
Accepted to appear in IEEE Transactions on Mobile Computing, 2025

Domain-Specific Transport Protocols for
In-Network Processing at the Edge: A Case Study

of Accelerating Model Synchronization
Shouxi Luo, Peidong Zhang, Xin Song, Pingzhi Fan, Huanlai Xing, Long Luo, Hongfang Yu

Abstract—Nowadays, cross-device federated learning (FL) is
the key to achieving personalization services for mobile users and
has been widely employed by companies like Google, Microsoft,
and Alibaba in production. With the explosive growth in the
number of participants, the central FL server, which acts as the
manager and aggregator of cross-device model training, would
get overloaded, becoming the system bottlenecks. Inspired by the
emerging wave of edge computing, an interesting question arises:
Could edge clouds help cross-device FL systems overcome the
bottleneck? This article provides a cautiously optimistic answer by
proposing INP, a FL-specific In-Network Processing framework
to achieve the goal. As in-network processing has broken the
end-to-end principle of the involved communication and lacks
the support of transport protocols, the key is to design domain-
specific transport protocols for INP. To fill the gap, we propose
the novel Model Download Protocol of MDP and Model Upload
Protocol of MUP. With MDP and MUP, edge cloud nodes along the
paths in INP can easily eliminate duplicated model downloads
and pre-aggregate associated gradient uploads for the central
FL server, thus alleviating its bottleneck effect, and further
accelerating the entire training progress significantly.

Index Terms—Federated learning, in-network processing, edge
computing, transport protocol

I. INTRODUCTION

By sharing the models rather than the raw privacy-sensitive
data, cross-device Federated Learning (FL) has been widely
deployed in production for various personalization services
like on-device item ranking, next-word prediction, content sug-
gestions for on-device keyboards, and real-time e-commerce
recommendations [1], [2], [3], [4], [5]. As an emerging
distributed machine learning (DML) approach, cross-device
FL enables end devices like mobile phones to cooperatively
train models in an iterative way [6], [7]: In each round of

An earlier version of this paper was presented in part at the
ICC 2022 - IEEE International Conference on Communications [DOI:
10.1109/ICC45855.2022.9838381] (Corresponding author: Shouxi Luo.)

Shouxi Luo is with the School of Computing and Artificial Intelligence,
Southwest Jiaotong University, Chengdu 611756, China, and also with the
Manufacturing Industry Chains Collaboration and Information Support Tech-
nology Key Laboratory of Sichuan Province, Southwest Jiaotong University,
Chengdu 611756, China.

Peidong Zhang and Xin Song are with the School of Computing and Arti-
ficial Intelligence, Southwest Jiaotong University, Chengdu 611756, China.

Pingzhi Fan is with the Key Laboratory of Information Coding and
Transmission, CSNMT Int Coop. Res. Centre, Southwest Jiaotong University,
Chengdu 611756, China.

Huanlai Xing is with the School of Computing and Artificial Intelligence,
Southwest Jiaotong University, Chengdu 611756, China.

Long Luo and Hongfang Yu are with the School of Information and Com-
munication Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China.

training, a set of dynamically selected end devices (EDs) first
download the current model from the central FL server (FLS)
to launch the on-device training; once completed, they then
upload their local model updates (i.e., gradients) back to the
FL server; finally, the FL server would aggregate received
gradients to obtain a new model to iterate. Obviously, with
an increase in the number of selected end devices, the central
FL server would become the bottleneck of the entire FL
system. Optimizing the performance of FL systems, especially
removing the bottleneck effects of the FL server, becomes the
key to supporting very large-scale federated learning tasks [3].

To enhance the performance of the FL server, in this article,
we analyze the benefits of deploying in-network processing
nodes at edge clouds to provide cache and aggregation services
for large-scale cross-device federated learning, and propose
the FL-specific In-Network Processing framework of INP. We
find that using edge nodes for in-network model caching and
gradient aggregation brings a lot of benefits to FL systems.
Nevertheless, a pair of new domain-specific transport protocols
breaking the conventional wisdom of end-to-end transport
semantics are required, as existing protocols like the raw TCP
and UDP could not provide the needed features [8]. To fill
the gap, along with INP, we further propose a suite made
up of the Model Download Protocol (MDP), Model Upload
Protocol (MUP), and the involved progress synchronization,
congestion control, and cache management algorithms, to re-
lease the power of edge-aided in-network processing. Consider
that multiple end devices residing in the same region are
performing the same FL task. The key of INP is to let
edge cloud nodes cache recently downloaded model chunks
for possible subsequent duplicated requests from other end
devices, and pre-aggregate the gradient uploads from different
end devices in a short time interval. For a FL task involving 𝑚

end devices, our proposed INP, together with MDP and MUP,
is able to reduce both the traffic load of the FL server and the
time needed by model downloads and gradient uploads, from
the magnitudes of 𝑂 (𝑚) to 𝑂 (1) at most.

Distinguished from the alternative idea of using edge servers
as local parameter servers for cross-device FL [3], [9], both the
cache of model parameters and the aggregation of gradients
in INP can be implemented as specific types of in-network
processing services [10]. They can be built upon existing
Network Function Virtualization (NFV) platforms [11] to
provide best-effort acceleration service for cross-device FL
traffic at the edge. As Section II-C will show, such a design
is easy-to-manage, generic, future-proof, and achieves fine-

1

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

grained resource usage. A lot of recent papers have also put
forward the vision of enhancing the performance of mobile
and IoT applications by deploying NFV-enabled services in
edge clouds [12], [13]. However, they mainly focus on the
abstracted coarse-grained resource allocation problem, without
considering the detail of how functions could be implemented
and supported by the underlying network. Indeed, as this
article will show, by using the domain-specific transport pro-
tocols of MDP and MUP, INP would achieve very flexible
resource allocation at the granularity of per-packet. For in-
network model cache, the well-known data-centric network
architecture of Named Data Networking (NDN) meets the
requirements naturally. However, NDN has not been supported
by today’s Internet yet because of its clean-slate, incompatible
design [14]. Instead, INP only relies on widely deployed
techniques and thus is readily deployable.

In summary, our contributions are five-fold:
• A thorough analysis that identifies the benefits and chal-

lenges of applying edge-cloud-based in-network process-
ing for large-scale cross-device FL (Section II).

• INP, a FL-specified In-Network Processing framework
enabling cross-device FL systems highly scalable and
accelerating training processes significantly (Section III).

• MDP, a UDP-based domain-specific transport protocol
along with a suite of progress synchronization, conges-
tion control, and cache management schemes achieving
efficient model downloads for FL jobs, by using the in-
network cache services provided by edge boxes (Sec-
tion IV).

• MUP, a UDP-based domain-specific transport protocol
along with a suite of flow control, progress synchroniza-
tion, congestion control, and cache management schemes
achieving efficient gradient uploads and aggregations for
FL jobs, by using the in-network aggregation services
provided by edge boxes (Section V).

• Extensive fine-grain simulation studies verifying the effi-
ciency of the designs of both MDP and MUP protocols and
confirming the significant benefits of INP for the model
synchronization of FL jobs (Section VII).

The rest of the paper is organized as follows. We first
introduce and analyze the related background and motivation
in Section II. Then, we overview the design of INP in
Section III, and explain the details of MDP and MUP in
Sections IV and V, respectively. After that, we further describe
how MDP and MUP gracefully deal with hierarchical FL
characteristics in Section VI, and assess their performances in
Section VII. Then, Section VIII discusses related work; and
finally, Section IX concludes the article.

II. BACKGROUND AND MOTIVATION

FL applications today can be broadly categorized into two
kinds, namely cross-device FL and cross-silo FL [5]. The
classification is based on whether the participating clients
are resource-limited devices, e.g., mobile phones, vehicles,
or source-abundant clusters, e.g., private clusters owned by
financial or medical organizations, respectively [5]. In this
article, we focus on the optimization of cross-device FL

systems. In these systems, a large number of end devices
are dynamically selected to train a global model iteratively
over wireless and WAN connections, with the assistance of a
centralized FL server as Figure 1 shows.

In the following, we first overview the characteristics of
cross-device FL (Section II-A) and summarize the benefits
of communication optimization on it (Section II-B), then
discuss why in-network processing at the edge is more promis-
ing than the alternative idea of edge-based hierarchical FL
server (Section II-C); after that, we review why existing
in-network aggregation (INA) solutions designed for intra-
datacenter DML could not solve the problem we focus on
(Section II-D), and finally summarize the design challenges
of our solution (Section II-E).

A. Characteristics of Cross-Device FL
A cross-device FL system generally involves one logical

central parameter server (i.e., FLS) and a lot of dynamically
available clients (i.e., EDs); the iterative training is conducted
in rounds and each round is made of three phases namely
selection, configuration, and reporting as Figure 1 sketches.

Following the generalized FL framework of FedOpt [7], to
drive a round of training, the FL server first selects a set
of end devices as the participant training clients from those
checked in recently (i.e., selection); then, these selected end
devices download the new model from the FL server to start
the training (i.e., configuration); once completing their local
training, end devices upload their local gradients to the FL
server (i.e., reporting); based on the collected results, the FL
server will obtain the updated global model via aggregations,
then move to the next round of training. Due to the possible
heterogeneity in the training and the mobility of users, some
end devices might report their results later than others, or
even worse, fail to do so [15]. Accordingly, the FL server
is generally configured to wait a pre-defined period for the
collected results and ignore those missed the deadline [15].
Depending on the settings [5], the FL server might move to
the next round of training once it has received the results of
exactly a pre-defined amount of end devices (e.g., 𝑘 , referred
to as top-k driven FL, hereafter), or a maximum pre-defined
timeout has been reached and the collected results have already
met the minimum amount requirement of end devices (referred
to as deadline-driven FL, hereafter).

In practice, the convergence behaviors of DML jobs like
FL are jointly controlled by various factors, e.g., the charac-
teristics of the training data, the capacities of the hardware,
and settings of hyper-parameters like the batch size, train-
ing algorithms, learning rate, model aggregation frequency,
etc [16], [17], [18], [19]. As reported by related works, the
FL server would select end devices for each round of training
respecting various design aspects [18], [19], [20]; and under
appropriate hyper-parameter settings, the increment in the
number of contributor end devices per round could make the
trained model converge to the targeted actuary with fewer
rounds, i.e., yielding a faster convergence speed [18]. Thus,
given a group of end devices selected by the FL server for a
round of training, it is crucial to make them contribute to that
round within the deadline as much as possible.

2

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

…

The i-th round of training

FL Server

ED1

ED2

EDn

Training

EDs check in, FL Server
selects participants

Selected EDs download
the model to train

EDs upload gradients
to FL Server for aggregation

Training

Training

Training

1 2 3Selection Configuration Reporting
End Devices (EDs) train models cooperatively,
with the help of FL Server.

Central FL Server in Clouds

Fig. 1: The workflow and communication patterns of cross-device Federated Learning (FL) [6].

B. Importance of Communication Optimization

Obviously, in cross-device FL, with the number of par-
ticipants scaling up, the central FL server would become
the bottleneck of the entire training. With the emerging
and widespread employment of edge clouds, one promising
optimization for cross-device FL is to employ nodes at the
edge to cache the downloaded model for the elimination
of duplicated fetching, and pre-aggregate multiple correlative
gradient upload requests, from a group of nearby end devices
within a short interval. As a result, both the traffic and
computation loads on the FL server can be greatly reduced.

