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Meeting Coflow Deadlines in Data Center Networks
with Policy-based Selective Completion

Shouxi Luo, Pingzhi Fan, Huanlai Xing, Hongfang Yu

Abstract—Recently, the abstraction of coflow is introduced to
capture the collective data transmission patterns among modern
distributed data-parallel applications. During processing, coflows
generally act as barriers; accordingly, time-sensitive applications
prefer their coflows to complete within deadlines, and deadline-
aware coflow scheduling becomes very crucial.

Regarding these data-parallel applications, we notice that
many of them, including large-scale query systems, distributed
iterative training, and erasure codes enabled storage, are able to
tolerate loss-bounded incomplete inputs by design. This tolerance
indeed brings a flexible design space for the schedule of their
coflows: when getting overloaded, the network can trade coflow
completeness for the timeliness, and balance the completeness
of different coflows on demand. Unfortunately, existing coflow
schedulers neglect this tolerance, resulting in inflexible and
inefficient bandwidth allocations.

In this paper, we explore this fundamental trade-off and design
POCO, a POlicy-based COflow scheduler, along with a transport
layer enhancement scheme, to achieve customizable selective
coflow completion for emerging time-sensitive distributed appli-
cations. Internally, POCO employs a suite of novel designs along
with admission controls to make flexible, work-conserving, and
performance-guaranteed rate allocation to online coflow requests
very efficiently. Extensive trace-based simulations indicate that
POCO is highly flexible and achieves optimal coflow schedules
respecting the requirements specified by applications.

Index Terms—Coflow, data center networks, flow scheduling

I. INTRODUCTION

In modern cloud data centers, distributed data-parallel ap-
plications such as Hadoop, Spark, and EC-Cache, are widely
employed to build large-scale data processing, analysis, and
storage services [1–3]. In these systems, a job is split into
multiple staged tasks carried out by a cluster in distributed
manners. During processing, involved servers trigger groups
of parallel, collective flows to move intermediate results from
machines of the current stage to the next. These flows in
the same group are abstracted as a coflow since they share
the same performance goal and their completions act as the
barrier of the distributed computation [2, 4]. For time-sensitive
applications like web search, retail, recommendation systems,
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etc., the triggered coflows are generally bound with deadlines,
implying the dates by which they should be finished [4, 5].
To deal with these transfers, existing deadline-aware (co)flow
scheduling proposals directly reject a request if its deadline
can not be met [4, 6], or admit all requests then dynamically
preempt large-sized, less-emergency transfers in service to
increase the amount of deadline-satisfied requests heuristically,
without performance guarantee [5, 7, 8]. Unfortunately, such
designs are proven to be sub-optimal for many emerging
distributed applications.

Due to the approximate nature of the involved distributed
computation [9, 10], or the redundant design employed for data
transmission [3, 11], many of today’s distributed applications
are able to tolerate incomplete transmissions by design. For
instance, in large-scale query systems like web search and ad-
vertisement selection, for each cache-missed request, a group
of worker servers will report then aggregate their top-𝑁 results
to generate the final response; a partial data transmission is
acceptable to the application since it is a sample for the
whole data thus still bringing benefits to the application [9].
Likewise, during the distributed iterative training of modern
machine learning models, besides the tolerance of incomplete
training data, models like deep neural network based image
classification and natural language understanding, are robust
to achieve comparable convergence rate over incomplete pa-
rameter updates [10]—Actually, the recent empirical study
of [12] shows that many machine learning algorithms are
bounded-loss tolerant; their end-to-end job performance would
get little impacts in case that the randomized network data
loss is below a certain fraction (typically 10%∼35%). And
for applications like erasure codes enabled distributed storage
system, on object reads, because of the redundant self-coding
designs, obtaining any 𝑘 out of (𝑘 + 𝑟) splits of the object
residing in the cluster, are sufficient to serve the request [3, 11].

