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Abstract—In this paper, we look into the problem of achiev-
ing efficient inter-datacenter AllReduce operations for geo-
distributed machine learning (Geo-DML). Compared with intra-
datacenter distributed training, the heterogeneous wide-area net-
work (WAN) connections among Geo-DML workers are scarce,
expensive, and unstable, making existing proposals designed
for homogeneous networks fall short. Despite that some recent
optimizations have been proposed for Geo-DML, they break the
consistency semantics of bulk synchronous parallel (BSP), thus
bringing no benefit to the widely existing BSP-based applications.

To address these issues, we propose MTREE, a topology
management suite for Geo-DML. With the global view of the
heterogeneous WAN connections, MTREE builds multiple opti-
mized spanning trees along with suggested workload distribution
proportions, respecting the constraints of both the number of
trees and their maximum height specified by the training. Based
on these results, geo-distributed workers could launch concurrent
tree-based pipelined AllReduce operations to make efficient use of
the heterogeneous network. Detailed performance studies on real-
world network topologies imply that MTREE achieves efficient
AllReduce, significantly outperforming existing solutions.

Index Terms—AllReduce, Inter-DC WAN, Communication Op-
timization

I. INTRODUCTION

Nowadays, an increasing number of geo-distributed machine
learning (Geo-DML) systems have been employed to train
large sophisticated models for applications like image and
video classification, speech processing, machine translation,
and topic modeling over massive data around the globe [1],
[2]. In these systems, involved training workers are hosted
on different datacenters which are networked with scarce,
expensive, and unstable wide-area network (WAN) connec-
tions [2]. To guarantee convergence, workers participating in
data-parallel training must synchronize their local training re-
sults with AllReduce operations periodically. As confirmed by
numerous recent studies, the time cost of performing param-
eter synchronization over these cross-datacenter connections
has dominated the efficiency of geo-distributed training [1]–
[3]. Accordingly, improving the efficiency of inter-datacenter
(inter-DC) AllReduce operations over WAN connections be-
comes the key to optimizing the performance of large-scale
Geo-DML. Then, a fundamental question follows: How to
make maximum usage of heterogeneous inter-datacenter WAN
connections to achieve efficient AllReduce operations for geo-
distributed training?
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Despite that many proposals have been proposed for the op-
timization of parameter synchronization for distributed train-
ing, they fail to provide efficient AllReduce ability over
heterogeneous WAN connections in various aspects [1], [4]–
[7]. More specifically, some of them break the consistency
semantics of bulk synchronous parallel (BSP) thus bringing
no benefit to the widely existing BSP-based applications [1],
[2], [7]—Indeed, BSP is still the most-widely used consistency
model in production. Some others do provide BSP-based
AllReduce ability—They work well in homogeneous network
environments but fall short in heterogeneous cross-datacenter
network environments [4], [5], or employ inefficient commu-
nication designs [6], [8], [9], as detailed in Section II-C.

For example, solutions based on peer-to-peer messag-
ing [10] and parameter server (PS) [4] are unaware of
both the application-level semantics of AllReduce and the
heterogeneous topology of the underlying network. As nodes
in Geo-DML are generally not fully connected, these schemes
would generate duplicated traffic on the shared links according
to the routing. Likewise, solutions like Recursive Halving &
Doubling [11] and Butterfly [12] let a worker communicate
with only another worker for data delivery or exchange at
each step. Besides the problem of duplicated traffic, they
could not efficiently use the heterogeneous abundant links
among workers. Since there might not exist a ring to cover
all nodes for some networks, ring-based solutions would also
fail to make efficient usage of all available links and their
capacities [13]. Several recent works like TOPOADOPT [6],
BLINK [8], and PackingTrees [9] explore the idea of finding
multiple spanning trees for workers and then distributing
workloads among them to make efficient usage of their hetero-
geneous yet abundant interconnections. However, they either
do not explore the possibility of splitting tensors into fine-
grain chunks for pipelined transmission [6], or ignore the tree
structures when constructing [8], [9], thus are far from optimal.

In this paper, we propose MTREE (i.e., height-bounded
multiple trees) to address all these issues and provide efficient
AllReduce communication ability to geo-distributed training
over inter-datacenter WANs. Basically, MTREE is a topology
management suite that could construct multiple spanning trees
and a vector of workload distribution proportions, to efficiently
use all the available WAN connection bandwidth for pipelined
AllReduce operations. Based on the trees and their workload
proportions given by MTREE, a logical central controller
consistently splits the data on all workers proportionally to
conduct concurrent pipelined AllReduce operations. To control
the system complexity, there would be a limit on the maximum
number of concurrent AllReduce trees. Also, to control the
structure of the generated tree and reduce the network latency
of pipelined communication, MTREE allows training tasks to
specify their limits on the trees’ weighted heights. All these
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constraints and design objectives make the problem faced by
MTREE hard to solve. Thus, it employs heuristic algorithm
designs. Detailed evaluations using real-world inter-datacenter
network topologies show that, compared with baselines in-
cluding BLINK [8] and TOPOADOPT [6], MTREE not only
achieves high throughput for concurrent pipelined AllReduce
operations but also further reduces the height and maximum
fanout of AllReduce trees.

In summary, our contributions are three-fold:
1) A thorough analysis that identifies the drawbacks of ex-

isting schemes along with the challenges of performing
AllReduce operations over heterogeneous WANs (§II).

2) MTREE, a suite of flexible and efficient topology man-
agement and chunk size optimization algorithms that
can construct multiple height-optimized trees to make
efficient use of the heterogeneous WAN connections for
concurrent pipelined AllReduce operation (§III).

3) Evaluations based on real-world inter-DC WAN topolo-
gies showing that MTREE is effective and efficient,
outperforming existing solutions significantly (§IV).

Finally, we conclude this paper in Section V.

II. BACKGROUND AND MOTIVATION

Before looking into the design details of MTREE, in this sec-
tion, we briefly introduce the background of Geo-DML (§II-A)
and the requirement of AllReduce operation (§II-B), overview
the drawbacks of existing solutions through examples (§II-C),
and highlight our design goals and challenges (§II-D).

A. Geo-Distributed Machine Learning

Currently, machine learning techniques (e.g., deep learning)
are widely employed to train models for various applica-
tions using big data geographically distributed worldwide.
For example, banks and financial institutions could jointly
train shared models for credit risk control and anti-money
laundering; hospitals and medical centers would use their
medical data to train models for smart healthcare applications
like auxiliary diagnosis; and a large cross-regional enterprise
may use its geo-distributed datasets to train models for item
recommendation [14]–[16]. In practice, multiple factors pre-
vent the massive amount of training data from being gathered
into a single data center for training. First, transferring such
a huge amount of raw data over the bandwidth-scarce wide-
aware network is quite slow and thus time-consuming [1], [16],
[17]. Second, to meet the huge computing capacity demands in
the era of large models, companies might prefer to make joint
use of their legacy data center infrastructure worldwide to train
new models efficiently [18]. Third and most critical, to satisfy
the laws of data sovereignty and/or meet the requirement
of privacy protection, the cross-regional gathering of data is
impossible thus geographically distributed machine learning
(i.e., Geo-DML) is a must [1]. With the rapid development
of AI and its increasing use in production, we believe that
Geo-DML will become more and more popular in the future.
Regarding the model size, it might range from the magnitude
of 107 (e.g., ResNet50) to 108 (e.g., Bert), to 1012 (e.g.,

GPT3), and continues to increase explosively in the era of
large language models [19].

In distributed training, a model training job is coopera-
tively performed by a group of networked worker nodes.
To guarantee and accelerate the coverage of the iterative
distributed training, workers conducting training computation
on their local data would perform global communication to
synchronize the trained models over the network periodi-
cally. Compared with intra-datacenter DML, there are three
main differences faced by Geo-DML. Firstly, in scenarios
like federated learning, the training data might be inherently
distributed, i.e., not independently identically distributed (i.e.,
non-IID) [20]—-Hence, the training worker nodes have to
communicate more frequently for convergence. Secondly, to
achieve privacy-protected Geo-DML over untrustworthy en-
vironments, technologies like homomorphic encryption might
be employed and the traffic volumes would increase greatly
since encrypted rather than raw tensors are transmitted over
the network [21]. Last but not least, the connections between
geo-distributed workers generally with scarce, expensive, and
unstable available bandwidth [2], [21]. All these factors make
the efficiency of model synchronization more critical and hard
to improve in the context of Geo-DML.

