provider,” in Proceedings of the USENIX
ATC, Jul. 2020, pp. 205–218.

[11] S. Luo, T. Ma et al., “Efficient multisource data delivery
in edge cloud with rateless parallel push,” IEEE Internet
of Things Journal, vol. 7, no. 10, pp. 10 495–10 510,
2020.

[12] S. Luo, H. Yu et al., “Efficient file dissemination in data
center networks with priority-based adaptive multicast,”
vol. 38, no. 6, pp. 1161–1175, 2020.

[13] “Kraken,” 2020, https://github.com/uber/kraken [Online;
accessed 06-Dec-2020].

[14] “Dragonfly,” 2020, https://github.com/dragonflyoss/
Dragonfly [Online; accessed 06-Dec-2020].

[15] H. Li, Y. Yuan et al., “DADI: Block-level image service
for agile and elastic application deployment,” in Proceed-
ings of the USENIX ATC, Jul. 2020, pp. 727–740.

[16] L. Gu, D. Zeng et al., “Exploring layered container
structure for cost efficient microservice deployment,” in
Proceedings of the IEEE INFOCOM, 2021, pp. 1–9.

[17] L. Gu, D. Zeng et al., “Layer aware microservice place-
ment and request scheduling at the edge,” in Proceedings
of the IEEE INFOCOM, 2021, pp. 1–9.

[18] D. Skourtis, L. Rupprecht et al., “Carving perfect lay-
ers out of docker images,” in Proceedings of the 11th
HotCloud, USA, 2019, p. 17.

[19] H. Yu, A. A. Irissappane et al., “Faasrank: Learning to
schedule functions in serverless platforms,” in Proceed-
ings of the IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS), 2021,
pp. 31–40.

[20] Z. Li, L. Guo et al., “The serverless computing survey:
A technical primer for design architecture,” ACM Com-
puting Surveys, vol. 54, no. 10s, sep 2022.

[21] L. Gu, Z. Chen et al., “Layer-aware collaborative mi-
croservice deployment toward maximal edge through-
put,” in Proceedings of the IEEE INFOCOM, 2022, pp.
71–79.

[22] D. Zeng, H. Geng et al., “Layered structure aware
dependent microservice placement toward cost efficient
edge clouds,” in Proceedings of the IEEE INFOCOM,
2023, pp. 1–9.

[23] J. Lou, H. Luo et al., “Efficient container assignment and
layer sequencing in edge computing,” IEEE Transactions
on Services Computing, vol. 16, no. 2, pp. 1118–1131,
2023.

[24] C. Guo, H. Wu et al., “Rdma over commodity ethernet
at scale,” in Proceedings of the ACM SIGCOMM Con-
ference, New York, NY, USA, 2016, p. 202–215.

[25] T. Mastelic, A. Oleksiak et al., “Cloud computing:
Survey on energy efficiency,” ACM Computing Surveys,
vol. 47, no. 2, dec 2014.

[26] H. Shen, H. Wang et al., “An instability-resilient renew-
able energy allocation system for a cloud datacenter,”

IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 3, pp. 1020–1034, 2023.

[27] P. Sharma, “Challenges and opportunities in sustain-
able serverless computing,” SIGENERGY Energy Inform.
Rev., vol. 3, no. 3, p. 53–58, oct 2023.

[28] B. Acun, B. Lee et al., “Carbon explorer: A holistic
framework for designing carbon aware datacenters,” in
Proceedings of the 28th ACM ASPLOS, New York, NY,
USA, 2023, p. 118–132.

[29] T. H. Cormen, C. E. Leiserson et al., Introduction to
algorithms. MIT press, 2009.

[30] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing
issues and challenges,” ACM Computing Surveys, vol. 55,
no. 7, dec 2022.

[31] N. Zhao, V. Tarasov et al., “Large-scale analysis of
docker images and performance implications for con-
tainer storage systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 4, pp. 918–930,
2021.

[32] M. ApS, MOSEK Optimizer API for Python 9.2.49, 2021.
[33] A. Anwar, M. Mohamed et al., “Improving docker reg-

istry design based on production workload analysis,” in
Proceedings of the USENIX FAST, Oakland, CA, Feb.
2018, pp. 265–278.

[34] N. Zhao, H. Albahar et al., “Duphunter: Flexible high-
performance deduplication for docker registries,” in Pro-
ceedings of the USENIX ATC, Jul. 2020, pp. 769–783.

[35] S. Nathan, R. Ghosh et al., “Comicon: A co-operative
management system for docker container images,” in
Proceedings of the IEEE International Conference on
Cloud Engineering (IC2E), 2017, pp. 116–126.

[36] P. Smet, B. Dhoedt, and P. Simoens, “Docker layer
placement for on-demand provisioning of services on
edge clouds,” IEEE Transactions on Network and Service
Management, vol. 15, no. 3, pp. 1161–1174, 2018.

[37] J. Darrous, T. Lambert, and S. Ibrahim, “On the impor-
tance of container image placement for service provision-
ing in the edge,” in Proceedings of the 28th International
Conference on Computer Communication and Networks
(ICCCN), 2019, pp. 1–9.

11

https://github.com/uber/kraken
https://github.com/dragonflyoss/Dragonfly
https://github.com/dragonflyoss/Dragonfly

	Introduction
	Background and Motivation
	Reusability Among Layered Container Images
	Benefits of Context-aware Component Placement
	Limitations of Existing Schemes
	Design Challenges

	Problem Description
	Model
	Expressiveness
	Hardness

	Solutions
	Design Insights
	Algorithm Details
	Time Complexity

	Performance Evaluation
	Methodology
	Results

	Related Work
	Conclusion and Future Work