All the above observations demonstrate the ubiquity of
tolerance on incomplete inputs among emerging distributed
applications. Recently, by using this type of tolerance, Liu
et al. propose a protocol with controlled packet loss called
ATP, to perform approximate data transmission for approx-
imate application [13]; Xia et al. design BTP, a Bounded-
loss Tolerant transport Protocol, to remove the tail latency
for the parameter synchronization process of distributed model
training [12]. However, both ATP and BTP are oblivious of
the coflow semantic among flows; their per-flow based designs
are proved to be sub-optimal for the schedule of coflow [4].
To support incompleteness-tolerant coflow scheduling, Im et
al. employ greedy designs to maximize the partial throughput
of coflow [9]. However, the proposed Con-Myopic algorithm
is unaware of the application requirements in terms of the
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exact (coflow) completeness and timeliness. As a result, Con-
Myopic provides no performance guarantee to time-sensitive
applications. Moreover, Con-Myopic assumes that the data
transmitted by one flow cannot be replaced by another. This
is not always true as the aforementioned applications show
counter-examples. For those applications, the data transmitted
by all or portions of the flows in a coflow is exchangeable.
Accordingly, the completeness of these flows is described by
the total volume they deliver successfully. In these cases, the
schedule of Con-Myopic is inflexible and inefficient.

In summary, emerging time-sensitive data-parallel applica-
tions are common to tolerate incomplete yet loss-bounded
inputs. This brings an important yet overlooked design space
for the schedule of their deadline-bounded coflows: in case the
network is overloaded thus impossible to complete all tasks in
time, we could trade coflow completeness for timeliness and
trade one coflow’s completeness for those of others.

This work. In this paper, we explore the fundamental trade-
off between the time a coflow could take to complete and
the completeness it would achieve. As different applications
generally have various requirements on the completeness and
timeliness of coflow, we extend the barrier definition of coflow
to support partial completion and develop POCO, a POlicy-
based COflow scheduler along with a transport layer enhance-
ment scheme, to achieve customizable selective completion
for them. To provide guaranteed performances, POCO involves
admission controls for coflows arriving online. At the high-
level, it provides a set of policy primitives, with which,
distributed applications can precisely define their requirements
of both the expired time and minimum completeness along
with each coflow. Then, at the low-level, POCO translates these
requirements into time-slotted linear constraints and formulate
a Linear Program (LP) to solve. If the corresponding LP is
infeasible, POCO rejects the request; otherwise, any feasible
result of the problem yields a bandwidth allocation to admit
the new request without sacrificing the requirements of others.
With an affiliated flow based transport layer enhancement
scheme, POCO would control the coflow traffic to occupy the
network to complete respecting their schedules gracefully.

However, building LPs for the selective-completion sched-
ule of coflow and solving them for rate scheduling are quite
challenging. Firstly, coflow requests arrive online; although
a coflow’s detailed requirements would be available upon
its arrival, it is impossible to get that information ahead of
time [14, 15]; thus, greedily allocating all available bandwidth
to admit an incoming request would be unfair to future
requests, resulting in unfairness among their applications.
Secondly, as we will show, the bandwidth allocation suggested
by the LP might be non-work-conserving; POCO should not
directly use the raw results for rate controls. Thirdly, as an
online scheduler, the solving of involved LPs must be efficient.

To address these challenges, POCO 𝑖) employs a tunable
model to control the level at which bandwidth in the future is
allocated in admission control; 𝑖𝑖) designs a post-processing to
make work-conserving bandwidth allocations; 𝑖𝑖𝑖) merges vari-
ables to compact the model, and more essentially, 𝑖𝑣) develops
a parallelizable core to speed up the LP solving by making use

of the specific constraint structures of the problem.

Limits of POCO. As a centralized scheduler, POCO introduces
scheduling delays. In practice, a coflow’s actual duration de-
pends on both the available network bandwidth and the amount
of data it should deliver. For those small coflows that could
complete within a very short time (e.g., one or two RTTs), the
scheduling delay of POCO might be not negligible thus POCO
could not help. In practice, there also exist many distributed
applications like BSP-based distributed machine learning and
user-facing approximate bigdata analytics whose triggered
coflows are bulk and such delays are acceptable [4, 5, 16].
Poco is mainly designed for them.