B. Requirements of AllReduce Operation

In Geo-DML, a model training job is cooperatively per-
formed by a group of worker nodes interconnected with wide-
area networks. To guarantee and accelerate the coverage of
the iterative distributed training, workers conducting training
computation on their local data would perform global com-
munication to synchronize the trained models periodically;
and Bulk Synchronous Parallel (BSP) is the most popular
synchronization mode used by data-parallel distributed training
in production today [22]. In each round of BSP-based model
synchronization, workers would move to the next round of
training at the same step until all of them obtain the newly
global aggregated model. Thus, optimizing the execution ef-
ficiency of BSP model synchronization is critical to improve
the performance of data-parallel Geo-DML training.

The functional requirements of BSP-based model synchro-
nization can be captured by the collective of AllReduce.
Consider that there are 𝑛 workers holding tensors 𝑡1, 𝑡2 · · · , 𝑡𝑛,
respectively. Then, using an AllReduce operation, all workers
could obtain the same result of R([𝑡1, · · · , 𝑡𝑛]), where R
is the applied reduction operation on each item of these
tensors. 𝑠𝑢𝑚,max,min, and 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 are examples of such
operations [23]. In practice, tensor 𝑡𝑖 might denote the locally
trained model parameters or the gradients, depending on the
design of the distributed training algorithms [13]; and 𝑠𝑢𝑚

is widely used to average a group of model parameters or
gradients for model synchronization. As an example, Figure 1
showcases the tony example of performing the sum-based
AllReduce collective operation for three workers whose local
tensors are (2, 4, 1), (1, 3, 5), and (6, 8, 7), respectively. Once
the AllReduce is completed, all workers would hold the same
summarized tensor (9, 15, 13).
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W1 (2,4,1) W2 (1,3,5)

Sum([(2,4,1), (1,3,5), (6,8,7)])AllReduce 

W3 (6,8,7)

W1 (9,15,13) W2 (9,15,13) W3 (9,15,13)

(a) An example shows the definition of AllReduce.
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W2 (-,15,-)

W3 (-,-,13)

W1 (9,15,13)

W2 (9,15,13)

W3 (9,15,13)
ReduceScatter AllGather

(b) AllReduce can be split into ReduceScatter + AllGather.

Fig. 1: An example showcases the operation of AllReduce.

C. Drawbacks of Existing AllReduce Implementations

Despite there are abundant AllReduce implementation de-
signs triggering different communication patterns, they could
not efficiently use the scarce and heterogeneous bandwidth.

1) Peer-to-peer and PS: In peer-to-peer based solutions,
each worker directly sends its tensors to all other workers via
either unicast or multicast at the network layer, forming a log-
ical broadcast on the overlay among all workers; on receiving
the data from all workers (including itself), each worker could
compute the aggregated tensors, independently [10]. Different
from peer-to-peer based solutions that directly “broadcast” the
input data among workers, the “star”-based solutions configure
some nodes to work as “aggregators”, a.k.a., parameter servers
or PS for short [4]; workers first push the local tensors to these
aggregators and then pull the results. To achieve BSP-based
model synchronization, a PS would reply to pull requests until
it generates the aggregated result based on all the input tensors.
Logically, a parameter server can share the same physical
server with a training worker, respecting the configurations set
by developers and/or operators. If multiple parameter servers
are available, training workers could consistently distribute
their aggregation workloads into them for load balance [24].

Even though super simple, solutions based on both peer-to-
peer [10] and PS [4] (including its variants like PSLD [24] and
PLINK [25]) are far from optimal for Geo-DML. Fundamen-
tally, they are unaware of the application-level semantics of
AllReduce and the heterogeneous topology of the underlying
network. Due to the variability of WAN topology, some node
sites in Geo-DML are networked via others rather than directly
connected; thus peer-to-peer messaging and PS-based pushing
& pulling generically introduce abundant duplicated traffic on
the wire. Consider the cases shown in Figure 2 as examples.
The system has four nodes, labeled 𝐴, 𝐵, 𝐶, and 𝐷, re-
spectively. Their inter-node links have a bidirectional capacity
of either 1 or 2. When peer-to-peer messaging is employed,
𝐴 might send the data to 𝐵 via their direct connection;
meanwhile, 𝐴 also needs to send the same data to node 𝐶
via 𝐵. Thus, there are duplicated data transmissions on the
link of (𝐵,𝐶), leading to a waste of bandwidth. In the case
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Fig. 2: Motivation Examples: (a) A heterogenous network;
(b) the data sent by 𝐴 with the destination of 𝐵 and 𝐶 might
introduce duplicated traffic on the link of (𝐴, 𝐵), when peer-
to-peer or PS-based schemes are employed; (c) it is impossible
to make full use of the link capacities of this heterogeneous
network with rings; (d) these two trees rooted at 𝐴 could
consume all the network capacities, however, their structures
are unbalanced; (e) these two trees with the height of 1 hop,
rooted at 𝐵 and 𝐷, yield the best solution.

of PS-based model synchronization, as a parameter server, 𝐴
would disseminate the updated model parameters to both 𝐵

and 𝐶; then, a similar situation occurs.
2) Recursive Halving & Doubling and Butterfly: In

schemes like Recursive Halving & Doubling [11] and Butter-
fly [12], at each step, a worker communicates with only another
worker to deliver or exchange data; and the endpoint changes
in different steps. Such a type of design suffers from two issues
in the context of Geo-DML, thus far from optimal. Firstly, as
some workers do not have direct connections, like in the cases
of peer-to-peer and PS, there might be duplicated transmission
on some links. Secondly, when there are abundant links with
heterogeneous capacities in the network (e.g., Figure 2), they
cannot fully use all the network bandwidth.

3) Ring and Tree: Inherently, the order of conducting
reduction operation for a group of tensors would not impact
the final results. Thus, instead of directly exchanging the
raw input data, solutions based on ring and tree employ the
design of arranging the logical communication relationships
between workers following a specifically directed topology,
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and performing the reduction operation along the planned
way, such that the last worker would exactly hold the final
fully reduced tensor, e.g., (9, 15, 13) in the example shown in
Figure 1. Following a similar design, this reduced result would
be disseminated to all workers over a predefined topology,
achieving the goal of AllReduce. By sharding all the input
tensors into multiple groups of chunks and conducting their re-
duce then broadcast operations concurrently, training workers
could make more efficient use of their interconnections. For
instance, by letting different chunks be reduced to different
workers and then broadcasted to all other workers over the
ring at the same time, the implementation of the well-known
ring-based AllReduce is internally split into two stages, i.e.,
ReduceScatter then AllGather, as Figure 1b shows.

Despite being very efficient in homogeneous environments,
ring-based AllReduce implementation might perform poorly
in Geo-DML. As the example in Figure 2c shows, after estab-
lishing a bidirectional ring for all the nodes, there is remaining
bandwidth on the link between 𝐵 and 𝐷, implying that ring-
based solutions might be unable to make full use of all the
heterogeneous link capacities. Indeed, as pointed out by [8], it
is even theoretically impossible to find a ring to cover all the
nodes exactly once in some cases. Alternatively, a promising
solution to this instance is to generate two spanning trees,
e.g., Figures 2d and 2e. However, existing solutions [6], [8],
[9] have performance issues in executing the communication
and/or generating trees.