Indeed, such an optimization design could be treated as a
specific in-network processing service customized for cross-
device FL [10], yielding two levels of advantages:

• Making FL systems highly scalable. With edge-based
in-network processing, not only the traffic load on the
FL server, for both the model downloads and gradient
uploads would be greatly reduced, but also parts of the
aggregation computation originally conducted by the FL
server, are offloaded and distributed to edge nodes. This
makes it easy for FL systems to adopt a large number of
devices in each round of training.

• Accelerating the training significantly. With the cache
and aggregation services provided by edge nodes, end
devices would take less time to download the model
and upload their local gradients, improving the training
efficiency. For example, in top-k driven FL, the delivery
of data generally takes a non-trivial proportion or even
dominates the entire time of a round of training; thus,
reducing the communication time would accelerate the
training iteration, as the FL server can collect the desired
number of results more quickly [5]. In deadline-driven
FL, communication optimization also brings benefits. In
practice, to avoid negative impacts on the user experience,
an end device only trains models when idle and aborts
the training once the condition is no longer met [6]. Thus,

the availability of an end device is perishable and the
time slot might be short. Failing to complete the local
training and report the results back to the FL server within
the deadline brings no benefits to the global model [15].
Accordingly, reducing the communication time would not
only let more end devices intentionally selected by the
FL server [20] contribute to that round of training within
the given deadline, but also enable the usage of shorter
deadlines, thus accelerating the entire training [5], [18].

C. Why In-Network Processing Instead of Hierarchical FLS

Compared with performing in-network processing at the
edge, a very related alternative design is to deploy regional
parameter servers at the edge, around the base station. These
regional servers together with the central FL server aggregate
devices’ gradients hierarchically (i.e., Hierarchical FLS) [3],
[9]. We argue that in-network processing is more attractive in
three aspects as Table I summarizes.

More specifically, in terms of applicability, the scheme of
hierarchical FL servers is a FLS-specific solution. Regarding
implementation, FL applications owned by different compa-
nies and organizations are generally built upon their own
specific versions of FL systems. To support them all, the
design of hierarchical FL servers has to deploy FL servers
at the edge for each FL system separately and explicitly. In
practice, these edge FL servers generally run inside virtual
machines (VMs) or Linux containers with pre-configured
resources; accordingly, edge cloud resources are allocated very
coarsely, at the granularity of VMs or containers. Moreover,
using hierarchical FL servers, all the deployed edge FL servers
and the central FL server form a distributed system, thus
complicated gradient synchronization protocols are needed [3].

In contrast, as we will show through this article, in-
network processing can be implemented as an optional and
reusable edge service that provides best-effort in-network
model caching and gradient aggregating for cross-device FL

3

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

TABLE I: In-Network Processing vs. Hierarchical FLS.

Solution Applicability Resource allocation Manageability

Hierarchical FLS FLS-specific, requiring case-by-case designs and deployments Coarse-grained, per-VM or per-container Complicated
In-Network Processing FLS-agnostic, generic and future-proof Fine-grained, per-packet Easy

TABLE II: Limitations of related domain-specific transport
protocols and schemes designed for in-network processing.
Here, Ë: supported, ü: partially supported, é: not considered,
A-R: asynchronous reduction, A-B: asynchronous broadcast,
P-S: progress synchronization, D-D: deadline-driven INA, JF-
RA: job-scale-aware fair resource allocation.

Proposal A-R A-B P-S D-D JF-RA

SwitchML [21] Ë é é é é

ATP [22] Ë é é é é

A2TP [23] Ë é é é é

PA-ATP [24] Ë é ü é é

Canary [25] Ë é é Ë é

ASK [26] Ë é é é é

NetReduce [27] Ë é é é é

MTP [8] ü ü é é é

NetRPC [28] Ë ü é Ë é

Desired proposal Ë Ë Ë Ë Ë

tasks. Indeed, in-network processing is a FLS-agnostic solu-
tion: in practice, the most common model aggregation strategy
is to compute a weighted average of the gradients [3]; by im-
plementing this function as a network service, in-network pro-
cessing based solution is generic and able to support present
and future FL algorithms. Also, there is no need to deploy
and run separate software instances for different FL systems.
For each FL training job, the in-network processing instance
can determine the cache or aggregation operation of each
packet solely, resulting in packet-level resource allocation.
Moreover, as an optional network service, the management
of in-network processing is simple and decoupled from those
of the supported FL systems.

D. Desirable Properties and Drawbacks of Existing Solutions

This paper is not the first to accelerate distributed model
training with in-network processing. Recently, researchers
have applied a similar idea of INA for intra-datacenter DML
(DC-DML), e.g., by configuring powerful Top-of-Rack (ToR)
switches as aggregators [21], [22], [29], [30]. However, since
the workflow, underlying network, and available intermediate
processing nodes of cross-device FL are quite distinct from
those of DC-DML [21], [22], [29], [31], [32], the solutions
they prefer differ significantly in many design aspects. Par-
ticularly, as highlighted by the recent work of [8], it is
vital to design new transport protocols to provide in-network
processing services for distributed applications [8]. Currently,
a series of domain-specific transport protocols and schemes
have been proposed to support in-network processing (e.g.,
INA) for intra-datacenter distributed applications like DC-

DML. However, as summarized in Table II, they fail to fully
meet the requirements of cross-device FL.

More specifically, in the context of cross-device FL, due to
various factors like the dynamic availability and heterogeneity
of training capacities, selected end devices might not complete
their local training at the same time; and similarly, they are
likely to start the download of training tasks asynchronously.
Thus, the desired proposal should support both asynchronous
reduction (A-R) and asynchronous broadcast (A-B). Moreover,
if end devices differ significantly in their progress of model
download or gradient upload, progress synchronization (P-S) is
vital to make efficient usage of both the limited cache memory
of edge boxes and the bandwidth of its path from and to
the FL server for in-network acceleration. As summarized in
Table II, despite existing INA solutions like SwitchML [21],
ATP [22], A2TP [23], PA-ATP [24], Canary [25], ASK [26],
and NetReduce [27] all supporting A-R, they either do not
consider the dissemination of model parameters or just employ
using IP multicast for the delivery (i.e., A-B is not supported).
Among them, only PA-ATP partially supports P-S; however,
PA-ATP is far from optimal, since it conducts synchronization
by indirectly controlling the allocation of bandwidth, rather
than relocating the process—Such a design also does not
guarantee work-conserving resource allocation [33], [34], i.e.,
there are still available link capacities that could be allocated
to active transfers. Moreover, as explained in Section II-A,
some end devices in FL might fail to report their results within
the given deadline; thus, the proposed scheme should support
deadline-driven in-network aggregation (D-D), accordingly;
however, only Canary [25] supports this feature. Furthermore,
as we will explain in Sections IV and V, when multiple
cross-device FL jobs coexist in the system, the shared in-
network processing resources like the cache memories and
link capacities should be allocated fairly with the awareness
of the scale of each job, e.g., in terms of the number of
involved participating end devices, referred to as job-scale-
aware fair resource allocation (JF-RA). Unfortunately, non-
existing schemes have provided this.

Different from the above INA solutions, MTP [8] aims
at providing a generic protocol to support various types of
in-network processing; however, a lot of design details still
need to be built; and according to its preliminary designs [8],
features like P-S, D-D, JF-RA are not supported. NetRPC [28]
tries to provide an RPC framework to simplify the use of in-
network processing, but it still does not support P-S and JF-
RA, and only partially supports A-B.

The idea of letting boxes inside the network cache the
transmitted data is also employed by the new networking
architecture of NDN [14]. However, INP is fundamentally
different from NDN in at least two aspects. Firstly, INP is
designed to work as an optional network service built upon

4

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

edge computing and UDP, thus readily deployable in today’s
Internet relying on IP. By contrast, NDN employs a clean-
slate design incompatible with IP-based network architecture
and is thus hard to deploy. Secondly, in INP, packets are
routed based on their destination IP address since INP does
not touch the routing intelligence. Such a design makes INP
easy to deploy since only involved endpoints and edge boxes
should be upgraded to support INP. Instead, in NDN, packets
(messages) are routed based on an identification of the data,
requiring an upgrade of the whole network. These differences
make INP distinguished from NDN, being readily deployable
in today’s IP-based Internet.

E. Design Challenges

To realize the vision of implementing in-network cache
and aggregation at the edge as a best-effort and optional
communication acceleration service for cross-device FL, three
primary design challenges must be addressed.

• First of all, in-network processing has broken the end-
to-end and one-to-one communication principles; as a
result, the supports of transport protocols are needed to
release the benefits of in-network processing to applica-
tions, while providing features like A-R, A-B, and D-D;
however, existing protocols fail short to do so [8], [35].

• Secondly, to accelerate the model downloads and gradi-
ent uploads for FL with limited in-network processing
resources, the transmission progress of different devices
should be similar—This is because only the related data
chunks can share caches and/or be aggregated during
the delivery. However, due to the system’s heterogeneity,
end devices generally have slightly skewed transmission
progress; thus, novel schemes are needed to support P-S.

• Last but not least, in practice, there might be multiple FL
jobs in the system [36], to make efficient and fair usage
of the available in-network processing and network re-
sources, novel resource allocation algorithms are needed
to conduct fair and work-conserving congestion control
and cache management, i.e., providing JF-RA.

In the following, we will first overview the design of INP
in Section III, then describe the details of its involved data
channel transport protocols MDP and MUP in Sections IV and
V, respectively. Basically, the novel workflows of MDP and
MUP enable INP to overcome the first primary challenge. With
two schemes of progress synchronization and flow control (if
involved), elements in INP can cooperate to increase the possi-
bility of in-network cache and aggregation, thus addressing the
second challenge. Finally, using a suite of congestion control
and cache management algorithms, MDP and MUP are also
able to make work-conserving (efficient) and fair usage of the
available in-network processing and network resources, thus
addressing the third challenge.

III. INP FRAMEWORK

Distinguished from proposals that directly control the par-
ticipating workers, their training workloads, or the hyper-
parameter settings such as the learning rate of training de-
vices [37], [38], INP targets accelerating the communication

With
Edge Box (EB)

Data channel

Data channel

Without
Edge Box (EB)

FL Server

EDs

Traffic: MDP, MUP

EDs

Fig. 2: The framework of INP.

efficiency of model download and gradient upload in a best-
effort manner, without touching other training settings. As
analyzed in Section II, such a design is generic and powerful
to improve the efficiency of both top-k driven FL and deadline-
driven FL by making the training iterate faster. Now, we
overview its framework and key designs.

A. Framework Overview

As Figure 2 shows, a typical INP-enhanced cross-device
FL system involves three types of elements, namely FL Server
(FLS), End Device (ED), and Edge Box (EB), respectively, in
which the EB acts as an optional cache and aggregation box
residing between the other two. To start a round of training,
the FL server first selects a group of end devices to pull the
new model, using the cache service provided by edge boxes.
When completing the training, end devices push their local
gradients to the FL server, through the optional aggregation
services provided by edge boxes. Once sufficient gradients are
obtained, the FL server generates the final global aggregated
model and moves to the next round of training.

Inside INP, participant elements set up two types of chan-
nels, i.e., control channel and data channel, for the involved
data transmissions, respecting whether their transfers can be
optimized/accelerated by the edge boxes of INP, or not. The
control channel is employed for the exchange of signal mes-
sages like the join, leave, and select of end devices between the
FL server and end devices; such a feature is already supported
by modern commercial FL systems, and existing point-to-point
transport protocols like TCP and QUIC can be used [2], [6].
While the data channel is used for the delivery of model
parameters and gradients, with the assistance of edge boxes.