Contributions. To sum up, we make these contributions:

• An analysis of the design space and desired proprieties
of deadline-aware, loss-bounded coflow schedulers (§II).

• A high-level coflow abstraction along with an LP model
that enables applications to express completeness require-
ments for deadline-sensitive coflows (§IV-A, §IV-B).

• A suite of schedule designs to compress the model size
and make fair yet work-conserving bandwidth allocations
for coflows incoming online (§IV-C, §IV-D).

• A transport enhancement scheme to carry out the rate
schedule of POCO gracefully together with packet-level
simulations confirm its benefits (§V).

• Extensive packet-level and flow-level evaluations assess
the feasibility and effectiveness of POCO (§VI, §VII).

II. POCO GUIDELINES

A. Design Space

Consider that a group of flows F𝑒 go through the same
bottleneck link 𝑒 with the capacity of 𝑐𝑒, and assume that
the sending rate of flow 𝑓 at time 𝑡 is 𝑟 𝑓 (𝑡) (𝑟 𝑓 (𝑡) ≥ 0).
Obviously, as (1) shows, the volume that 𝑓 can deliver before
time 𝑡 is determined by the integration of its allocated sending
rate 𝑟 𝑓 (𝑡) over time, which is restrained by the rates allocated
to all other flows (i.e.,

∑
𝑓 ′∈F𝑒\{ 𝑓 } 𝑟 𝑓 ′ (𝑡)) in turn as (2)

indicates—To avoid congestions, the aggregated rate of flows
going through the same link should not exceed its capacity.
Motivated by this, we obtain a foundational design space
for the schedule of coflow: in a heavily-loaded network, by
taking advantage of the application’s tolerance of incomplete
inputs, we can 𝑖) trade the achieved completeness for shorter
completion times, and 𝑖𝑖) trade one flow’s completeness for
those of others. Moreover, if the data delivered by a group of
flows within a coflow (F𝑔 for instance) is exchangeable, the
network can balance the total task (𝜙𝑔 for instance) among its
sub-flows with respect to the network loads as (3) indicates.

𝑣 𝑓 =

∫ 𝑡

0
𝑟 𝑓 (𝑡)𝑑𝑡 (1)

𝑟 𝑓 (𝑡) +
∑︁

𝑓 ′∈F𝑒\{ 𝑓 }
𝑟 𝑓 ′ (𝑡) ≤ 𝑐𝑒 (2)∑︁

𝑓 ∈F𝑔

𝑣 𝑓 ≥ 𝜙𝑔 (3)
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B. Desirable Properties

By exploring the aforementioned trade-offs, POCO performs
selective coflow completions for time-sensitive applications.
To be practical, it must realize the following design goals.

Performance guarantees. First of all, to ensure the progress
of distributed computation, applications usually have limited
levels of tolerance. Hence, POCO should provide a service
model with performance promises to applications. This prop-
erty restricts POCO to be centralized since a global view of
the entire system is needed for performance-guaranteed coflow
scheduling.

High flexibility. Second, different applications are likely to
have various performance requirements. Accordingly, POCO
needs to be flexible enough to support various requirements.

Fairness. Third, coflows arrive online; the requirements of
future coflow requests are agnostic ahead of time. Greedily
allocating all available bandwidth to admit requests is unfair to
future arrivals [17]. Thus, POCO should support configurable
admission control.

Work-conservation. Fourth, to fully utilize the network and
serve more requests, POCO is required to be work-conserving.
That is to say, a link sits idle only if there is no traffic demand.

Scalability. Last but not least, as an online scheduler, POCO
must decide whether to admit a request and schedule all flow
sending rates to guarantee their performances effectively. For
this purpose, the algorithms employed by POCO must run in
real-time with low time complexity.