TOPOADOPT has formulated the joint optimization problem
of generating trees to assign workloads as a comprehensive
mixed-integer nonlinear programming model and designed a
heuristic algorithm based on Simulated Annealing to solve.
However, it does not explore the possibility of splitting ten-
sors into fine-grain chunks for pipelined transmission—Such
a design not only suffers from the problem of inefficient
bandwidth utilization due to the lack of pipelining [8], [9]
but also prevents training workers from overlapping their
communication with computation [26], [27]. For example,
consider that a generated rooted tree has a height of 𝑙,
meaning that it takes 𝑙 hops for a message sent by the
farthest worker to reach the root and vice versa. Assume
that all links have the latency of 𝛼 and can transmit 1

𝛽
bytes

per second. Without pipelined communication, a tensor with
the size of 𝑣 bytes would be encapsulated as a single large
message. Then, it takes about 𝑙 (𝛼 + 𝛽𝑣) and 2𝑙 (𝛼 + 𝛽𝑣)
seconds, for these workers to complete a reduction/broadcast
and AllReduce operation, respectively, even ignoring the time
cost of reduction computation. However, by splitting the tensor
into fine-gain chunks with the size of 𝜇 bytes, using pipelined
chunk communication, the time cost of reduction/broadcast
and AllReduce could decrease to about (𝑙 +𝜆−1) (𝛼+ 𝛽𝜇) and
(2𝑙 + 𝜆 − 1) (𝛼 + 𝛽𝜇), respectively, where 𝜆 = 𝑣

𝜇
.1

Both BLINK [8] and PackingTrees [9] support pipelined
communication; however they do not limit the height of the
generated trees—As a result, trees with uncontrolled structures
might be generated. For example, they might find and use the
two trees rooted at 𝑎 with the height of 3 hops for AllReduce

1We assume there would only be at most one chunk on a link at any time.

as shown in Figure 2d. In comparison, as Figure 2e shows,
the two spanning trees with a height of 1 hop, rooted at 𝑏
and 𝑑, respectively, yield a better solution. As Section IV will
show, the uncontrolled structures of trees might lead to a non-
trivial loss of performance. Moreover, regarding the design
of pipelined communication, PackingTrees [9] would split the
tensors into very small chunks and distribute their “reduce”
and “broadcast” traffic over many diverse trees. This not only
makes the management of communication more complex but
also suffers from performance loss as using a too-small chunk
size also leads to performance loss [8].

D. Design Challenges

Motivated by the above observations, constructing multiple
height-optimized spanning trees in a bandwidth-aware way to
conduct pipelined AllReduce operations concurrently yields a
promising insight to achieve efficient AllReduce communica-
tion operations for Geo-DML. However, it is hard to do so,
as the following challenges should be addressed properly.
• Heterogeneous resources. Firstly, to efficiently use the

abundant WAN connections and their skewed bandwidth,
the generated trees should be effective and have opti-
mized structures. Due to the computational complexity of
the original optimization problem, as reported by recent
works [6], [8], novel algorithm designs are needed.

• Increased complexity. Secondly, distributing the work-
loads among multiple trees for pipelined reduction and/or
broadcast is definitely more complex than the case of
only using a single tree, yielding non-trivial overheads
for the implementation and management. To be practical,
the proposed execution plan should be easy to implement
and manage, with controllable complexity.

• Pipelining optimization. Thirdly, pipelined communi-
cation could make efficient usage of the bandwidth
thus accelerating the execution; however, as pointed out
by [8], performance loss occurs when the chunk size
is unbefitting. A guideline on the best chunk size for
pipelined communication on heterogeneous networks is
still missing and theoretical studies are needed.

III. MTREE DESIGNS

As Figure 3 shows, MTREE acts as an AllReduce syn-
thesizer that could generate AllReduce execution plans for
Geo-DML, to efficiently use the skewed heterogeneous WAN
connections. With the monitored global view of the inter-
datacenter WANs, it abstracts workers and their WAN connec-
tions as an undirected graph 𝐺 and computes the pipelined
AllReduce communication scheme at the application layer
(i.e., L7). Then, workers would implement the scheme using
the supported underlay high-performance transport protocols
or communication libraries. When the network condition
changes significantly, MTREE updates 𝐺 to reconstruct new
schemes for the next round of synchronization.

At the core, the algorithms of MTREE need to accomplish
three coupled goals: 𝑖) constructing spanning trees, 𝑖𝑖) deciding
their workload distributions, and 𝑖𝑖𝑖) optimizing the chunk size
for each tree’s pipelined communication. A straightforward
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Fig. 3: MTREE Architecture.

solution is formulating the above tasks as a joint optimization
problem to solve. However, due to the huge and complex
solution space, a joint optimization method would require a
lot of attempts. Indeed, as the work of [28] shows, for a given
undirected graph 𝐺, it is NP-hard in theory even to find 𝑘

edge-disjoint spanning trees rooted at the given vertex with the
optimal tree heights. Since the task faced by MTREE is more
complex, we conjecture it to be NP-hard and design decoupled
heuristic solutions. As Figures 4 shows, MTREE decouples
these tasks into three stages: 𝑖) constructing optimized, rooted
spanning trees with GOST (§III-A), 𝑖𝑖) determining their
optimal workload allocation scheme with MILP (§III-B), and
finally 𝑖𝑖𝑖) computing the optimal chunk size for each tree’s
pipelined communication (§III-C). During the procedure, we
would care about the theoretical throughput these generated
trees could obtain. Hereafter, we use the term AllReduce rate
to refer to the rate of reduce and/or broadcast workers would
conduct over a rooted tree. Accordingly, for an AllReduce
operation using multiple trees, its throughput is defined by the
total AllReduce rate of all the involved trees.

To address the challenge of heterogeneous resources,
MTREE employs a novel height-optimized algorithm to gener-
ate and select spanning trees in good structures for pipelined
communication, ensuring that their maximum height would
not exceed the given limit of 𝐻 (see §III-A). To address the
challenge of increased complexity, MTREE not only lets the
reduce traffic of each tensor go exactly the same but reversed
rooted tree with its reduce process, but also allows applications
to specify the upper limit of the number of allowed spanning
trees (i.e., 𝐾) with each request, which would be used for
selecting active trees (see Section III-B). And to address
the challenge of pipelining optimization, MTREE develops a
math model to analyze the impacts of the chunk size on the
completion time of pipelined communication over trees made
up of latency-skewed connections, based on prior study [29],
and thus obtain the theoretical optimal value (see §III-C).

A. Generating Optimized Spanning Trees with GOST

Now, we explain the design details of the Generate Op-
timized Spanning Trees (GOST) algorithm, which is made

STEP 1: Generate Optimized Spanning Trees with GOST

GBST
(Algorithm 1)

GRTH
 (Algorithm 2)

ITH
(Algorithm 3)

call call

STEP 2: Distribute workloads with MILP

STEP 3: Optimize the chunk size for pipelined communication

Fig. 4: Algorithm Framework of MTREE.

up of GBST (Algorithm 1), GRTH (Algorithm 2), and ITH
(Algorithm 3), as Figure 4 sketches. Especially, we find that,
for a given network, although there is a trade-off between
the achieved total AllReduce rate and the value of allowed
weighted height, once the height is larger than a certain value,
the increase in tree height only leads to tiny improvements
in the achieved total AllReduce rate. Empirically (see Sec-
tion IV), optimizing the maximum tree heights is likely to
bring benefits to network utilizations. This observation moti-
vates us to further improve the actual height of each AllReduce
tree rather than directly using the upper bound specified by the
application. Taking all the above considerations into account,
MTREE first involves a function named GBST (Generate Basic
Spanning Trees, Algorithm 1), with the assistance of GRTH
(Get Rooted Tree Height, Algorithm 2), to find multiple op-
timized basic spanning trees under the given constraints of 𝐻
and 𝑟 . Then, it tries to improve the maximum weighted height
of constructed trees, with binary search alike techniques, i.e.,
ITH (Improve Tree Heights, Algorithm 3).