B. Domain-Specific Transport Protocols

As pointed out by several concurrent recent works [8], [35],
new transport protocols are pivotal to take advantage of in-
network communication acceleration for distributed applica-
tions like cross-device FL; because existing protocols TCP,
QUIC, and UDP fail to do so. Specifically, the introduced
edge boxes residing in the path, break the end-to-end com-
munication principles between endpoints; and multiple end
devices talk to the same FL server with the assistance of the
edge box asynchronously in practice, yielding the paradigm of

5

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

asynchronous many-to-one and one-to-many communication.
Unfortunately, neither the TCP/QUIC nor the raw UDP is
designed to deal with such scenarios, especially to efficiently
use the edge box’s cache and computation capacities. Notably,
despite that UDP has been used to encapsulate data for
IP-based multicasting, the multicast operation is carried out
at the network layer by the involved routers and switches
synchronously, which is different from that of INP.

To get the best advantage from edge boxes for data chan-
nels, INP employs two novel transport protocols, namely
MDP (Model Download Protocol) and MUP (Model Upload
Protocol), to achieve efficient and reliable model downloads
and gradient uploads, respectively. By making efficient use
of the edge box to cache the model parameters delivered by
the FL server, and to pre-aggregate gradient chunks sent by
end devices, respectively, MDP and MUP could reduce both
the traffic volume inside the network and the workload of
the FL server. As a result, the communication is accelerated.
The model parameters and gradient values in INP are split
into chunks, each of which, along with the MDP or MUP
header, is encapsulated in a single UDP packet. This design
has two types of advantages. On the one hand, it enables
INP traffic safe to go through today’s wide-area networks
made up of a lot of middleboxes; and on the other hand,
it makes the proposed MDP and MUP easy to deploy at end
devices like smartphones, since they can be implemented at
the application layer without modifying the network stack.
Moreover, as Sections IV and V will show, both MDP and MUP
do not involve time-consuming complex computations; thus,
just like existing transport protocols, software implantation can
make them work efficiently in practice.

C. Edge Box Designs

The edge box in INP is designed to act as a transparent
proxy between end devices and the central FL server. For
FL systems involving a huge amount of end devices across
multiple regions, a group of edge boxes could be deployed
and configured to work hierarchically, such that the load of
the central FL server could be further reduced. Note that, in-
network processing can be implemented as a network service
provided by the Internet service or cloud providers using
the pay-as-you-go price model like cloud computing and
NFV. Accordingly, the number of edge boxes in the network
employed by cross-device FL jobs is jointly determined by two
factors: 𝑖) whether there are in-network processing services
already deployed at the edge, and 𝑖𝑖) whether the job is allowed
(or willing) to employ these services.

As Sections IV and V will explain in detail, the functions
required by edge boxes to support both MDP and MUP are
not complex and thus easy to implement as software. Accord-
ingly, edge boxes in production can be built upon modern
NFV systems, thus naturally supporting scale-out and scale-
in, respecting the workloads [10], [11]. Fundamentally, similar
to solutions based on hierarchical FLS, the performance gains
obtained by in-network processing stem from the design of
offloading parts of the FL server’s job to the edge box. This
reduces traffic volumes inside the network and relieves the

Without Edge Box With Edge Box

1 req
2cwnd

FL ServerED

1 chunk
2

cache
miss

11

chunk

req req

cache
cache

hit

1
req

chunk

FL ServerEdge BoxED1 ED2

fake-ACK

Fig. 3: The workflow of MDP with and without EB.

loads of the FL server. Thus, there are trade-offs between the
edge box’s loads and that of the FL server. If the edge box
has limited resources, the operations can selectively enable
in-network processing only for a subset of jobs.

IV. MODEL DOWNLOAD PROTOCOL

In this section, we first overview the design of MDP (Sec-
tion IV-A), then describe how the involved end devices syn-
chronize their download progress to maximize the benefits of
in-network cache (Section IV-B), which is the key for perfor-
mance optimization when the edge box only has a limited size
of cache and end devices start their downloads asynchronously.
Finally, we present the novel congestion control designs of
MDP enabling end devices to fairly use bottleneck bandwidth
(Section IV-C) and the edge box’s caches (Section IV-D).

A. MDP Overview
As Figure 3 shows, MDP is a “request-reply” based protocol:

to download the model, the end device first sends a request (or
req for short) to the FL server; on getting a req, the FL server
replies with the desired chunk(s) made of model parameter
values. Like the reliable design of TCP, in case a sent request is
considered lost, the end device would resend. Compared with
TCP, besides relying on UDP rather than raw IP, MDP mainly
has four differences, making it outstanding for downloading
chunked model parameter values.

• Firstly, as signal and management messages in INP are
delivered via the separated control channels, MDP does
not require handshakes to establish or close data channel
connections for chunks. Accordingly, for the download
task to a given end device, MDP only needs a one-way,
rather than bidirectional, connection.

• Secondly, an end device completes its model download
only when all the involved values are fetched, thus MDP
does not require severe in-order delivery; as Section IV-B
will show, such a characteristic enables end devices that
are downloading the same model parameters to synchro-
nize their progress to improve the rate of cache hits, even
if they do not start their downloads simultaneously.

• Thirdly, MDP is designed to leverage edge boxes on the
way as cache nodes, so that multiple download requests
of the same chunk from nearby end devices can be accel-
erated by their shared edge box(es). However, the hit-and-
miss of the cache makes the allocation of bandwidth on

6

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

5 6 7 8 9 49 50 51 52 53 54

Swapped out
chunk cache

 Least recently used Most recently used

Requested-yet-
unreplied

4

TLRU chunk cache

① Request

③ Cache miss,
reply with sync

information

48

④ Request again

⑤ Hit cache,
 reply target chunk

ED

Edge Box
FL Server② Cache miss,

forward request to FL Sever

Fig. 4: An example showcases the workflow of how the
progress synchronization of MDP is triggered by a cache miss.

bottleneck links sophisticated. To deal with these issues,
as Section IV-C will show, MDP leverages a suite of novel
congestion control designs.

• Last but not least, as the workflow of EB-assisted MDP
at the right of Figure 3 shows, on receiving a request, the
edge box checks whether it holds the desired chunk; if
so (i.e., a cache hit), it replies directly, otherwise (i.e.,
a cache miss), forwards the request to the FL server,
immediately replies a fake-ACK for congestion control,
and caches the corresponding reply when it goes by.
Essentially, the edge box works as a transparent cache
proxy for MDP; thus, it is the duty of MDP to deal
with the loss of packets. In practice, to achieve high
performance, the cache needed by MDP is generally
implemented in memories with limited volume sizes. For
the management of the cache, the well-known algorithm
of Time-aware Least Recently Used (TLRU) is a solution
but job-aware inter-job cache management is still needed
as Section IV-D will show.

B. Progress Synchronization

1) Relocation Designs: In case edge boxes have limited
sizes of cache, only the recently active chunks would be
cached. To improve the rate of cache hits, MDP would syn-
chronize the download progress of related end devices to
maximize the benefits of in-network caching. Obviously, if
there is only one end device fetching the model, progress
synchronization is not needed. Instead, when multiple end
devices are fetching the same model, the end device with the
largest fetching throughput would continue to create cache
chunks at the edge box when its reply message passed by;
then other end devices would take advantage of these caches.
Hereafter, we refer to the end device triggering the cache of
model chunks on the edge box as the cache-creator, and other
end devices that hit these caches for fetch acceleration as
the cache-users. Accordingly, the synchronization of model
download progress is necessary, only when there is already

11 12 13 14 15 55 56 57 58 59

Swapped out
chunk cache

 Least recently used Most recently used

Requested-
yet-unreplied

10

TLRU chunk cache

54

ED

Edge Box

① Request

② Reply a delay singal

FL Server

Duplicated requests
are avoided

Fig. 5: An example showcases the workflow of how the edge
box eliminates duplicated requests for MDP.

an active cache-creator but a cache miss is still encountered
at the edge box for a cache-user. Given that MDP works in
a “request-reply” manner, the synchronization of progress can
be easy to implement using the following principles:

• Each end device computes and piggybacks its recent
throughput on requests; based on the messages, the edge
box selects and records the one with the highest through-
put to act as cache-creator for following fetch requests.

• For each cache miss event, the edge box would forward
the request to the FL server by default (e.g., the case
shown in the right-hand of Figure 3); in case the source
sender is not the current active cache-creator, a short
reply specifying the suggested sequence number (saying
�̂�) for the next chunk request would be sent back to the
corresponding end device, to trigger progress synchro-
nization (see the example shown in Figure 4).

• On getting the relocation reply of �̂� , the end device
adjusts its next request sequence to min{𝑘 : 𝑘 ∈ 𝑈MDP ∧
𝑘 ≥ �̂�} for synchronization, where 𝑈MDP denotes the set
of sequence numbers of chunks that this end device has
not held yet.

Here, �̂� is set to the sequence number of the newest chunk
that has just been added to the TLRU cache of the edge
box. Using the above designs, if there is only one active end
device, it would always be recognized as the cache-creator;
otherwise, a newly active (except the first) end device would
be recognized as a cache-user by default. Then, during the
transmission, if the download process of a cache-user has
overtaken that of the current cache-creator, it would become
the new cache-creator.

2) Request Deduplication: In case the cache-users catch
up with the cache-creator, or all end devices have similar
download throughput leading to similar progress, cache-users
are likely to fetch a chunk that is still in flight and has not
been cached at the edge box yet. As a result, their cache misses
would lead to multiple replicated requests and replies between
the FL server and edge box, lowering the power of in-network

7

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

caching and resulting in a waste of resources. To address this
issue, MDP employs the following designs.

• Once a fetch request sent by the cache-creator has
been forwarded to the FL server, the edge box records
the involved chunk sequence number and maintains an
expiration timer, with the initial value of 𝜏𝑒.

• If the fetch request of the same chunk has triggered a
cache miss at the edge box, instead of forwarding the
request to the FL server and replying with a relocation
message to the end device, the edge box would only
reply with a “delay” signal, without forwarding (see the
example shown in Figure 5).

• On getting a “delay” signal, the end device would pause
the request of chunks for 𝜏𝑑 seconds; during this interval,
any other “delay” signals would be ignored.

By default, 𝜏𝑒 is set to 2× of the measured RTT from the
edge box to the FL server, and 𝜏𝑑 is set to the measured RTT
from the end device to the edge box. With such a “delay”
design, the amount of duplicated requests from the edge box
to the FL server can be greatly reduced.

C. Congestion Control

To make efficient use of the available bandwidth, each end
device maintains an Additive Increase Multiplicative Decrease
(AIMD) congestion window (i.e., cwnd) like that of TCP [39]
to control the number of in-flight requests. Regarding packet
loss, like the design of the PPush protocol [33], besides
timeout events, end devices would treat an MDP request or
reply as lost, on receiving the replies of AHEADREPLYNUM
(e.g., 3) requests sent after it. Note that, due the the assistance
of edge box, if a request happens to miss the cache but its
follow-up three requests hit the cache; then, in the view of the
end device, the responses generated by the cache hit would
reach the sender faster than the response of the first request
missing the cache, leading to false-loss detection. We argue
that the root cause of this issue is as follows: when an end
device receives inconsecutive responses, it has no idea of
whether this is caused by the miss of cache, or the loss of
packets. To fix this issue, as Figure 3 shows, for each cache
miss event, the edge box would immediately reply a fake-
ACK to the MDP sender, with which, end devices can avoid
the above mentioned false-loss detection.