C. Reasonable Assumption

Before looking into the design details, in this part, we
discuss the reasonable assumptions that POCO is built on.

Fine-grained centralized traffic control. As Section III
will explain, POCO achieves performance-guaranteed coflow
scheduling by precisely controlling the rates of all involved
flows from its centralized controller. A recent study has
demonstrated that, by taking advantage of the well-structured
property of modern data center network topology, it is possible
to control the rate of data center traffic precisely with a cen-
tralized controller at flowlet- or packet- levels [18, 19]. Thus,
the centralized design of POCO is practical. Indeed, in POCO,
the controller only needs to manage the rate of concerning
traffic in a time-slotted manner; and the involved rate schedule
is executed on the events of task arrival and completion.
Moreover, to make sure that there is always enough bandwidth
to implement the rate schedules computed by POCO, we can
𝑖) let POCO’s controller perform rate allocations only on a
portion (e.g., 95%) of the link/network capacity, and 𝑖𝑖) assign
a high priority to these scheduled flows [19, 20]. Then, rate
allocations are with guarantees and background traffic would
use the remaining bandwidth gracefully. As we will show in
Section V, by employing rate limits and launching affiliated
flows, POCO is able to make full use of the network respecting
the scheduled rates.

Requirements are available upon task arrival. In line with
numerous prior studies [4, 21, 22], we assume that a coflow’s

detailed requirements such as task volume, structure, remain-
ing deadline, and level of required completeness, are known
on its arrival and would not change over time. It is true that
not all distributed applications hold the assumption [23]; but
fortunately, many emerging production cluster applications are
witnessed to have this property in practice [4, 12, 14, 15, 24].
For instance, the work of [24] empirically shows that many
advanced data analytics jobs have predictable computation
and communication structures. Likewise, it is reported that
in some large-scale production data clusters, more than 60%
of tasks are recurring and their task requirements can be
estimated within low errors [25, 26]. Indeed, researchers have
demonstrated that, for specific cluster computing applications,
due to their specific designs, it is not hard to predict their traffic
demands with high accuracy. As an example, for Mapreduce
jobs on Hadoop and Spark, there already exist several tools
to predict their inner traffic demands [14, 15]. Similarly, in
emerging synchronized distributed machine learning applica-
tions, training servers generally iterate over the same dataset
up to thousands of rounds; at each round, all the involved
training servers would synchronize their local model updates
with or without parameter servers, triggering periodic traffic
patterns. Such application properties not only make their
coflow demands knowable on their arrivals, but also enable
operators and developers to measure and quantify 𝑖) the level
at which the application could tolerate the incompleteness of
inputs [12], and 𝑖𝑖) the best deadline/latency that is needed
for the optimization of revenue [4, 5]. Finally, as for the route
of each flow, there already exist many tools to infer [18] or
control [19, 27] on its packet arrivals.

III. POCO OVERVIEW

As Figure 1 sketches, POCO employs admission controls to
provide promises of completeness and deadlines for coflows
in the online scenario. On getting an incoming request, if
POCO finds a way to meet its completeness- and deadline-
requirements without violating those of any existing coflow,
this new request could be admitted and a corresponding
bandwidth allocation is already found. Otherwise, the request
would get rejected; the application could either cancel the
request, or relaxes its requirements then resubmits again. As
we will show, with novel designs, POCO provides performance
guarantees to admitted coflows in two basic dimensions—

• Completeness: flows involved in a coflow would deliver
a certain percentage/amount of volume to meet pre-
specified completeness requirements; and

• Timeliness: all the promised completeness is achieved
within the given deadline.