1) GBST: The procedure of GBST is as Algorithm 1 shows.
Given a network 𝐺 along with the constraints of 𝐻 and 𝑟,
it repeats to find trees for concurrent AllReduce, until no
more tree that meets the maximum height limit of 𝐻 and
the minimum bandwidth requirement of 𝑟 could be found
(Line 14), or the network is disconnected (Line 19). For the
construction of a tree, like the design of Prim’s Algorithm [30],
GBST starts from a randomly selected vertex (Line 3); then,
at each step, it adds the edge with the maximum possible
bandwidth from the tree to another vertex, provided that the
addition of this vertex would not violate the constraint of 𝐻
(Lines 9-13). Here, 𝑏 𝑗 and 𝑏𝜅 represent the available capacity
of the 𝑗-th and 𝜅-th edge respectively. In case there are
multiple candidate edges with the same available bandwidth,
GBST selects the one that would increase the tree height as
few as possible (Lines 12-13). Note that, selecting different
nodes as the root generally leads to various tree heights;
we do not determine the root of the target tree during the
construction. Instead, for the already selected vertexes 𝑉𝑠 , we
use a vector 𝐷 𝑗 (calculated by Get Rooted Tree Height, i.e.,
GRTH, as Algorithm 2 shows) to record the heights of all
possible trees, in which 𝐷 𝑗 [𝑖], the 𝑖-th item, denotes the height
of tree constructed from 𝐸𝑠∪{𝑒 𝑗 } rooted at 𝑣𝑖 ∈ 𝑉𝑠 (Line 11).
In the worst case, the maximum value in a 𝐷 𝑗 would equal
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Algorithm 1 GBST: Generate Basic Spanning Trees

Input: network 𝐺, maximum allowed tree height 𝐻, mini-
mum allowed non-zero rate 𝑟

Output: the set of constructed spanning trees T, workload
allocations of spanning trees R

1: T← []; R← []; 𝑑 ← 2𝐻
2: while True do ⊲ repeat to find trees
3: 𝑉𝑠 ← {𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝑉 (𝐺))}
4: 𝐸𝑠 ← ∅ ⊲ edges selected for tree construction
5: 𝐸𝑐 ← {(𝑢, 𝑣) ∈ 𝐸 (𝐺) : 𝑢 ∈ 𝑉𝑠 ∧ 𝑣 ∉ 𝑉𝑠 ∧ 𝑏 (𝑢,𝑣) ≥ 𝑟}
6: 𝑟∗ ← + inf; 𝐷∗ ← [0]𝑛; 𝑀 ← [0] (𝑛×𝑛)
7: while 𝐸𝑐 ≠ ∅ do
8: 𝜅 ← 𝑛𝑢𝑙𝑙; 𝐷 ← 𝑛𝑢𝑙𝑙; 𝑑𝜅 ← 𝑑

9: for 𝑒 𝑗 ∈ 𝐸𝑐 in non-increasing order of 𝑏 𝑗 do
10: if 𝜅 ≠ 𝑛𝑢𝑙𝑙 ∧ 𝑏 𝑗 < 𝑏𝜅 then break
11: 𝐷 𝑗 ← GRTH(𝑒 𝑗 , 𝑉𝑠 , 𝑀, 𝐷∗,L(𝐺))
12: if max𝑖 𝐷 𝑗 [𝑖] ≤ 𝑑𝜅 then ⊲ select this edge
13: 𝜅 ← 𝑗 ; 𝐷 ← 𝐷 𝑗 ; 𝑑𝜅 ← max𝑖 𝐷 𝑗 [𝑖]
14: if 𝜅 = 𝑛𝑢𝑙𝑙 then return T,R ⊲ fail
15: (𝑢, 𝑣) ← 𝑒𝜅 where 𝑢 ∈ 𝑉𝑠 and 𝑣 ∉ 𝑉𝑠
16: 𝑉𝑠 ← 𝑉𝑠 ∪ {𝑣};𝑀 [𝑢] [𝑣] ← 1;𝑀 [𝑣] [𝑢] ← 1
17: 𝐸𝑠 ← 𝐸𝑠 ∪ {𝑒𝜅 }; 𝐷∗ ← 𝐷

18: 𝐸𝑐 ← {(𝑢, 𝑣) ∈ 𝐸 (𝐺) : 𝑢 ∈ 𝑉𝑠 ∧ 𝑣 ∉ 𝑉𝑠 ∧ 𝑏 (𝑢,𝑣) ≥ 𝑟}
19: if 𝑙𝑒𝑛(𝑉𝑠) ≠ 𝑙𝑒𝑛(𝑉 (𝐺)) then return T,R ⊲ fail
20: 𝜏 ← arg min𝑖∈𝑉𝑠

𝐷∗ [𝑖]
21: 𝑇∗ ← construct the tree rooted at 𝜏, using 𝐸𝑠

22: 𝑟∗ ← min{𝑏 𝑗 > 0 : 𝑒 𝑗 ∈ 𝐸 (𝐺)} ⊲ globally smallest
23: T← T + [𝑇∗]; R← R + [𝑟∗] ⊲ append
24: for 𝑒 𝑗 ∈ 𝐸 (𝑇∗) do
25: 𝑏 𝑗 ← 𝑏 𝑗 − 𝑟∗
26: return T,R

the diameter of the tree, while selecting the vertex closest to
the center of the diameter path would yield the minimum tree
height. Thus, when selecting an edge to extend the spanning
tree, MTREE guarantees that the values in 𝐷 𝑗 would not
exceed 𝑑 = 2𝐻 (Line 12). Once all vertexes are appended,
with these selected edges, GBST builds the AllReduce tree
𝑇∗ by selecting the vertex yielding the minimum tree height
as the root (Line 20). Finally, GBST appends the generated
tree 𝑇∗ along with its allowed 𝑟∗ to T and R, respectively
(Line 23), and updates the available capacity of each link
(Line 25). Notice that 𝑟∗ is the global minimum bandwidth,
which would be further explained in III-B.

2) GRTH: The sub-procedure of GRTH is described in
Algorithm 2. Using it, GBST tries to find the link that makes
the height (quantized latency) of the spanning tree increase the
least as much as possible when constructing the spanning tree
(i.e., finding the 𝑒 𝑗 in Algorithm 1). Algorithm 2 is based on
Breadth First Search (BFS). Algorithm 2 first puts the vertex
𝑢 and the length/distance (i.e., quantized latency) of 𝑒 𝑗 into
the queue (Line 4), and then iteratively pops out the vertex (𝑝)
and the 𝑡 from the front of the queue, where 𝑡 represents the
quantized distance between vertex 𝑝 and vertex 𝑣. Calculate
the quantized distance from vertex 𝑛𝑒𝑥𝑡 which is adjacent to

Algorithm 2 GRTH: Get Rooted Tree Height

Input: candidate edge 𝑒 𝑗 , processed nodes 𝑉𝑠 , adjacency
matrix of spanning tree 𝑀 , vector 𝐷∗, link latency 𝐿

Output: 𝐷∗ updated by 𝑒 𝑗
1: (𝑢, 𝑣) ← 𝑒 𝑗 where 𝑢 ∈ 𝑉𝑠 and 𝑣 ∉ 𝑉𝑠
2: 𝐷 𝑗 ← 𝐷∗.𝑐𝑜𝑝𝑦()
3: 𝑞 ← 𝑄𝑢𝑒𝑢𝑒(); 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← [0]𝑛; ℓ ← − inf
4: 𝑞.𝑝𝑢𝑠ℎ(

〈
𝑢, 𝐿𝑣,𝑢

〉
); 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢] ← 1

5: while 𝑞 is not empty do
6: ⟨𝑝, 𝑡⟩ ← 𝑞.𝑝𝑜𝑝(); ℓ ← max(ℓ, 𝑡)
7: for 𝑛𝑒𝑥𝑡 ∈ {𝑖 ∈ 𝑉𝑠 :𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑖]=0 ∧ 𝑀 [𝑝] [𝑖]=1} do
8: 𝐷 𝑗 [𝑛𝑒𝑥𝑡] ← max(𝐷 𝑗 [𝑛𝑒𝑥𝑡], 𝑡 + 𝐿𝑝,𝑛𝑒𝑥𝑡 )
9: 𝑞.𝑝𝑢𝑠ℎ( [𝑛𝑒𝑥𝑡, 𝑡 + 𝐿𝑝,𝑛𝑒𝑥𝑡 ])

10: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑛𝑒𝑥𝑡] ← 1
11: 𝐷 𝑗 [𝑣] ← ℓ

12: return 𝐷 𝑗

𝑝 to vertex 𝑣, and if it is larger at this time, update 𝐷 𝑗 [𝑛𝑒𝑥𝑡]
(Line 8), then put the vertex 𝑛𝑒𝑥𝑡 and the corresponding
distance into the end of the queue (Line 9). Throughout the
whole iteration, ℓ records the maximum distance generated,
and ℓ is assigned to 𝐷 𝑗 [𝑣] at the end of the iteration (Line 11).