In the following, we describe the details of how MDP
conducts job-aware fair bandwidth allocation.

1) Problem Descriptions: Consider that there are 𝑛 concur-
rent FL training jobs whose traffic goes through the same edge
box and the same FL server, and this shared path happens to be
the bottleneck. We assume that there are 𝑚𝑖 end devices for the
𝑖-th job, leading to the total amount of

∑𝑛
𝑖=1 𝑚𝑖 MDP flows in

the systems. If there is no in-network cache, the 𝑗-th job would
obtain about 𝑚 𝑗∑𝑛

𝑖=1 𝑚𝑖
of the bottleneck bandwidth under AIMD-

based congestion control. However, due to the assistance of
in-network caching, for each training job, generally only the
cache-creator’s MDP requests and replies would go through the
links between the edge server and the FL server. As a result,
each job would obtain about 1

𝑛
of the bottleneck bandwidth,

yielding unfair bandwidth allocations at the level of FL jobs.

2) Solutions: Assume that the bandwidth of the path from
the FL server to the edge box is 𝐵MDP. As a remedy, we can
limit the total bandwidth occupied by end devices belonging to
the 𝑗-th FL job not exceeding 𝐵MDP

𝑗
calculated via E.q. (1). To

accelerate the job that has only one uncompleted end device,
we can treat it as having max𝑛

𝑖=1 𝑚𝑖 end devices.

𝐵MDP
𝑗 =

𝑚 𝑗∑𝑛
𝑖=1 𝑚𝑖

𝐵MDP (1)

Regarding implementation, the edge box can compute the
suggested 𝐵MDP

𝑗
for each FL job 𝑗 and piggyback this informa-

tion on the response message to the current cache-creator end
device. Upon receiving this information, the end device would
calculate the upper bound for the allowed congestion window
size, via E.q. (2). Here, 𝑠 𝑗 denotes the chunk size used by this
FL job, and 𝑅𝑇𝑇MDP

𝑗
denotes the current averaged round-trip

time measured by the current cache-creator end device.

�̄�MDP
𝑗 =

⌈
𝐵MDP

𝑗
𝑅𝑇𝑇MDP

𝑗

𝑠MDP
𝑗

⌉
(2)

However, a naive implementation of the above design
might not guarantee work-conserving bandwidth allocations.
In practice, there are multiple bottleneck links in the systems.
Due to the limited link capacities between the edge box and
the end devices, a FL job (saying 𝑗 for instance) might
not be able to use up 𝑚 𝑗∑𝑛

𝑖=1 𝑚𝑖
of the total capacity from

the FL server to the edge box. However, other FL jobs are
unable to use the remaining link capacities either, leading to
a waste of bandwidth. To address this issue, motivated by
recent studies [32], we employ an overbooking design for
the estimation of 𝐵 𝑗 , and dynamically adjust the overbooking
rate respecting the actual observed link utilization of the path
from the FL server to the edge box. Assume that the actual
capacities and current throughput of the path are 𝐵MDP

∗ and
𝑅MDP, respectively. Then, we use the E.q. (3) to compute a
𝐵MDP for the calculation of 𝐵MDP

𝑗
s used in E.q. (1).

𝐵MDP = 𝛼MDP𝐵MDP
∗ (3)

Here, 𝛼MDP is the rate of overbooking, which is dynamically
adapted using E.q. (4), in turn. Note that, for MDP, as the reply
message is generally much larger than the request, thus both
𝐵MDP
∗ and 𝑅MDP are dominated by the available bandwidth of

the directed path from the FL server to the edge box.

𝛼MDP =

1, if 𝑅MDP

𝐵MDP
∗

≥ 𝜆1

max(1, 𝛼MDP − 𝛿), if 𝜆1 > 𝑅MDP

𝐵MDP
∗

≥ 𝜆2

𝛼MDP + 𝛿, otherwise

(4)

Initially, 𝛼MDP = 1. During the delivery, the edge box would
update both 𝑅MDP and 𝐵MDP at the interval of its RTT to the
FL server, to update the value of the overbooking rate 𝛼. If
the observed average bandwidth utilization (i.e., 𝑅MDP

𝐵MDP
∗

) does not
reach 𝜆2, 𝛼MDP would be increased by about 𝛿 every RTT. If the
utilization is larger than 𝜆2 but less than 𝜆1, it would decrease
𝛿 each time. And if it is larger than 𝜆1, overbooking would
be temporarily disabled. In Section VII, we use 𝜆1 = 0.95,
𝜆2 = 0.9, and 𝛿 = 0.05 as the default settings.

8

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

FL ServerED

1

1

ack

chunk
2cwnd

2

1 chunk

1
req

ack

FL ServerEBED1 ED2

ack

chunk

ack

Without Edge Box With Edge Box

Fig. 6: The workflow of MUP with and without edge boxes.

In a nutshell, by limiting the cwnds of end devices using
the above weighted and overbooked designs, MDP achieves
job-scale-aware fair and work-conserving allocation of the
bandwidth of the path from the edge box to the FL server.

D. Cache Management

Similar to bandwidth allocation, when the cache size of edge
box for MDP is limited (saying 𝑉MDP for instance) and there
are multiple jobs, the FL job 𝑗 should obtain 𝑣MDP

𝑗
for per-job

fair-sharing as E.q. (5) denotes. Likewise, strictly limiting the
cache occupancy of FL job 𝑗 not exceeding 𝑣MDP

𝑗
would waste

the cache if any other jobs have not used up their quotas.

𝑣MDP
𝑗 =

𝑚 𝑗∑𝑛
𝑖=1 𝑚𝑖

𝑉MDP (5)

To deal with the issue and to make efficient usage of all
available caches, the edge box could count the actual cache
size it already allocates to each job. If there are remaining
caches available, it will try to use them for another FL job,
even if the actual cache size this job occupies already reaches
the quota. To implement the above design insights, for each
job 𝑗 , we define 𝑝MDP

𝑗
via E.q. (6), to quantify the level at

which it has occupied the remaining cache resources. Here,
�̄�MDP
𝑗

denotes the cache size already occupied by job 𝑗 . Then,
in case the cache quota of job 𝑗 runs out, instead of directly
popping out the least recently used cached chunk belonging
to job 𝑗 , the edge box would select the job with the largest
𝑝MDP
𝑗

value for TLRU cache replacement.

𝑝MDP
𝑗 =

�̄�MDP
𝑗

𝑣MDP
𝑗

(6)

Using the above quota-based lazy cache reallocation de-
signs, the edge box allocates its MDP memories to concurrent
jobs in a job-scale-aware fair and work-conserving manner.

V. MODEL UPLOAD PROTOCOL

To explain the design of MUP clearly, we first overview
its designs in Section V-A, then describe how progress syn-
chronization and flow control designs are employed to make
efficient usage of the edge box’s cache without overflowing
it in Section V-B. After that, the involved congestion control
schemes are presented in Section V-C, and finally, the man-
agement of cache follows in Section V-D.

A. MUP Overview

Similar to the design of MDP, MUP is a “request-reply”
based protocol designed for the upload of gradients as Figure 6
shows. When local gradients are ready, end devices split
gradients into chunks; then, each chunk, together with its index
(for serialization) and weight (for weighted aggregation, with
the initial value of 1), will be packed as the payload of a UDP
datagram then sent to the FL server. On getting a gradient
chunk, the FL server sends an acknowledgment packet (or
ack for short) immediately. Also, by measuring the arrival of
acks, like the design of MDP, the end device adjusts its cwnd,
learns the possible loss of data packets and resends.

As Figure 6 shows, when there exists an edge box in the
path, it could work as an aggregator for MUP traffic. More
specifically, on receiving a gradient chunk, besides generating
the acknowledgment, this edge box would cache it, or update
the cached weighted average value of the gradients. Here, the
value of the carried weight represents the total number of end
devices from which this gradient chunk is computed. Once the
edge box has received most or all the possible gradients that
would go through this edge box, or the time starting from the
caching/creation of this gradient chunk exceeds a pre-defined
timeout threshold, the edge box would act as a specified end
device: it would send the aggregated gradient values, along
with the updated weight value, to the final FL sever. To be
flexible, MUP allows end devices to specify their expected
timeout thresholds along with the reported results, which
are configured by the FL server in turn. It should be noted
that, thanks to the novel proposed Upper-stage Upload Filling
(U2F) scheme (see Section V-D1 for details), as confirmed
by the simulation in Section VII-C5, such a timeout design
generally would not enlarge the completion of MUP flows.
This is because if remaining bandwidth is available but all
the cached data is not fully aggregated, the edge box would
deliver these partially aggregated data to the FL server, to
make efficient usage of all available bandwidth. By default,
the weight value represents the number of end devices from
which the aggregated gradient chunk is computed. In case an
aggregated chunk does not get acknowledged, the edge box
would conduct retransmissions just like an end device.

In general, the transmission of MUP traffic from end devices
to the FL server is decoupled into two stages by the edge box,
referred to as the lower stage and the upper stage, respec-
tively. Unlike the process of MDP traffic, to achieve reliable
transmission for MUP chunks, the edge box would maintain
all these MUP chunks it has received from the end devices in
the memory until these chunks or their aggregated results have
been sent to and acknowledged by the FL server. As a result,
MUP needs a flow control mechanism to avoid overflowing the
edge box’s memory. Besides, new progress synchronization
and congestion control designs are also needed to make
efficient usage of the available link capacities and the ability
of in-network aggregation.

B. Progress Synchronization and Flow Control

The edge box maintains all received-yet-unsent and sent-
yet-unacked chunks for reliable delivery. When remaining

9

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

memories are available, for a received chunk that could not
be aggregated with any existing one, the edge box would
store it in memory and reply to the sending end device with
acknowledgment along with a desired chunk sequence number
for progress synchronization. By default, the sequence number
of the oldest chunk that this edge box has received yet unsent
to the FL server would be used. On getting such a sequence
number, saying �̄� for instance, the end device would relocate
its upload progress to min{𝑘 : 𝑘 ∈ 𝑈MUP∧𝑘 ≥ �̄�}, where 𝑈MUP

denotes set of chunks having not been successfully uploaded.
In case the edge box’s memory for MUP runs out, for a

newly received chunk that can not be aggregated into an
existing one already residing in the memory, it would directly
discard this chunk and reply to the source end device with
a specific NACK message along with the desired relocation
sequence number for progress synchronization. On getting
such a reply, the end device would immediately relocate the
upload progress accordingly if the chunk at the target location
has not been sent. If the chunk at the target location has
already been successfully uploaded to the edge box, or it is
a sent-yet-unacked chunk, the end device would not relocate
its upload progress; instead, it would stop sending and resume
the uploading after a short interval, with the default value of
the measured RTT from itself to the edge box.

C. Congestion Control

Given that the transmission of MUP traffic has been divided
into two stages, they trigger two congestion control instances,
accordingly. Similar to the case of MDP, in each stage, the
sender maintains a congestion window (cwnd) with AIMD
policy to limit the amount of sent-yet-unacked chunks, but
with several slight differences.