Note that, once a coflow is admitted, POCO would insist on
satisfying its completeness and deadline requirements. This
never means that the bandwidth allocated to it is irrevocable.
Indeed, to admit a new request, POCO is able to recycle some
of the time-slotted bandwidth resources already allocated back
on demand, provided the requirements of involved existing
coflows would not be violated. To do so, POCO formulates the
rate scheduling problem as a time-slotted LP, which guarantees
that a request would be admitted if and only if a reasonable
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rate schedule is obtained. Such a process is triggered upon the
arrival of new coflow requests. Thus, in theory, by ensuring
that the deadline-bounded time-slotted bandwidth resource
each (co)flow obtain is not less than those suggested by the
LP’s solution, all admitted coflows would eventually achieve
their required completeness within deadlines.

During the transmission, the actual rate that a flow would
send at is generally larger than the values computed from the
LP, due to two reasons as §IV-C will explain in detail. On
one hand, to be fair to coflows arriving in the future, POCO
would systematically limit the allocation of link capacities
in future time slots when performing admission controls.
And on the other, any feasible solution to the LP yields
admissions; hence, the rate schedule suggested by the solution
does not necessarily guarantee all the link capacities would
be employed (a.k.a., work-conservation), even if the previous
fairness-related design is disabled. Accordingly, to achieve
work-conserving rate scheduling, POCO further adjusts the
planned flow rates in pipelines, as Figure 1 summarizes.

In production, distributed applications controlled by POCO
might coexist with many other applications, which generate
both uncertain foreground and background traffic. Accord-
ingly, only limiting the sending rates of POCO flows is not
enough to deal with the network dynamics and make full
use of the perishable available link capacity. To address the
problem, POCO employs a readily-deployable transport layer
enhancement scheme: i.e., for each transfer in a coflow, set
up an affiliated subflow together with a rate-limited subflow,
and assign them with increasing priorities to enhance the
scheduling and make full use of the residual bandwidth.

Next, we describe how POCO builds then solves LPs effi-
ciently to achieve performance-guaranteed, flexible, fair, and
work-conserving coflow rate scheduling (§IV), then explain
how an affiliated subflow based protocol enhancements help
POCO carry out the scheduling gracefully (§V), in detail.

IV. SCHEDULER DESIGN

In this section, we first introduce the coflow abstraction
(§IV-A) along with the network model (§IV-B) POCO provides
to capture the flexible requirements raised by application,
then describe the optimization designs that POCO adopts to
achieve fairness, work-conservation, and scalability (§IV-C),
and finally sketch out the specific block-angle structure resid-
ing in the generated LPs (§IV-D). By using these structures,
advanced LP solvers could achieve accelerated solving. The
design and optimization details of such solvers are beyond the
scope of this paper; we refer the readers to [1, 28, 29].

A. Coflow Abstraction

As Figure 2 summarizes, POCO abstracts a coflow request,
saying C𝑖 for instance, by the set of its involved flows F𝑖 =

{ 𝑓𝑖,1, 𝑓𝑖,2, · · · }, and the group of its associated completeness
requirements R𝑖 = {· · · , (𝐺𝑖,𝑘 ; 𝜙𝑖,𝑘 ), · · · }. Compared with the
original coflow abstraction proposed by [2, 4], POCO mainly
extends the coflow model to support partial completion. For
the 𝑗-th subflow in F𝑖 , i.e., 𝑓𝑖, 𝑗 , its task is to transmit data with
remaining volume 𝑣𝑖, 𝑗 via established path 𝑝𝑖, 𝑗 within expired

Schedule coflows to guarantee 
completeness and timeliness

Network 
controllerPoco

Coflow request

admit/reject
2

3
Application 
controllers

1

Coflow 
abstraction(Fig.2)

Solve the 
updated time-

slotted LP

Adjust scheduled 
flow rates for 

work-conservation
in pipeline

Execute the schedule 
in dynamic networks 

with enhanced 
transport protocol

request

admit/reject

Planned flow rates Planned flow rates

(Sec. 4) (Sec. 5)(Sec. 4)

Fig. 1. The service model and internal workflow of POCO, in which the
solving of time-slotted LP is triggered upon the arrival of coflow requests.