Algorithm 3 ITH: Improve Tree Heights

Input: network 𝐺, maximum allowed (weighted) tree height
𝐻, minimum allowed non-zero rate 𝑟, allowed loss rate 𝜌

Output: optimized maximum allowed weighted tree height
𝐻𝑈 , the set of corresponding spanning trees T∗, and
workload allocation of spanning trees R∗

1: (T∗,R∗) ← GBST(𝐺, 𝐻, 𝑟)
2: 𝑟𝜌 ← 𝜌

∑
R∗ ⊲ the threshold of acceptable total rate

3: 𝐻𝐿 ← 1;𝐻𝑈 ← 𝐻

4: while 𝐻𝐿 < 𝐻𝑈 do ⊲ binary search
5: 𝐻𝑀 ←

⌊
𝐻𝐿+𝐻𝑈

2

⌋
6: (T,R) ← GBST(𝐺, 𝐻𝑀 , 𝑟)
7: if

∑
R ≥ 𝑟𝜌 then

8: 𝐻𝑈 ← 𝐻𝑀 ; T∗ ← T; R∗ ← R
9: else

10: 𝐻𝐿 ← 𝐻𝑀 + 1
11: return 𝐻𝑈 ,T∗,R∗

3) ITH: Despite that the heights of generated spanning trees
are always smaller than or equal to the limit of 𝐻, there is
still room for optimization. By using GBST as the building
block, MTREE achieves this goal via a binary search alike
design as Algorithm 3 shows. Basically, ITH first computes
the maximum total AllReduce rate that MTREE could achieve
under the original limit of 𝐻 (Line 1). This gives a baseline
for the improvement of 𝐻. Then, it tries to find a minimum
𝐻𝑀 ≤ 𝐻 that would not reduce the total AllReduce rate
too much, i.e., a 𝐻𝑀 is selected if and only if its achieved
total AllReduce rate is within the 𝜌 of the baseline (Line 7).
Here, 𝜌 ∈ (0, 1] is a tunable parameter controlling the loss of
aggregated AllReduce rate. Finally, the best 𝐻𝑀 is obtained.

4) Complexity: Regarding the algorithm complexity, both
the maintenance of the order of 𝑏 𝑗 in 𝐸𝑐 and the calculation
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of the value of 𝐷 𝑗 involved in Algorithm 1 can be processed
incrementally thus their completion times can be amortized.
Here, we conduct a loose worst-case analysis. It would take
no more than 𝑂 (𝑚 + 𝑚2 + 𝑚𝑛2)) = 𝑂 (max(𝑚2, 𝑛2𝑚)) times
for GBST to build a tree upon a network made up of 𝑛
vertexes and 𝑚 edges. As GBST would find at most 𝐾
trees and ITH would obtain the results within log𝐻

2 attempts,
the worst-case time complexity of MTREE is no more than
𝑂 (ln𝐻 · 𝐾 ·max(𝑚2, 𝑛2𝑚)).

B. Distributing Workloads with MILP

With GOST, MTREE would obtain a set of optimized span-
ning trees T∗ along with a corresponding bandwidth allocation
plan R∗. We find that, instead of directly employing all trees
in T∗ and the sending rates given by R∗ for pipelined current
AllReduce, there is room for improvement; thus we explore
the best workload allocation ratios by formulating the problem
as a mixed-integer linear programming (MILP) and solving it
using off-the-shelf solvers like Gurobi.

Consider that there are 𝛾 trees in T∗, i.e., 𝑇1 · · · , 𝑇𝛾 . Let
binary constant 𝑎𝑖, 𝑗 indicate whether the spanning tree 𝑇𝑖
involves the edge of 𝑒 𝑗 or not; use binary variable 𝑦𝑖 to
imply whether 𝑇𝑖 is selected for AllReduce or not; and use
variable 𝑟𝑖 to denote the AllReduce rate on it. Then the
problem of selecting at most 𝐾 trees from T∗ and balancing the
workload among them to maximize the aggregated AllReduce
rate/throughput), can be expressed as the MILP of (1). Here,
𝑀 is a large positive constant number used to guarantee that,
if the tree 𝑇𝑖 is selected (i.e., 𝑦𝑖 = 1), then we have 𝑟𝑖 ≥ 𝑟
(refer to (1c)), otherwise (i.e., 𝑦𝑖 = 0), 𝑟𝑖 = 0 (refer to (1d)).

MILP Maximize
𝛾∑︁
𝑖=1

𝑟𝑖 (1a)

s.t., ∀𝑒 𝑗 ∈ 𝐸 :
𝛾∑︁
𝑖=1

𝑎𝑖 𝑗𝑟𝑖 ≤ 𝑏 𝑗 (1b)

∀𝑖 : 𝑀 (1 − 𝑦𝑖) + 𝑟𝑖 ≥ 𝑟 (1c)
∀𝑖 : 𝑟𝑖 ≤ 𝑀𝑦𝑖 (1d)
𝛾∑︁
𝑖=1

𝑦𝑖 ≤ 𝐾 (1e)

∀𝑖 : 𝑦𝑖 ∈ {0, 1}; 𝑟𝑖 ≥ 0 (1f)

Following the results of MILP (1), MTREE distributes the
workload to selected trees (whose 𝑦𝑖 = 1) in proportion to their
𝑟𝑖 values for concurrent AllReduce. Suppose that MTREE has
constructed 𝑘 trees 𝑇1, 𝑇2, · · · , 𝑇𝑘 , whose scheduled sending
rates are 𝑟1, 𝑟2, · · · , 𝑟𝑘 , respectively. Then, for a model with
the size of 𝑆, the 𝑖-th tree 𝑇𝑖 could be responsible for the
AllReduce operation of 𝑟𝑖∑𝑘

𝑗=1 𝑟 𝑗
of the tensors.

Despite that MILP models are theoretically time-consuming
to solve, MTREE directly uses off-the-shelf commercial avail-
able solvers (e.g., Gurobi [31]) to obtain the optimal selections,
due to the following reasons. As it generally takes hours and
even days for workers to complete a training task, thus, once
the execution plan of AllReduce has been determined, it could
be used for a long time. Accordingly, the time cost of solving

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
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Data chunks are transmitted through a path made up of Links 1-7, 
whose latencies are 𝛼! , 𝛼" , 𝛼# , 𝛼$ , 𝛼% , 𝛼& , 𝛼', respectively.
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Fig. 5: An example shows the impacts of various link latencies.

MILPs is still acceptable, if it is not too much. Indeed, our tests
show that, by using the Gurob as the solver, it takes only a few
seconds for MTREE to select AllReduce trees and determine
their sending rates for the well-known WAN topologies like
GScale [32], Equinix [33], and IDN [34]. When the scale of
the MILP model is quite huge, an efficient approximation or
heuristic algorithm is needed and we leave the design of such
algorithms as future work.

C. Optimizing Chunk Sizes for Pipelining

So far, we have described how MTREE generates and selects
spanning trees to maximize the total AllReduce throughput.
Now, we further explain the principle that MTREE uses to
determine the optimal chunk size for each AllReduce tree.

Given an AllReduce tree used by MTREE, all its links have
the same amount of bandwidth but various latencies. As a
result, the communication time that it takes to complete the
parameter aggregation over a tree is dominated by the longest
path from all leaf nodes to the root. So does the broadcast
of results. For pipelined AllReduce whose broadcast stage
overlaps with the reduce stage, a similar conclusion is still
held, except that the longest path is a round trip. Mainly,
we extend the optimal chunk size model explained in [29]
to support various network latency values thus determining
the optimal chunk size for MTREE.