1) Upper Stage: To achieve job-aware fair sharing of the
upper path, the edge box would limit the sending window of
the upper stage of job 𝑗 so that it does not exceed �̄�MUP

𝑗
,

as E.q. (7). Here, 𝐵MUP
∗ and 𝑅𝑇𝑇MUP

𝑗
denote the maximum

bandwidth and current RTT of the upper path measured by the
edge box, respectively. 𝑠MUP

𝑗
is the size of each chunk. As the

chunk message sent in MUP is generally much larger than the
received reply, 𝐵MUP

∗ is dominated by the available bandwidth
of the directed path from the edge box to the FL server.
Similar to the case of MDP, 𝛼MUP is an adaptive parameter
maintained by the edge box for dynamic overbooking controls.
For job 𝑗 , 𝑚 𝑗 generally denotes the number of active end
devices it involves. Due to the acceleration of the edge box,
some jobs might have no active end devices, once their
end devices have uploaded their data to the edge box. For
these jobs, once completed, they could release the occupied
cache and these cache can be used by other jobs. Thus,
accelerating their completion is beneficial. To do so, if a job
does not have active end devices any more, we treat it as
having a virtual group of max𝑛

𝑖=1 𝑚𝑖 end devices. Following
the above design, MUP achieves job-scale-aware fair and work-
conserving allocation of the upper-stage path’s bandwidth.

�̄�MUP
𝑗 =

⌈
𝛼MUP𝐵MUP

∗ 𝑅𝑇𝑇MUP
𝑗

𝑠MUP
𝑗

1 + 𝑚 𝑗

𝑛 +∑𝑛
𝑖=1 𝑚𝑖

⌉
(7)

1 2 3 4 5 6 1 2 3 4 5

Aggregated chunks

Job1

Job2

Job1 Job2

Shared link10

53 6

Cached chunks
in the Edge Box

FL Server

Edge Box

ED1 ED2 ED3

Fig. 7: To make efficient usage of all available bandwidth, for
Job1, after transmitting the aggregated chunks {1, 2, 3}, the
edge box would continue sending the un-aggregated chunks
{4,5,6}, when possible.

2) Lower Stage: Notably, for the congestion control of the
lower stage, when a NACK message is received, since the loss
of packet is not caused by congestion, the end device would
reduce its congestion window size.

D. Cache Management

1) Intra-Job Cache Management: As the edge box has
divided the transmission of MUP traffic into two stages, to
make work-conserving usage of the upper path, cache-aware
sending controls are needed. By default, the edge box would
send a chunk to the final FL server if the time starting from the
caching of this chunk exceeds a pre-defined timeout threshold,
or if this chunk is exactly the aggregated result of the chunks
sent by all end devices. As the example in Figure 7 shows, such
a design might result in a waste of the bandwidth of the upper
path. Consider that there are two upload jobs namely 𝐽𝑜𝑏1
and 𝐽𝑜𝑏2, which involve two end devices (𝐸𝐷1 and 𝐸𝐷2)
and one end device (𝐸𝐷3), respectively. The paths from these
end devices to the edge box have the available bandwidth of
3, 6, and 5, respectively, while the path from the edge box
to the FL server has the bandwidth of 10. With the design of
𝛼-based overlooking, end devices belonging to these two jobs
would obtain the actual throughput of 3 and 5, respectively.
Obviously, such a result does not achieve work conservation,
as there is remaining available for the end device 𝐸𝐷2 to
upload its chunks to the FL server. The root cause relies on
the edge box not sending these unaggregated chunks to the
FL server, even though the remaining bandwidth is available.

To address this issue, when there are neither expired nor
fully aggregated chunks to send, we enable the edge box
to continue uploading these cached chunks (which might be
partially aggregated), in the oldest first manner, to the FL
server as well. Following this, the remaining bandwidth can
be used properly. For these chunks that have been sent to the
FL server without being fully aggregated, the corresponding
“leftover” chunks sent by other end devices could never be
fully aggregated at the edge box. To identify such “leftover”
chunks and upload them to the FL server as soon as possible,
for each chunk, the edge box also records the number of end
devices whose reported data have been delivered. We refer to
the above design as Upper-stage Upload Filling (U2F).

10

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

2) Inter-Job Cache Allocations: Similar to congestion con-
trol, for job 𝑗 , 𝑚 𝑗 generally denotes the number of active end
devices it involves. If a job does not have active end devices
any more, we treat it as having a virtual group of end devices,
with a size equal to the maximum of the actual end device
numbers involved by each job. Then, the 𝑗-th aggregation job
would obtain the quota of 𝑣MUP

𝑗
memories for aggregation.

𝑣MUP
𝑗 =

1 + 𝑚 𝑗

𝑛 +∑𝑛
𝑖=1 𝑚𝑖

𝑉MUP (8)

Given that the edge box could remove a received chunk
or its aggregated value if and only if this chunk has been
successfully delivered to the FL server. Thus, once the memory
quota for a MUP job runs out and a newly received chunk
uploaded by an end device can not be aggregated into these in
the cache, the edge box would discard this chunk and respond
to a specific NACK message as explained in Section V-B.
Following this, the edge box could allocate its MUP cache to
concurrent jobs for job-scale-aware fairness.

VI. DISCUSSIONS

Now, we describe how INP could gracefully deal with
hierarchical FL characteristics (Sections VI-A and VI-B), and
discuss its newly introduced security issues (Section VI-C).

A. Data Heterogeneity
As described in Section III, the edge box in INP con-

ducts coordinate-wise aggregation and cache operations on
the uploaded and delivered data, respectively. Such a design
makes INP generic and model-agnostic. Thus, the well-known
problem of data heterogeneity faced by federated learning [40]
would not impact the correctness and effectiveness of INP.

B. Training Straggler, Device Mobility and Failure
Due to the heterogeneity in cross-device FL, some end

devices might report their trained results to the FL server
later than others; even worse, they might fail to do so some-
times due to network errors and user interruptions [15]. To
deal with these issues, the FL server generally supports two
typical tolerance designs, which we refer to as top-k driven
FL and deadline-driven FL, respectively, as summarized in
Section II-A. Consider that the FL server has selected 𝑚

active end devices to conduct a round of training. Then,
in top-k driven FL, the FL server would generate the new
aggregated model to launch the next round of training once
it has received 𝑘 end devices’ results (𝑘 ≤ 𝑚); while in
deadline-driven FL, the FL server would wait for a (loosely)
pre-defined reporting deadline to collect the results; then it
conducts partial model aggregation to iterate to the next
round of training if the collected number of end devices has
met the minimum required amount [5], [15]. As described
in Section V, INP edge boxes already support the above
scenarios with a timeout-based design like Canary [25]—They
conduct in-network aggregations in a best-effort manner and
would send the partially aggregated results to the FL server
under the driven of timeouts. Regarding MDP, as presented in
Section IV, the dynamic change of the number of participating
devices is trivial; no specific design is needed.

C. Security Issues

As shown in Figure 2, compared to the legacy cross-device
FL system, INP mainly introduces the edge box, along with
a suite of new domain-specific transport protocols built on
top of UDP. This would introduce new threats beyond those
studied in [41]. In fact, for threats also faced by legacy
FL systems (e.g., poisoning attacks, gradient leakages [41]),
similar designs can be applied in the context of INP. To keep
this paper more focused, we briefly discuss these threat issues
faced only by INP here and leave a full-fledged study of threat
analysis and the design of solutions as future directions.

Basically, our design of INP is based on the assumption
that edge boxes could provide trusted pre-aggregation and
cache services for end devices and the FL server. If such a
requirement is not satisfied, the acceleration service of INP
should not be enabled. Then, the remaining threats are mainly
from the network; thus, existing network security proposals
can be used [42]. For example, by using existing message
authentication schemes like HMAC [43], unauthorized packets
could be filtered out and dropped by INP entities; by em-
bodying messages with timestamps or serial numbers, replay
attacks can be prevented; by letting INP entities encrypt the
data before sending them out, the confidentiality of INP can
be further enhanced; Indeed, for the acceleration of model
delivery, the edge box can directly cache the ciphertext without
decrypting, by not encrypting the chunk index. For the pre-
aggregation of gradients, the edge boxes can decrypt first and
then aggregate their original values. Alternatively, the well-
known Homomorphic Encryption (HE) provides a promising
solution since it supports the aggregation computation of
ciphertexts without decrypting them in advance [44]. However,
HE also greatly increases the amount of data that should be
transmitted (two orders of magnitude for instance [44]), and
advanced compress techniques are essential.

VII. PERFORMANCE EVALUATION

To verify the design of INP, we design an event-driven fine-
grained simulator following the simulators used by PAM [32]
and PPUSH [33], and conduct extensive tests to observe the
detailed behaviors. Results confirm that the novel designs
make INP able to accelerate both the dissemination of model
parameters and the aggregation of gradient values, by making
very efficient usage of the cache memories and computing
ability of edge boxes. Indeed, for a FL job involving 𝑚 end
devices, INP equipped with MDP and MUP is able to reduce
both the traffic load of FLS and the time needed for model
downloads and gradient uploads up to 𝑚 times.

A. Methodology

1) Workloads: As Figure 8 shows, we mainly consider the
case in which several groups of end devices are jointly training
models with the assistance of a shared edge box and FL server.
For ease of description, the end device labeled by ED[i,j] is
referred to as the 𝑗-th training worker of the 𝑖-th training job.
By default, we assume that both the model parameters and
gradients are split into chunks with the size of 1KB such
that each of them can be encapsulated in a UDP; and if

11

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

Cache size: 10MB

...

Job[i] Job[j]ED[i,1] ED[i,n] ED[j,1] ED[j,m]

FL Server

Edge Box

End Devices

Bandwidth: 100Mbps

Lower stage

Upper stage

... ...

Fig. 8: The network environment used in tests.

enabled, the edge box at the edge can perform in-network
cache and aggregation for the passing model download and
gradient upload requests, simultaneously. Respecting the test
scenarios, there might be one or multiple FL jobs and the end
devices might start their model download or gradient upload
request synchronously or asynchronously.

To study and highlight the effects of INP on accelerating
model downloads and gradient uploads, by default, we con-
sider the case where 4 training jobs share the same edge box
and FL server for either model download or gradient upload;
each job involves 10 end devices; all links have a capacity
of 100Mbps and latency of 10ms; the size of both the model
parameters and gradients is 40MB; and the available cache
that the edge box can use for MDP or MUP is 20MB. The
start time of model downloads or gradient uploads for each
end device follows a truncated exponential distribution: i.e.,
𝑡 = 𝛽min(𝑋, 5), where 𝑋 follows the exponential distribution
of 𝐸𝑥𝑝(1), and 𝛽 = 1. In tests, we also change these settings
to study their impacts.

2) Baselines, Metrics, and Tools: To the best of our knowl-
edge, this paper is the first work that implements in-network
processing as a best-effect acceleration service for cross-device
FL and provides the support of transport protocols. Due to
the significant differences with the existing schemes in the
technological design, it is not comparable with other schemes
like heterogeneous FLS. Thus, we mainly use the cases where
in-network processing is disabled as the baselines. Indeed, this
baseline can be treated as the cases of traditional TCP-based
model downloads and gradient uploads.