Grammar
C𝑖 ::= (F𝑖 ; R𝑖) Application-specified coflow request
F𝑖 ::= {· · · , 𝑓𝑖, 𝑗 , · · · } Transfer demands of cofow C𝑖
R𝑖 ::= {· · · , (𝐺𝑖,𝑘 ; 𝜙𝑖,𝑘 ) , · · · } Completeness requirements
𝑓𝑖, 𝑗 ::= (𝜏𝑖, 𝑗 ; 𝑣𝑖, 𝑗 ; 𝑝𝑖, 𝑗 ) Details of the 𝑗-th subflow in coflow 𝑖

More Notation
𝜏𝑖, 𝑗 : Expired time of flow 𝑓𝑖, 𝑗 (we have ∀ 𝑗 : 𝜏𝑖, 𝑗 = 𝜏𝑖 in this paper)
𝑣𝑖, 𝑗 : Remaining volume of flow 𝑓𝑖, 𝑗
𝑝𝑖, 𝑗 : Path of flow 𝑓𝑖, 𝑗
𝐺𝑖,𝑘 : Set of flow(s) in the 𝑘-th completeness group of coflow 𝑖

𝜙𝑖,𝑘 : The 𝑘-th completeness requirement of coflow 𝑖

Fig. 2. Syntax of the coflow abstraction provided by POCO.

time 𝜏𝑖, 𝑗 . Although our model allows 𝜏𝑖, 𝑗 vary among flows, in
practice, a coflow represents a task, and thus flows belonging
to the same coflow generally share the same deadline 𝜏𝑖 . In
case the network is overloaded and a very strict hard deadline
is desired, it is impossible to make full transmissions of all
flows within their deadlines. Then, POCO makes selectively
loss-bounded partial completions. The 𝑘-th restriction in R𝑖

given by the application specifies that the total completed
volume of flows in 𝐺𝑖,𝑘 should not be less than 𝜙𝑖,𝑘 .

Obviously, the abstraction provided by POCO is very expres-
sive. With it, applications can specify coflow requests along
with both timeliness- and completeness- requirements easily.
For transfers without deadlines, POCO simply treats them
bound with a very loose expired time. And for coflows unable
to tolerate incompleteness, POCO uses their exact volumes as
the completeness requirements.

B. Network Model

Without loss of generality, consider that there are 𝑛 − 1 ac-
cepted yet uncompleted coflow requests, labeled C1, · · · , C𝑛−1,
and the new incoming request to check is C𝑛. We assume that
bandwidth is allocated in time slots with length Δ𝑇 and we
denote the rate of flow 𝑓𝑖, 𝑗 during time slot 𝑡 by 𝑟𝑖, 𝑗 ,𝑡 . Then,
the problem of finding a bandwidth allocation to admit request
𝑅𝑛 and meet its requirements without violating those of others
is straightforward to be formulated as the system of linear
inequalities shown in (4). Here, 𝑣𝑖, 𝑗 and 𝜙𝑖,𝑘 are the updated
remaining flow size and uncompleted completeness volume
requirement, respectively; 𝑐𝑒,𝑡 denotes the available capacity
of link 𝑒 at time slot 𝑡 that can be allocated to requests now.
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(4)



∑︁
(𝑖, 𝑗) ∈𝐺𝑖,𝑘

𝜏𝑖, 𝑗∑︁
𝑡=1

𝑟𝑖, 𝑗 ,𝑡Δ𝑇 ≥ 𝜙𝑖,𝑘 , ∀𝑖, 𝑘

𝜏𝑖, 𝑗∑︁
𝑡=1

𝑟𝑖, 𝑗 ,𝑡Δ𝑇 ≤ 𝑣𝑖, 𝑗 , ∀𝑖, 𝑗∑︁
(𝑖, 𝑗):𝑒∈𝑝𝑖, 𝑗

𝑟𝑖, 𝑗 ,𝑡 ≤ 𝑐𝑒,𝑡 , ∀𝑒, 𝑡

𝑟𝑖, 𝑗 ,𝑡 ≥ 0, ∀𝑖, 𝑗 , 𝑡

(4a)