Support that the longest path involved in the communication
is made up of 𝑙 links, whose latencies are 𝛼1, 𝛼2, · · · , 𝛼𝑙 ,
respectively. All these links would send data belonging to the
task at the same rate, saying 𝑏 for instance. Then, following
the well-known 𝛼− 𝛽 model [35], the time cost of delivering a
chunk with the size of 𝜇 over the 𝑖-th link can be estimated as
𝛼𝑖 + 𝛽𝜇, where 𝛽 = 1

𝑏
. That is to say, the endpoints of this link

can either send or receive a chunk every 𝛼𝑖+𝛽𝜇 seconds. Note
that, links might have various latencies. When two successive
data chunks are transferred from a low-latency link to a high-
latency link, their inter-chunk arrival latency would increase.
However, when they are transferred from a high-latency link
to a low-latency link, the inter-chunk arrival latency remains
unchanged. For instance, Figure 5 shows a path made up of 7
links, with latencies 𝛼1, 𝛼2, . . . , 𝛼7, respectively. Here, the 𝑋-
axis represents the link indexes, the 𝑌 -axis denotes the latency
of each link, and the arrows demonstrate the order of links
that data chunks would go through. In the case of pipelined
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delivery, when the data chunks pass through a link with a
latency of 𝛼1, the inter-chunk arrival latency is 𝛼1 + 𝛽𝜇. Then,
when the data chunks pass through the link with the latency
of 𝛼2 (𝛼2 > 𝛼1), the inter-chunk arrival latency increases to
𝛼2 + 𝛽𝜇, with an increment of Δ1 = 𝛼2 − 𝛼1. When these
data chunks pass through the 3rd and 4th links, their inter-
chunk arrival latency is still 𝛼2 + 𝛽𝜇, but the transmission
times of each data chunk on these two links are 𝛼3 + 𝛽𝜇 and
𝛼4 + 𝛽𝜇, respectively. Following this, let Δ2 = 𝛼5 − 𝛼2, and
Δ3 = 𝛼6 − 𝛼5; then, it can be concluded that, after passing
through all links, the accumulated inter-chunk arrival latency
would increase from 𝛼1 to 𝛼1 +Δ1 +Δ2 +Δ3 = max𝑙

𝑖=1 𝛼𝑖 , due
to the change of link latency.

Assume that there are 𝜆 data chunks for pipelined communi-
cation in total. Obviously, workers can deliver a chunk at most
every (max𝑙

𝑖=1 𝛼𝑖 + 𝛽𝜇) seconds on each inter-worker connec-
tion; and the first data chunk would take about

∑𝑙
𝑖=1 (𝛼𝑖 + 𝛽𝜇)

seconds to reach the final destination. Based on the above
analysis, the time cost of delivering 𝜆 data chunks with the
size of 𝜇 over the path can be estimated as follows:

𝑡 (𝜆, 𝜇) =
𝑙∑︁

𝑖=1
(𝛼𝑖 + 𝛽𝜇) + (𝜆 − 1) ( 𝑙max

𝑖=1
𝛼𝑖 + 𝛽𝜇)

=

𝑙∑︁
𝑖=1

𝛼𝑖 + (𝜆 − 1) 𝑙max
𝑖=1

𝛼𝑖 + (𝑙 − 1)𝛽𝜇 + 𝛽𝜆𝜇
(2)

Given a communication task with the data size of 𝑣 on each
node, we would have 𝜆 = 𝑣

𝜇
and the following formulation:

𝑡 (𝜇) = 𝑡 ( 𝑣
𝜇
, 𝜇)

=

𝑙∑︁
𝑖=1

𝛼𝑖 + (
𝑣

𝜇
− 1) 𝑙max

𝑖=1
𝛼𝑖 + (𝑙 − 1)𝛽𝜇 + 𝛽𝑣

(3)

Or alternatively,

𝑡 (𝜆) = 𝑡 (𝜆, 𝑣
𝜆
)

=

𝑙∑︁
𝑖=1

𝛼𝑖 + (𝜆 − 1) 𝑙max
𝑖=1

𝛼𝑖 + (𝑙 − 1)𝛽 𝑣
𝜆
+ 𝛽𝑣

(4)

And its derivative is
d𝑡 (𝜇)

d𝜇
= − 𝑣

𝑢2
𝑙max

𝑖=1
𝛼𝑖 + (𝑙 − 1)𝛽 (5)

Obviously, the chunk size would not be larger than 𝑣; and
with the chunk size (𝜇) decreasing, the value of 𝑡 (𝜇) would
decrease first and reaches the minimum value when

d𝑡 (𝜇)
d𝜇

= 0 (6)

which yields

𝜇∗ = arg min 𝑡 (𝜇) =

√︄
max𝑙

𝑖=1 𝛼𝑖

(𝑙 − 1)𝛽 𝑣 (7)

In other words, MTREE could obtain the minimum pipelined
communication time by splitting the data on each worker into
𝜆∗ = 𝑣

𝜇∗ chunks.

𝜆∗ =

√︄
(𝑙 − 1)𝛽

max𝑙
𝑖=1 𝛼𝑖

𝑣 (8)

Once 𝜇 is smaller than 𝜇∗ (i.e., 𝜆 > 𝜆∗), 𝑡 (𝜇) turns to increase.
By solving 𝑡 (𝜇) > 𝑡 (𝑣), we get 𝜇 < 𝜇# =

max𝑙
𝑖=1 𝛼𝑖

(𝑙−1)𝛽𝑣 . That is to
say when the chunk size is too small, e.g., smaller than 𝜇# (i.e.,
𝜆 > 𝜆# = 𝑣

𝜇# =
(𝑙−1)𝛽𝑣

max𝑙
𝑖=1 𝛼𝑖

), the completion time might even be
larger than the case without using pipelined communication.

IV. PERFORMANCE EVALUATION

In this section, we quantify the performance of MTREE by
employing it to construct concurrent pipelined AllReduce trees
for three real-world inter-DC network topologies GScale [32],
Equinix [33], and IDN [34]. Results show that compared with
TOPOADOPT [6] and BLINK [8], MTREE can obtain much
higher throughput (i.e., normalized total AllReduce rate) for
all topologies under various network link capacities, respecting
the requirements of both the allowed number of trees and their
maximum height. Meanwhile, the spanning trees constructed
by MTREE achieve a good balance in the average height and
the average maximum fanout; and MTREE can significantly
reduce the communication completion time.

A. Methodology

1) Baselines: To the best of our knowledge, currently,
there are few direct studies on model synchronization between
data centers under heterogeneous WAN. From the perspec-
tive of network heterogeneity, parameter division, and multi-
aggregators, we select four parameter aggregation algorithms,
namely BLINK [8], PLINK [25], PSLD [24], and TOPOAD-
OPT [6], as baselines. Basically, BLINK, TOPOADOPT, and
MTREE belong to the spanning tree algorithm,2 PSLD belongs
to the multi-aggregator algorithm, and PLINK belongs to the
2-level hierarchical aggregation algorithm (intra-group aggre-
gation and inter-group aggregation). In PSLD and PLINK,
it is necessary to measure the communication performance
between nodes. Since the experiment scenario is a wide-
area network of arbitrary topology, many nodes are not di-
rectly connected, so the experiment calculates the shortest
path between nodes with the weight of latency, and the
average bandwidth on the path is used as the communication
bandwidth between nodes. Some algorithms, such as BLINK,
TOPOADOPT, and MTREE, involve the solving of (mixed-
integer) linear programming models. We employ the off-the-
shelf solver of Gurobi [31] to solve.

2) Workloads: Regarding the network between workers,
we use the three well-known real-world inter-DC topologies,
namely GScale [32], Equinix [33], and IDN [34], involv-
ing 12, 20, and 40 nodes, together with 38, 282, and 462
edges, respectively, for performance studies. Bandwidth and
latency between data centers are often affected by geographic
distance [36], [37]. In our experiments, the available link
bandwidth of a link is an integer multiple of ten randomly
taken from [200−100𝑠𝑘, 200+100𝑠𝑘], with the unit of Mbps.