As mentioned in Section II, the convergence behaviors of
DML tasks like cross-device FL are jointly controlled by
various factors, e.g., the characteristics of the training data, the
capacities of the hardware, and settings of hyper-parameters
like the batch size, training algorithms, learning rate, etc. [16],
[17]; communication optimization is a generic and powerful
design to improve the efficiency of both top-k driven FL
and deadline-driven FL by making the training iterate faster.
Note that, for deadline-driven FL, communication might also
increase the number of end devices that contribute to each
round of training. As recent studies have shown [18], [19], a
larger number of participants for each round of FL generally
benefits the convergence; however, this depends on various
factors and thus the advantage is hard to analyze quantitatively.
As a proposal aiming to provide generic yet best-effort com-
munication acceleration services for cross-device FL, we argue

MDP w/o sync MDP w/ sync
0

4

8

12

16

20

Ti
me
 (

Se
co

nd
s)

(a) Model downloads.

MUP(l) MUP(u)
0

7

14

21

28

35

Ti
me
 (

Se
co

nd
s)

MUP w/o sync
MUP w/ sync

(b) Gradient uploads.

Fig. 9: With progress synchronization (i.e., w/ sync), the
average completion times of model downloads and gradient
uploads are significantly reduced, about 17% (MDP), 34%
(MUP(u)) and 35% (MUP(l)), respectively, compared to the
cases of no progress synchronization (i.e., w/o sync).

that network-related metrics like the achieved throughput and
(average) communication completion time, are more qualified
than others to assess the performance of INP. Besides, we also
investigate the detailed behaviors of the proposed protocols.

For each FL job, if multiple transfers are involved, its
communication completion time is defined as the average
completion time of all involved transfers. Note that, for the
upload of gradients, MUP has decoupled its workflow into two
stages (i.e., upper and lower), between which the edge box
acts as endpoints. Accordingly, there might be gaps between
the completion time of gradient uploads in the views of the
end device(s) and the FL server. We label these two types of
MUP traffic (flows) as “MUP(u)” and “MUP(l)”, respectively.

To conduct the performance study, we implement a discrete
event-driven simulator with Python 3 based on that of [32]
and [33], which can precisely simulate the behavior of INP
with and without the assistance of edge box, respectively. All
tests are conducted on a 64-bit Ubuntu 22.04.3 server equipped
with one Intel(R) Core(TM) i9-13900K CPU and four 32GB
DDR5 memory cards. For each parameter setting, we perform
10 trials to compute and report their mean values.

B. Detailed Behaviors of MDP and MUP

1) Progress Synchronization: Figure 9 shows the impacts
of progress synchronization on the performance of MDP and
MUP. Results confirm the remarkable benefits of progress
synchronization for the cases where end devices do not start
their download or upload requests at the same time. For ex-
ample, with the help of progress synchronization, the average
completion times of the model downloads and the gradient
uploads could be reduced to about 83% (MDP), 66% (MUP(u))
and 65% (MUP(l)) of the cases of no progress synchronization.

2) U2F: To verify the benefits of U2F (see Section V-D1),
we consider that there is only one FL job involving three end
devices, namely, ED[1,1], ED[1,2], and ED[1,3]; they start to
upload their gradient data to the edge box via links with the
capacity of 100Mbps, 50Mbps, and 30Mbps, at the time of 0s,
1s, and 2s, respectively. As shown in Figures 10a and 10b, with
U2F, the bandwidth of the shared upper-stage connection can
be utilized more efficiently, leading to accelerated completion
of gradient uploads for both ED[1,1] and ED[1,2].

12

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

0.0 2.5 5.0 7.5 10.0 12.5
Time (Seconds)

0

20

40

60

80

100
Th
ro
ug
hp
ut
 (
Mb
ps
)

MUP(u) w/o U2F
MUP(u) w/ U2F

(a) The total aggregated through-
put at the upper stage.

ED[1,1] ED[1,2] ED[1,3]
0

3

6

9

12

15

Ti
me
 (

Se
co

nd
s)

MUP w/o U2F
MUP w/ U2F

(b) The completion time of each
end device’s gradient upload task.

Fig. 10: With U2F, the upper-stage path has sufficient band-
width, the overall data transmission progress of MUP will not
be blocked by the end device with the lowest bandwidth.

0 5 10 15
Time (Seconds)

1.0

1.5

2.0

2.5
w/
w/o

(a) 𝛼 of MDP in model downloads.

0 5 10 15
Time (Seconds)

1.0

1.5

2.0

2.5
w/
w/o

(b) 𝛼 of MUP in gradient uploads.

0 5 10 15
Time (Seconds)

0

20

40

60

80

100

120

Th
ro
ug
hp
ut
 (
Mb
ps
)

Job1 w/
Job2 w/

Job1 w/o
Job1 w/o

(c) Throughput at the upper stage
in model downloads for each job.

0 5 10 15
Time (Seconds)

0

25

50

75

100

125

Th
ro
ug
hp
ut
 (
Mb
ps
)

Job1 w/
Job2 w/

Job1 w/o
Job1 w/o

(d) Throughput at the upper stage
in gradient uploads for each job.

ED[1,1] ED[2,1] ED[2,2]
0

5

10

15

20

25

Ti
me
 (
Se
co

nd
s)

w/o w/

(e) Model download completion
times in the view of end devices.

ED[1,1] ED[2,1] ED[2,2]
0

5

10

15

20

25

Ti
me
 (
Se
co

nd
s)

w/o w/

(f) Gradient upload completion
times in the view of end devices.

Fig. 11: With 𝛼-based job-aware adaptive overbooking, both
MDP and MUP transfers could adjust their overbooking rates
to make efficient and fair usage of the available bandwidth
adaptively, resulting in possible accelerated job completions.

3) Congestion Control with Job-aware Adaptive Overbook-
ing: To verify the effects of job-aware adaptive overbooking
schemes proposed in Sections IV-C and V-C, we consider
the case where three end devices, ED[1,1], ED[2,1], ED[2,2],
belonging to two training jobs, Job1 and Job2, compete for
the upper-stage path. ED[1,1] starts to download the model
or upload the gradients at 0s via an 80Mbps lower-stage
connection, while ED[2,1], ED[2,2], begin their model down-
loads or gradient uploads at 0s, 2s, via 20Mbps lower-stage
connections, respectively. From 0s to 2s, both jobs involve only

MDP w/o EB MDP w/ EB
0

50

100

150

Ti
me

 (
Se

co
nd

s)

(a) Model downloads.

MUP w/o EB MUP(u) w/ EB MUP(l) w/ EB
0

50

100

150

Ti
me
 (
Se
co
nd
s)

(b) Gradient uploads.

Fig. 12: By making usage of the edge box, INP can accelerate
model downloads and gradient uploads greatly.

1 2 3 4
0

4

8

12

16

20

Ti
me
 (

Se
co

nd
s)

MDP

(a) Impacts of 𝛽 on the comple-
tion of model downloads.

1 2 3 4
10

15

20

25

30

Ti
me
 (

Se
co

nd
s)

MUP(u) MUP(l)

(b) Impacts of 𝛽 on the comple-
tions of gradient uploads.

Fig. 13: Both MDP and MUP are robust to achieve consistent
performance, when 𝛽, the level of divergence of the start time
of model downloads and gradient uploads, varies.

one end device. Without 𝛼-based adaptive overbooking, the
throughput of Job2 could only reach about 20Mbps, resulting
in about 40Mbps remaining bandwidth at the upper stage,
due to the bottleneck effects it suffers at the lower stage.
Indeed, such bandwidth resources should be used by Job1.
As Figure 11 shows, with 𝛼-based adaptive overlooking,
by tuning the value of 𝛼, the edge box could enable the
flow that belonging to Job1 to make work-conserving usage
of the upper-stage path’s capacities, resulting in accelerated
completion of model downloads and gradient uploads for Job1.

C. Acceleration Effects of MDP and MUP

1) Case Studies: Figure 12 shows the (average) completion
times of both model downloads and gradient uploads under the
default setting, with and without the assistance of the edge box,
respectively. In the view of end devices, MDP and MUP could
reduce the completion time for model downloads and gradient
uploads by about 10× and 11×. And in the view of the FL
server, the completion time of gradient upload is reduced by
about 8×. Regarding the gaps between the completion time
of gradient uploads observed by the end devices and the FL
server, it mainly stems from the fact that end devices start their
uploads asynchronously. This is because an end device treats
its upload as finished once it has gotten ACKs from the edge
box, while the FL server treats the job as done only when all
the data sent by all end devices has been successfully received.

2) Impacts of 𝛽: Figure 13 shows the (average) comple-
tion times of model downloads and gradient uplaods when
𝛽 increases from 0.25 to 0.5, to 1, to 2, and to 4. For
MDP, the impacts is trivial because cache-creator will cover
requests from cache-user, allowing the job to maintain similar
throughput in the upper-stage path. For MUP, as 𝛽 continues to

13

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

50 100 150 200
Cache size (MB)

5

10

15

20
Ti

me
 (

Se
co

nd
s)

MDP

(a) Impacts of cache size on the
completion of model downloads.

50 100 150 200
Cache size (MB)

0

5

10

15

20

25

Ti
me
 (

Se
co

nd
s)

MUP(u) MUP(l)

(b) Impacts of cache size on the
completion of gradient uploads.

Fig. 14: Compared to MDP and MUP(u), the performance of
MUP(l) is more sensitive to the available volume of cache.

10 20 30 40
Numbers of EDs

5

10

15

20

25

Ti
me
 (

Se
co

nd
s)

MDP

(a) Impacts of job scale on the
completion of model downloads.

10 20 30 40
Numbers of EDs

5

10

15

20

25

Ti
me
 (

Se
co

nd
s)

MUP(u) MUP(l)

(b) Impacts of job scale on the
completion of gradient uploads.

Fig. 15: For model download and gradient upload jobs in-
volving 𝑚 end devices, with novel in-network cache and ag-
gregation designs, MDP and MUP could reduce the FL server’s
workload from 𝑂 (𝑚) to 𝑂 (1), yielding consistent performance
improvements in terms of the average job completion time.

increase, the completion time of the upper-stage path will also
increase. This is because the larger 𝛽 is, the greater dispersion
the job start time has, leading to a decrease in aggregated and
an increase in the total amount of data transmission.

3) Impacts of Cache Size: Figure 14 shows the impacts of
the cache size on the performance of MDP and MUP when its
value increases from 10MB to 20MB, to 40MB, to 80MB,
to 120MB, to 160MB, and to 200MB. For MUP(l), with the
size of the edge box’s available cache continues to increase,
the average completion time of gradient upload jobs decreases
very fast, and woule keep consistent when the size reaches
120MB. Differently, MDP can only achieve maximum accel-
eration by storing all data in the cache. Otherwise, the edge
box has to forward the request to the FL server, which would
slow down the transmission. Such results also imply that when
the edge box does not have enough cache to maintain all
model parameters and gradients, only a limited cache volume
(e.g., 10 out of 40 MB) could bring remarkable performance
improvements for both gradient uploads and model downloads.

4) Impacts of Job Scale: As Figure 15 shows, both MDP
and MUP could achieve consistent performance improvements
in terms of the reduction of the completion time, with the
increase in the number of involved end devices in each job.
This is reasonable. With novel in-network cache and aggrega-
tion designs, for a model downloads and gradient uploads task
involving 𝑚 end devices, the edge box could nearly reduce
the workload of the FL server from 𝑂 (𝑚) to 𝑂 (1), almost
eliminating its bottleneck effects. Consistent with the findings

0 5 10 15
Timeout Value (Seconds)

10

13

16

19

Ti
me
 (

Se
co

nd
s)

MUP(u) MUP(l)

(a) Impacts of timeout value on
gradient uploads.