2In the scenario of this paper, the work of PackingTrees [9] shares a very
similar high-level design with BLINK. However, given an AllReduce task, it
might use a large number of asymmetric trees for the involved reduce and
broadcast, making the execution of AllReduce hard to manage and introducing
non-trivial overheads. For a fair comparison, we do not use it as a baseline.
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Here, 𝑠𝑘 (𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠) ∈ [0, 1] is a configurable parameter con-
trolling the degree of link bandwidth fluctuation. By modifying
the value of 𝑠𝑘 , we can test the stability of the algorithms
under different bandwidth fluctuations. Regarding the network
latency, following the measured data reported in [37], each
inter-DC WAN connection’s latency is chosen from the range
of [50, 400], inversely proportional to its available bandwidth,
with the unit of 𝑚𝑠. To highlight the impact of 𝐻 on the
generation of trees, we directly set it with a determined value.

3) Metrics: Given a network, for the trees generated by
BLINK, TOPOADOPT, and our proposed scheme MTREE, we
mainly use the following metrics to assess their performances.
• Throughput, i.e., the total AllReduce rate they can

achieve, normalized by the value of
∑

𝑒 𝑗 ∈𝐸 (𝐺) 𝑏 𝑗

|𝑉 (𝐺) |−1 . Here, 𝑏 𝑗

is the bidirectional bandwidth of link 𝑒 𝑗 and |𝑉 (𝐺) | is
the total number of vertexes. Such a value also represents
the average network utilization achieved by these trees.

• AvgMaxFanout, the average maximum fanout of gener-
ated trees.

• AvgTreeHeight, the average height of generated trees.
• Number of Trees, the number of generated trees.
Besides, in the comparison of all schemes beyond BLINK

and TOPOADOPT, we also look into the communication com-
pletion time (CCT) of the AllReduce operation of a large
vector, in seconds, under the schedule of each algorithm.
For each parameter setting, we conduct at least 20 trials to
calculate their average values.

4) Tools: To measure their detailed performances, we have
implemented all the above schemes in Python 3 and further
developed a discrete event simulator, which can accurately
simulate data transmission, forwarding, and other functions
under the schedule of various algorithms. In data transmission
on an inter-worker link, if multiple tasks compete for the
bandwidth, the default max-min fairness (i.e., FS) allocation
mode is adopted, i.e., concurrent tasks share the link capacities
equally. Finally, we carry out experiments to evaluate the
comprehensive performance of MTREE from the perspective
of network bandwidth fluctuation, the height and the number
of spanning trees, and algorithm running time, to verify the
practicality of MTREE. All experiments were conducted on
a 64-bit Ubuntu 20.04 server equipped with one Intel(R)
Core(TM) i7-8700 CPU and 2 × 16GB DDR4 RAM cards.

B. Throughput of Generated Trees

First, we compare TOPOADOPT, BLINK, and MTREE in
terms of generated trees’ throughput (i.e., bandwidth utiliza-
tion), AvgMaxFanout, and AvgTreeHeight. Figure 6 shows that
MTREE achieves efficient bandwidth utilization in all topolo-
gies. The highest normalized throughput is larger than 0.8,
indicating that MTREE could use nearly 80% of the bandwidth
in heterogeneous networks. Moreover, with the increase of
network heterogeneity, the normalized throughput achieved
by MTREE does not decrease significantly, implying that it
can effectively deal with heterogeneous networks. In contrast,
with the increase of network heterogeneity, TOPOADOPT is
unable to utilize heterogeneous bandwidth effectively, thus its
achieved throughput decreases significantly. The normalized

throughput achieved by TOPOADOPT in the topology of
GScale (Figure 6a) is almost 2-3× of that in the topology of
Equinix (Figure 6b) and IDN (Figure 6c). Such results imply
that the performance of TOPOADOPT is unstable and would be
heavily impacted by the structure of the inter-worker network,
due to its simulated annealing [6] based random algorithm
designs. Both Equinix and IDN involve many nodes and links,
greatly decreasing the probability that TOPOADOPT could
successfully construct optimized spanning trees. As a result,
available solutions are scarce, implying that TOPOADOPT
cannot deal with very complex network scenarios. As shown
in Figures 6a and 6b, despite that BLINK achieves higher
throughput than TOPOADOPT, it still significantly under-
performs MTREE. As the degree of network heterogeneity
increases, there is a certain increase in the achieved throughput
of BLINK. However, as shown in Figure 6c, due to the
excessive complexity of IDN, the improvement of BLINK is
slight, indicating that it is ineffective in dealing with complex
network heterogeneity. In short, results show that MTREE has
obvious advantages in bandwidth resource utilization and the
ability to deal with network heterogeneity.

C. Structure of Generated Trees

Figure 7 shows the average heights and maximum fanouts of
the spanning trees constructed by BLINK, TOPOADOPT, and
MTREE, respectively. In tests, both TOPOADOPT and BLINK
do not limit the maximum height of the generated tree. Instead,
MTREE limits the maximum height of the tree with 𝐻; without
breaking this bound, it searches for as many available edges as
possible, and ensures that the overall height of the tree changes
least, to make trees balanced. Results show that the structure
of the generated tree varies with the tested network topology.
Generally, the average tree heights generated by MTREE are
smaller than those of TOPOADOPT, and smaller than (IDN) or
almost equal to (GScale, Equinix) those of BLINK. Regarding
the average value of these trees’ maximum fanouts, for the
smallest topology of GScale, the gaps between their achieved
average maximum fanouts generally do not exceed one, except
when the skewness of link capacities is small (𝑠𝑘 = 0.1). And
for the larger topologies of Equinix and IDN, when 𝑠𝑘 ≥ 0.2,
MTREE achieves the smallest average maximum fanout. Such a
result implies that compared with baselines, the trees generated
by MTREE are generally more balanced, with relatively small
average heights and average maximum fanouts.

D. Communication Completion Time

To explore the benefits of pipeline transmissions, we have
developed a message-level simulator with Python 3 that could
simulate the instances of conducting Reduce, Broadcast, and
AllReduce operations for a group of 1 GB vectors with
different designs in detail. Considering that the aggregation
and broadcast are symmetric processes and could be pipelined
as well, we just show the results of the process of data
aggregation. For AllReduce operation, we would obtain similar
results, except that the longest path is with the length of 2𝐻
rather than 𝐻. For each inter-worker connection, we use the
well-known Hockney (a.k.a., 𝛼–𝛽) messaging model [35] to
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Fig. 6: MTREE generally achieves higher throughput (i.e., normalized average AllReduce rate) than BLINK and TOPOADOPT.
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Fig. 7: Results show that the structure of the generated tree varies with the tested network topology.
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Fig. 8: MTREE efficiently utilizes the heterogeneous network resources to accelerate AllReduce operations with multiple trees.

formulate the time cost of message delivery. Regarding the
latency of each connection, we set it inversely proportional
to its link bandwidth following [36] and re-scale them into
the range of [50, 400] according to the measurement of [37].
For all baseline methods including MTREE (w/o Pipeline),
which is the variant of MTREE without pipelining, training
workers encapsulate all the data into a single message. While
for MTREE, the data is split into fine-grained chunks to support
pipelined transmissions following Eq. (2).

As Figure 8 shows, using height-limited spanning trees and
pipelined communication, MTREE achieves the best perfor-
mance, significantly outperforming all baseline schemes that
do not enable pipelined communication, i.e., BLINK, PLINK,
TOPOADOPT, and PSLD, about 2.0 − 12.4× speedups on
executing AllReduce. The speedup of scheme 𝐴 over scheme
𝐵 is defined as 𝑡𝐵

𝑡𝐴
, where 𝑡𝐴 and 𝑡𝐴 are the completion

of executing an AllReduce under the schedule of schemes

𝐴 and 𝐵, respectively. Moreover, consistent with the results
of achieved throughput shown in Figure 6, when pipelined
communication is not employed, MTREE (w/o pipeline) still
generally achieves smaller AllReduce communication com-
pletion times than TOPOADOPT and BLINK, yielding up to
about 6.0× and 3.8× speedups, respectively. Such a result
implies that even enabling the same pipelined communication
settings for the trees generated by BLINK and TOPOADOPT,
they are still likely to underperform MTREE. Overall, all the
above results confirm the benefits of conducting pipelined
communication over multiple balanced spanning trees for the
acceleration of AllReduce.