0 5 10 15
Timeout Value (Seconds)

0

2

4

6

Pa
ck
te

 N
um
be

r
(*
10

e3
) Timeout U2F

(b) Packet sending events caused
by timeout and U2F.

Fig. 16: U2F enables the edge box to efficiently upload partial
aggregated data to the FL server without suffering timeout.

200 400 600 800
Bandwidth (Mbps)

0

10

20

30

Ti
me
 (

Se
co

nd
s)

MDP

(a) Impacts of bandwidth on
model downloads.

200 400 600 800
Bandwidth (Mbps)

0

10

20

30

Ti
me
 (

Se
co

nd
s)

MUP(u) MUP(l)

(b) Impacts of bandwidth on gra-
dient uploads.

Fig. 17: With the increase in bandwidth, the average comple-
tion time of MDP and MUP transfers would decrease.

implied by Figure 13, due to the asynchronism of the start
time of end devices belonging to the same job, for gradient
uploads, especially in the FL server’s view, a larger training
scale generally leads to a longer completion time.

5) Impacts of Timeout Value: To study the impacts of the
timeout value on the performance of MUP, we now consider
that the second ready end device of Job1 becomes unavailable
after uploading gradient for 2s. As Figure 16a shows, while
the timeout value increases from 0.001s to 0.01s, to 0.1s, to
0.5s, to 1s, to 2s, to 4s, to 6s, to 8s, and to 16s, this MUP job’s
completion time almost stays consistent. This is reasonable, as
Figure 16b shows, with the growth of the timeout value, an
increasing number of packet sending events are triggered by
U2F (refer to Section V-D1 for details); once the timeout value
is larger than 0.5s, U2F could send the vast majority of the
partial aggregated chunks cached in the edge box to the FL
server before timeout events occur.

6) Impacts of Bandwidth: Figure 17 shows the average
completion times of model downloads and gradient uploads
when the link capacity increases from 50Mbps to 800Mbps.
As expected, a larger link capacity leads to smaller average
completion times. As the bandwidth increases, the degree
of the decrease also decays. This is because even when the
available bandwidth is large, it would still take several RTTs
for both MDP and MUP flows to increase their congestion
window sizes to make efficient usage of the bandwidth and
to complete their delivery tasks.

7) Impacts of Packet Loss Rate: Last but not least, Fig-
ure 18 shows the average completion times of model down-
loads and gradient uploads when the packet loss rate of links

14

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

0 1 2 3 4 5
Loss Rate (%)

12

14

16

18

20
Ti

me
 (

Se
co

nd
s)

MDP

(a) Impacts of packet loss rate on
model downloads.

0 1 2 3 4 5
Loss Rate (%)

10

12

14

16

18

20

Ti
me
 (

Se
co

nd
s)

MUP(u) MUP(l)

(b) Impacts of packet loss rate on
gradient uploads.

Fig. 18: A higher loss rate leads to larger (i.e.,g slowed)
average completion times for both MDP and MUP flows.

between involved entities increases from 0, to 0.0001, to 0.005,
to 0.01, to 0.03, to 0.05, following the settings used in [45]. As
expected, the increase in the packet loss rate would slow down
the completion of both MDP and MUP transfers. Nevertheless,
the average flow completion time does not grow very fast,
almost linearly with the increase in the loss rate. Extending
MDP and MUP to be more robust to random packet loss is
interesting which is left as future work.

VIII. RELATED WORK

As Sections II-C and II-D have compared INP with closely
related proposals in detail, we now further shortly review other
applications of in-network processing (Section VIII-A), other
types of communication optimizations (Section VIII-B), and
emerging applications of cross-device FL (Section VIII-C).

A. Other Applications of In-Network Processing

Beyond accelerating model synchronizations for distributed
machine learning applications like cross-device FL, in-network
processing has been widely employed for abundant distributed
applications for performance enhancement. For example, pro-
posals like [46], [47] explore the design of accelerating the
reconstruction of chunks for EC-based distributed storage
systems with in-network processing. NetFEC [48] employs in-
network processing to conduct forward error correction (FEC)
for reliable media data transmission. ASK [26] implements in-
network aggregation of key-value streams as a generic service
that distributed big data and high-performance computing
applications can benefit from. As pointed out by MTP [8], the
support from transport protocols is also important to make effi-
cient and easy usage of in-network processing for these diverse
distributed applications, which are open problems. To further
simplify the usage of in-network processing, NetRPC [28] tries
to integrate in-network processing based acceleration into the
RPC framework thus making it easy to use for applications.

B. Related Communication Optimization Schemes for DML

Besides conducting in-network processing for aggregation
and cache, there are also abundant other types of communi-
cation optimization design for cross-device FL or, even more
generic, for DML. For example, several recent works show the
possibility of relieving the slowdown effects of network con-
gestion by conducting approximate gradient data transmissions

through novel loss-tolerate transmission mechanisms [49],
[50], [51], or lossy data compression techniques like quanti-
zation, sparsification, and low-rank decomposition [52], [53].
From another direction, proposals like Crew [17] and SelM-
cast [34] also explore the design of conducting model syn-
chronization among partial rather than all workers to decrease
the traffic volume triggered by each round of synchronization,
and to deal with training stragglers; Differently, schemes like
FedDrop [54] make use of dropout for random model pruning
such that the communication and computation loads of each
end device could be reduced. As orthogonal to these designs,
extending our proposed INP to work with them jointly for
communication optimization yields interesting further studies.

Different from INP, proposals like [37], [55] make edge
servers act as local FL servers, and configure the frequencies
of local aggregation and global aggregation properly; thus
the communication loads would be optimized. As discussed
in Section II-C, enabling edge servers to provide in-network
aggregation and cache as best-effort network acceleration
services is more generic and powerful.

C. Emerging Federated Learning Applications

Nowadays, FL has been employed for various application
scenarios beyond well-known cases like item recommenda-
tions and content suggestions. For example, it can be used
to manage the traffic at intersections for better idle durations
and fuel consumption [56], control the routing of large-scale
mesh networks for congestion avoidance [57], and optimize
the various layers of the 6G wireless networks for better end-
to-end quality of service and experience [58]. We argue that
FL would have more advanced and wider applications and
refer the readers to [59] for a more comprehensive survey.

IX. CONCLUSION AND FUTURE WORK

In conclusion, we design INP, an In-Network Processing
framework, along with the novel Model Download Protocol
(MDP) and Model Upload Protocol (MUP), and a suite of
resource allocation algorithms for progress synchronization,
flow control, congestion control, and cache management, to
accelerate the data deliveries involved in large-scale cross-
device FL systems. The key of INP is to let Edge Boxes (EBs)
residing between the selected training End Devices (EDs) and
the FL server (FLS) act as the cache node for model downloads
and as the aggregator for gradient uploads. Extensive packet-
level performance studies indicate that INP could successfully
reduce both the traffic load of the FL server and the needed
times of model downloads and gradient uploads.

Regarding future directions, besides a full-fledged study of
threats and the design of solutions, we argue that extending
INP to support a broader range of application types and
diverse network environments is attractive. On the one hand, as
is known, in-network processing has many promising applica-
tions in domains such as data analysis, security enhancement,
and system coordination [60]; however, providing transport
protocol support for them is a crucial yet open problem [8],
calling for future study. On the other hand, for abundant

15

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

intra-datacenter distributed applications benefiting from in-
network processing (e.g., DC-DML [22], [30]), their involved
aggregators (e.g., P4 switches) generally support only a limited
set of simple operations and the available cache memories are
scarce [21], [26], [28]. Designing domain-specific transport
protocols and schemes to achieve features like progress syn-
chronization and job-scale-aware fair resource allocation for
them using these capacity-limited in-network devices is crucial
but quite challenging.

REFERENCES

[1] S. Luo et al., “Eliminating communication bottlenecks in cross-device
federated learning with in-network processing at the edge,” in Proceed-
ings of IEEE ICC, 2022, pp. 4601–4606.

[2] C. Niu et al., “Billion-scale federated learning on mobile clients: A
submodel design with tunable privacy,” in Proceedings of the 26th
MobiCom, 2020.

[3] Y. Shi et al., “Communication-efficient edge ai: Algorithms and sys-
tems,” IEEE Communications Surveys and Tutorials, vol. 22, no. 4, pp.
2167–2191, 2020.

[4] Y. Zhan et al., “A learning-based incentive mechanism for federated
learning,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6360–
6368, 2020.

[5] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, no. 1–2, pp. 1–210, jun 2021.

[6] K. Bonawitz et al., “Towards federated learning at scale: System design,”
Proceedings of Machine Learning and Systems, vol. 1, pp. 374–388,
2019.

[7] S. J. Reddi et al., “Adaptive federated optimization,” in International
Conference on Learning Representations, 2021.

[8] B. E. Stephens et al., “Tcp is harmful to in-network computing:
Designing a message transport protocol (mtp),” in Proceedings of the
20th HotNets. New York, NY, USA: ACM, 2021, pp. 61–68.

[9] L. Liu et al., “Client-edge-cloud hierarchical federated learning,” in
Proceedings of the IEEE ICC, 2020.

[10] R. Stoenescu et al., “In-net: In-network processing for the masses,” in
Proceedings of the 10th EuroSys, 2015.

[11] A. Panda et al., “Netbricks: Taking the v out of NFV,” in Proceedings
of the 12th OSDI. USENIX Association, Nov. 2016, pp. 203–216.

[12] Y.-Y. Shih et al., “An nfv-based service framework for iot applications
in edge computing environments,” IEEE Trans. Netw. Service Manag.,
vol. 16, no. 4, pp. 1419–1434, 2019.

[13] P. Jin et al., “Latency-aware vnf chain deployment with efficient resource
reuse at network edge,” in Proceedings of IEEE INFOCOM, 2020, pp.
267–276.

[14] L. Zhang et al., “Named data networking,” SIGCOMM Comput. Com-
mun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014.

[15] C. Yang et al., “Flash: Heterogeneity-aware federated learning at scale,”
IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 483–500,
2024.

[16] L. Mai et al., “Kungfu: Making training in distributed machine learning
adaptive,” in Proceedings of the 14th OSDI, 2020, pp. 937–954.

[17] S. Luo et al., “Efficient cross-cloud partial reduce with crew,” IEEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 11, pp.
2224–2238, 2024.

[18] X. Li et al., “On the convergence of fedavg on non-iid data,” in
International Conference on Learning Representations, 2020.

[19] Z. Charles et al., “On large-cohort training for federated learning,” in
Advances in Neural Information Processing Systems, vol. 34. Curran
Associates, Inc., 2021, pp. 20 461–20 475.

[20] M. Ye et al., “Heterogeneous federated learning: State-of-the-art and
research challenges,” ACM Computing Surveys, vol. 56, no. 3, Oct. 2023.

[21] A. Sapio et al., “Scaling distributed machine learning with In-Network
aggregation,” in Proceedings of the 18th NSDI. USENIX Association,
Apr. 2021, pp. 785–808.

[22] C. Lao et al., “ATP: In-network aggregation for multi-tenant learning,”
in Proceedings of the 18th NSDI. USENIX Association, Apr. 2021.

[23] Z. Li et al., “A2tp: Aggregator-aware in-network aggregation for multi-
tenant learning,” in Proceedings of the 18th EuroSys. New York, NY,
USA: ACM, 2023, pp. 639–653.

[24] Z. Li et al., “Pa-atp: Progress-aware transmission protocol for in-network
aggregation,” in Proceedings of ICNP, 2023, pp. 1–11.

[25] D. De Sensi et al., “Canary: Congestion-aware in-network allreduce
using dynamic trees,” Future Gener. Comput. Syst., vol. 152, no. C,
pp. 70–82, Mar. 2024.

[26] Y. He et al., “A generic service to provide in-network aggregation for
key-value streams,” in Proceedings of the 28th ASPLOS. New York,
NY, USA: ACM, 2023, pp. 33–47.

[27] S. Liu et al., “In-network aggregation with transport transparency for
distributed training,” in Proceedings of the 28th ASPLOS. New York,
NY, USA: ACM, 2023, pp. 376–391.

[28] B. Zhao, W. Wu, and W. Xu, “NetRPC: Enabling In-Network compu-
tation in remote procedure calls,” in Proceedings of the 20th NSDI 23.
Boston, MA: USENIX Association, Apr. 2023, pp. 199–217.

[29] N. Gebara, M. Ghobadi, and P. Costa, “In-network aggregation for
shared machine learning clusters,” in Proceedings of Machine Learning
and Systems, vol. 3, 2021, pp. 829–844.

[30] S. Luo et al., “Releasing the power of in-network aggregation with
aggregator-aware routing optimization,” IEEE/ACM Transactions on
Networking, vol. 32, no. 5, pp. 4488–4502, 2024.

[31] S. Luo et al., “Fast parameter synchronization for distributed learning
with selective multicast,” in Proceedings of IEEE ICC, 2022, pp. 4775–
4780.

[32] S. Luo et al., “Efficient file dissemination in data center networks with
priority-based adaptive multicast,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 6, pp. 1161–1175, 2020.

[33] S. Luo et al., “Efficient multisource data delivery in edge cloud with
rateless parallel push,” IEEE Internet of Things Journal, vol. 7, no. 10,
pp. 10 495–10 510, 2020.

[34] S. Luo et al., “Efficient parameter synchronization for peer-to-peer
distributed learning with selective multicast,” IEEE Transactions on
Services Computing, vol. 18, no. 1, pp. 156–168, 2025.

[35] R. Silva et al., “In-network computing—challenges and opportunities,”
Internet Technology Letters, vol. 7, no. 3, p. e487, 2024.

[36] J. Liu et al., “Venn: Resource management across federated learning
jobs,” arXiv:2312.08298, 2023.

[37] L. Luo et al., “Communication-efficient federated learning with adaptive
aggregation for heterogeneous client-edge-cloud network,” IEEE Trans-
actions on Services Computing, vol. 17, no. 6, pp. 3241–3255, 2024.

[38] X. Li, Y. Zhao, and C. Qiao, “Rcsr: Robust client selection and
replacement in federated learning,” in Proceedings of ICPADS, 2023,
pp. 1577–1584.

[39] M. Polese et al., “A survey on recent advances in transport layer
protocols,” IEEE Communications Surveys and Tutorials, vol. 21, no. 4,
pp. 3584–3608, 2019.

[40] S. Vahidian et al., “Rethinking data heterogeneity in federated learning:
Introducing a new notion and standard benchmarks,” IEEE Transactions
on Artificial Intelligence, vol. 5, no. 3, pp. 1386–1397, 2024.

[41] N. Rodríguez-Barroso et al., “Survey on federated learning threats:
Concepts, taxonomy on attacks and defences, experimental study and
challenges,” Information Fusion, vol. 90, pp. 148–173, 2023.

[42] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, 7th ed. Pearson, 2017.

[43] H. Krawczyk, M. Bellare, and R. Canetti, “Rfc2104: Hmac: Keyed-
hashing for message authentication,” USA, 1997.

[44] C. Zhang et al., “Batchcrypt: Efficient homomorphic encryption for
cross-silo federated learning,” in Proceedings of USENIX ATC, Jul. 2020,
pp. 493–506.

[45] Z. Chen et al., “Unifl: Enabling loss-tolerant transmission in federated
learning,” in Proceedings of the 8th APNet. ACM, 2024, pp. 163–168.

[46] Y. Qiao et al., “Netec: Accelerating erasure coding reconstruction with
in-network aggregation,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 10, pp. 2571–2583, 2022.

[47] J. Xia et al., “Parallelized in-network aggregation for failure repair in
erasure-coded storage systems,” IEEE/ACM Transactions on Network-
ing, vol. 32, no. 4, pp. 2888–2903, 2024.

[48] Y. Qiao, H. Zhang, and J. Wang, “Netfec: In-network fec encoding ac-
celeration for latency-sensitive multimedia applications,” in Proceedings
of IEEE INFOCOM, 2024, pp. 2348–2357.

[49] H. Zhou et al., “Dgt: A contribution-aware differential gradient transmis-
sion mechanism for distributed machine learning,” Future Generation
Computer Systems, vol. 121, pp. 35–47, 2021.

[50] S. Luo et al., “Meeting coflow deadlines in data center networks
with policy-based selective completion,” IEEE/ACM Transactions on
Networking, vol. 31, no. 1, pp. 178–191, 2023.

[51] H. Wang et al., “Towards Domain-Specific network transport for dis-
tributed DNN training,” in Proceedings of the 21st NSDI. Santa Clara,
CA: USENIX Association, Apr. 2024, pp. 1421–1443.

16

Accepted to appear in IEEE Transactions on Mobile Computing, 2025

[52] W. Han et al., “Beyond throughput and compression ratios: Towards
high end-to-end utility of gradient compression,” in Proceedings of the
23rd HotNets, ser. HotNets ’24. ACM, 2024, pp. 186–194.

[53] X. Liu et al., “Approximate gradient synchronization with aqgb,” in
Proceedings of the 6th APNet. New York, NY, USA: ACM, 2023, pp.
101–102.

[54] D. Wen, K.-J. Jeon, and K. Huang, “Federated dropout—a simple ap-
proach for enabling federated learning on resource constrained devices,”
IEEE Wireless Communications Letters, vol. 11, no. 5, pp. 923–927,
2022.

[55] C. Feng et al., “Mobility-aware cluster federated learning in hierarchical
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 21, no. 10, pp. 8441–8458, 2022.

[56] A. Chougule et al., “A novel framework for traffic congestion manage-
ment at intersections using federated learning and vertical partitioning,”
IEEE Transactions on Consumer Electronics, vol. 70, no. 1, pp. 1725–
1735, 2024.

[57] Y. Watanabe, Y. Kawamoto, and N. Kato, “A novel routing control
method using federated learning in large-scale wireless mesh networks,”
IEEE Transactions on Wireless Communications, vol. 22, no. 12, pp.
9291–9300, 2023.

[58] F. Tang et al., “Survey on machine learning for intelligent end-to-
end communication toward 6g: From network access, routing to traffic
control and streaming adaption,” IEEE Communications Surveys and
Tutorials, vol. 23, no. 3, pp. 1578–1598, 2021.

[59] E. T. Martínez Beltrán et al., “Decentralized federated learning: Fun-
damentals, state of the art, frameworks, trends, and challenges,” IEEE
Communications Surveys and Tutorials, vol. 25, no. 4, pp. 2983–3013,
2023.

[60] S. Kianpisheh and T. Taleb, “A survey on in-network computing:
Programmable data plane and technology specific applications,” IEEE
Communications Surveys and Tutorials, vol. 25, no. 1, pp. 701–761,
2023.

Shouxi Luo (Member, IEEE) received the bache-
lor’s degree in communication engineering and the
Ph.D. degree in communication and information
systems from the University of Electronic Science
and Technology of China, China, in 2011 and 2016,
respectively. He is currently an Associate Professor
with Southwest Jiaotong University. His research
interests include data center networks, software-
defined networking, and networked systems.

Peidong Zhang received the bachelor’s degree in
computer science and technology from Henan Uni-
versity, China, in 2022. Currently, he is pursuing
the master’s degree in electronic information at
Southwest Jiaotong University. His research interests
include in-network computing and communication
system optimization.

Xin Song is currently pursuing the master’s de-
gree in computer technology at Southwest Jiaotong
University. His research interests include distributed
deep learning and networked systems.

Pingzhi Fan (Fellow, IEEE) received the M.Sc.
degree in computer science from Southwest Jiaotong
University, China, in 1987, and the Ph.D. degree in
electronic engineering from Hull University, U.K.,
in 1994. He is currently a Presidential Professor
with Southwest Jiaotong University. His research
interests include high mobility wireless communi-
cations, massive random-access techniques, etc. He
is a fellow of IEEE, IET, CIE, and CIC.

Huanlai Xing (Member, IEEE) received the B. Eng.
degree in communications engineering from South-
west Jiaotong University, China, in 2006, the
M. Eng. degree in electromagnetic fields and wave-
length technology from the Beijing University of
Posts and Telecommunications, China, in 2009, and
his Ph.D. degree in computer science from the
University of Nottingham, U.K., in 2013. Currently,
he is an Associate Professor with Southwest Jiaotong
University. His research interests include mobile
edge computing, evolutionary computation, etc.

Long Luo received the M.S. and Ph.D. in com-
munication and information systems from the Uni-
versity of Electronic Science and Technology of
China, China, in 2015 and 2020, respectively. She is
currently an Associate Professor with the University
of Electronic Science and Technology of China. Her
research interests include networking and distributed
systems, etc.

Hongfang Yu (Senior Member, IEEE) received the
Ph.D. degree in communication and information
systems from the University of Electronic Science
and Technology of China, China, in 2006. She is cur-
rently a Professor with the University of Electronic
Science and Technology of China. Her research
interests include SDN/NFV, data center networks,
networking for AI systems, and network security,
etc.

17

	Introduction
	Background and Motivation
	Characteristics of Cross-Device FL
	Importance of Communication Optimization
	Why In-Network Processing Instead of Hierarchical FLS
	Desirable Properties and Drawbacks of Existing Solutions
	Design Challenges

	INP Framework
	Framework Overview
	Domain-Specific Transport Protocols
	Edge Box Designs

	Model Download Protocol
	mdp Overview
	Progress Synchronization
	Relocation Designs
	Request Deduplication

	Congestion Control
	Problem Descriptions
	Solutions

	Cache Management

	Model Upload Protocol
	mup Overview
	Progress Synchronization and Flow Control
	Congestion Control
	Upper Stage
	Lower Stage

	Cache Management
	Intra-Job Cache Management
	Inter-Job Cache Allocations

	Discussions
	Data Heterogeneity
	Training Straggler, Device Mobility and Failure
	Security Issues

	Performance Evaluation
	Methodology
	Workloads
	Baselines, Metrics, and Tools

	Detailed Behaviors of mdp and mup
	Progress Synchronization
	U2F
	Congestion Control with Job-aware Adaptive Overbooking

	Acceleration Effects of mdp and mup
	Case Studies
	Impacts of
	Impacts of Cache Size
	Impacts of Job Scale
	Impacts of Timeout Value
	Impacts of Bandwidth
	Impacts of Packet Loss Rate

	Related Work
	Other Applications of In-Network Processing
	Related Communication Optimization Schemes for DML
	Emerging Federated Learning Applications

	Conclusion and Future Work
	References
	Biographies
	Shouxi Luo
	Peidong Zhang
	Xin Song
	Pingzhi Fan
	Huanlai Xing
	Long Luo
	Hongfang Yu