E. Impacts of Chunk Size

Given a tree and data size 𝑣, the best chunk size (𝜇∗) and
the best chunk amount (𝜆∗) for pipelined communication can
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Fig. 9: The changes of CCT with the increase of 𝜆 for the 9
trees that MTREE generates to transmit data in pipeline over
an instance of Equinix (𝑠𝑘 = 0.7).
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pipelined communication of an instance of Equinix (𝑠𝑘 = 0.7).

be computed via Eq. (7) and (8), respectively. Now we look
into the impact of chunk size on communication time. Here,
we use the instance of performing pipelined reduce operations
over the Equinix network topology, by using trees generated
by MTREE as examples. By default, the skewness parameter 𝑠𝑘
is set to 0.7. As shown in Figure 9, MTREE would construct
9 spanning trees in total, and the workloads are distributed
among these trees respecting their allocated sending rates.
These trees have various 𝜆∗ values to achieve the minimum
communication time.

To verify the accuracy of the theoretical analysis in §III-C,
we attempt to add an offset, denoted as 𝑑𝑒𝑙𝑡𝑎 ∈ [−50, 100],
to the 𝜆∗ of each tree and thus obtain 𝜆∗ (𝑑𝑒𝑙𝑡𝑎) = max(𝜆∗ +
𝑑𝑒𝑙𝑡𝑎, 1). As Figure 10 shows, when 𝑑𝑒𝑙𝑡𝑎 = 0, the communi-
cation time reaches a minimum of about 20s, consistent with
the communication time of MTREE (with Pipeline), i.e., yellow
line, in the same scenario in Figure 8. When 𝑑𝑒𝑙𝑡𝑎 (based
on a value of 0) increases or decreases, the communication
computation time increases, and the magnitude of the increase
is consistent with the theoretical magnitude in Figure 9.
When 𝑑𝑒𝑙𝑡𝑎 is a large negative value, then 𝜆∗

𝑖
(𝑑𝑒𝑙𝑡𝑎) = 1,

and all spanning trees do not divide its parameters—At
this time, the pipelined communication degrades into non-
pipelined communication, which takes about 43s, consistent
with the communication time of MTREE, i.e., purple line, in
the same scenario in Figure 8. The above results corroborate
the theoretical analysis of communication time in §III-C and
show that reasonable use of pipelined design in MTREE can

further accelerate the completion of operations like reduce; so
does broadcast and AllReduce operations.

F. Impacts of 𝐻

Now, we study the effect of the parameter 𝐻 on the achieved
throughput. In this case, to eliminate the effects of 𝐾 , we set
the value of 𝐾 to infinity, such that MTREE is allowed to
generate as many spanning trees as possible. As shown in
Figure 11, at first, GOST (i.e., MTREE) can construct more
trees as the maximum weighted height restriction 𝐻 is relaxed,
but the number of trees stops increasing after a certain value.
This is because GOST’s idea that prioritizes high bandwidth
allows a smaller number of spanning trees to take up most
of the bandwidth, and after the first 10 trees (or less, e.g.,
GScale has only 5-6 trees) are constructed, the network does
not have any spare links left for the construction of new trees
(i.e., the network becomes no longer connected). Thus, overall,
even without the restriction of 𝐾 , MTREE generally ensures
that fewer trees are obtained, simplifying the management
complexity of AllReduce trees.

Figure 12 further shows the variation of the throughput
achieved by MTREE with the growth of 𝐻 on the three
topologies when the value of 𝐾 is set to infinity. Basically,
the throughput increases rapidly with increasing 𝐻 at first,
which can be seen in conjunction with Figure 11. This is
mainly because increasing 𝐻 allows GOST to construct more
spanning trees. However, once 𝐻 reaches a certain value, e.g.,
4, 5, and 6 for GScale, Equinix, and IDN (Figure 12), the
increase in the realized throughput is small after that. This is
mainly because there is almost no increase in the number of
spanning trees (corresponds to Figure 11). The above results
imply that MTREE usually has an optimal 𝐻 in each topology,
which is small; and at the same time, under the constraints
of this optimal 𝐻, MTREE can utilize as much bandwidth
resources as possible by constructing a smaller number of
spanning trees, resulting in higher AllReduce performance.
Such observation shows the significance of designing ITH
(Algorithm 3). Using ITH, an optimal 𝐻 can be found quickly
to achieve efficient AllReduce performance.

G. Impacts of 𝐾

We next explore the effects of the parameter 𝐾 on the
achieved throughput. Note that, both a topology’s structure
and state of link capacities might impact the best value of
𝐻 for MTREE. Thus, when looking into the impacts of 𝐾 ,
it is unsuitable to set 𝐻 with a fixed value for all instances.
To deal with this issue, when investigating the impact of 𝐾
on the performance of AllReduce, given a test instance (e.g.,
Equinix with sk = 0.7), its 𝐻 is set to the optimal 𝐻 outputted
by ITH by setting 𝐾 to infinity. As shown in Figure 13, as
𝐾 increases, MTREE can get more spanning trees, achieving
higher throughput. In practical applications, a smaller 𝐾 can
simplify the management of parallel pipelined AllReduce
operations. Figure 13 shows that MTREE has utilized 70%
to 85% of the bandwidth resources in the network with 𝐾

not exceeding 10. Thus, it implies that MTREE can achieve
efficient AllReduce performance with a smaller number of
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Fig. 11: MTREE generally ensures that a small number of trees are used even without the restriction of 𝐾 .
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Fig. 12: There is generally an optimal 𝐻 for MTREE to achieve high throughput while keeping the number of trees small.
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Fig. 13: MTREE can utilize 70% to 85% of the link capacities with 𝐾 not exceeding 10 in the test instances.

spanning trees. Together with the results of Figures 11 and 12,
it is illustrated that there does exist a small optimal value for
𝐻—Using this 𝐻, MTREE could construct a smaller number
of spanning trees to achieve efficient AllReduce performance.

H. Efficiency of MTREE Algorithms

Given that GOST is a polynomial time algorithm and the
optimal chunk size is also easy to compute, the most time-
consuming part involved in MTREE is solving the MILP
model. We now further study the running time of solving
MILP (1) with commercial off-the-shelf Gurobi optimization
solver [31]. Results show that in the cases of GScale and
Equinix, the involved MILP model of (1) can be solved in
a very short time; even in the case of IDN, it takes less than
1s for the solver to select trees and determine their sending
rates. Distributed training generally needs to iterate thousands
of rounds, and even more, to converge; thus, we can pre-
compute the spanning trees and schedule their transmissions
in advance and such a time cost is acceptable.

V. CONCLUSION AND FUTURE WORK

This paper explores the idea of achieving efficient inter-
datacenter AllReduce operations for synchronous Geo-DML
via multiple trees. To do so, we design a topology management
suite named MTREE. With novel heuristic designs, MTREE
could generate multiple pipelined AllReduce trees together
with the suggested workload distribution proportions and
chunk size settings to make efficient usage of the heteroge-
neous WAN connections, respecting the limits of both the
maximum number of trees and their maximum weighted height
specified by training tasks. Performance studies on real-world
inter-datacenter topologies GScale, Equinix, and IDN imply
that MTREE outperforms existing solutions significantly.

Nowadays, beyond model training, geo-distributed datacen-
ters have also been widely employed to provide a variety of
cloud services like data storage and virtual network functions
under various operational goals [38]–[42]. When multiple
services coexist, they might dynamically compete for the
available capacities of the shared inter-DC wan connections.
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Accordingly, designing solutions to achieve efficient AllRe-
duce operations when coexisting with other geo-distributed
applications is interesting. Moreover, besides powerful cloud
datacenters, resource-limited edge nodes also become available
as popular AI infrastructures for model training [43]–[45]
and inference [46], [47]. For training workloads, besides the
nodes holding the training data, we can also select some
other available edge nodes or cloud servers to act as in-
network processing nodes to accelerate the involved AllReduce
operations [9], [44]. Another possible future work is designing
schemes to achieve efficient AllReduce in such cases.
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