(4b)

(4c)

(4d)

It is obvious that, if constraints in (4) are infeasible, the
request must be rejected; otherwise, any feasible {𝑟𝑖, 𝑗 ,𝑡 }
satisfying (4) yields a bandwidth allocation that accepts C𝑛.1

C. Scheduling Algorithm

On getting a request, the straightforward design of POCO
is to 𝑖) formulate the associated bandwidth allocation problem
as an LP by introducing trivial objectives such as maximizing
the total completed volume to the constraints of (4), as (5)
shows;2 then 𝑖𝑖) employ off-the-shelf optimizer to solve, and
𝑖𝑖𝑖) finally perform the admission control and rate scheduling
based on the results. However, such a design is impractical,
since 𝑖) the bandwidth of time slot in future might be over-
allocated, resulting in unfairness to future arrivals; 𝑖𝑖) more
seriously, the rate schedule given by the LP does not guarantee
work-conservation; and last but not least, 𝑖𝑖𝑖) the LP involves
too many variables, making the model solving time costly.

Maximize
𝑛∑︁
𝑖=1

|𝐹𝑖 |∑︁
𝑗=1

𝜏𝑖, 𝑗∑︁
𝑡=1

𝑟𝑖, 𝑗 ,𝑡Δ𝑇 𝑠.𝑡. (4) (5)

Fairness. To be fair to future coflow arrivals, POCO systemati-
cally limits the allocation of link capacities in future time slots
on performing admission control. Suppose that link 𝑒 is with
the capacity of 𝑐𝑒; motivated by the design of [17], POCO lets
𝑐𝑒,𝑡 = 𝑐𝑒𝛽(𝑡), in which 𝛽(𝑡) = min(1, 𝑒𝑥𝑝(−(𝑡 − 𝑡∗)/𝑡𝑜)), 𝑡∗
and 𝑡𝑜 are two tunable parameters, receptively. By tuning them,
POCO can control the level at which future link capacities are
allocated. Note that, to be work-conserving in practice, for
admitted requests, POCO should allocate all link capacities to
serve until they complete or expire.

Work-conservation. As we will show, the rate schedules
suggested by LPs do not guarantee work-conservation, even
if fine-grained timeslots are employed and a very large 𝑡∗
is used in 𝛽(𝑡). For instance, consider that two coflows C𝑖

and C𝑗 will appear at times 0 and 1, then expire at the same
time 2, respectively. Accordingly, let Δ𝑇 be one unit of time;
then there are two time slots, 𝑡1 with range [0, 1) and 𝑡2
with range [1, 2). Suppose that each of these two incoming

1To mitigate the impact of transmission delays, we can set either the
deadline or completeness requirements involved in the model slight stricter
than their original values.

2In this paper, POCO employs the objective of maximizing the total com-
pleted volume as a case study. With standard reformulation techniques [30],
it is easy to extend POCO to support other types of schedules like maximizing
the minimal gain of achieved completeness in a max-min fashion: i.e.,
Maximize min∀𝑖,𝑘 1

𝜙𝑖,𝑘

∑
(𝑖, 𝑗)∈𝐺𝑖,𝑘

∑𝜏𝑖, 𝑗

𝑡=1 𝑟𝑖, 𝑗,𝑡Δ𝑇 .

coflows involves only one subflow, saying 𝑓𝑖,1 and 𝑓 𝑗 ,1, going
through the same bottleneck link with capacity 2. The total
volume and completeness requirement of 𝑓𝑖,1 are 2 and 1,
respectively, while those of 𝑓 𝑗 ,1 are 3 and 2, respectively. At
time 0, the corresponding LP for the admission control of
coflow C𝑖 is as (7) shows. By solving the problem with either
simplex or interior-point method, we might get the result of
𝑟𝑖,1,1 = 0, 𝑟𝑖,1,2 = 2 (indeed, this is exactly the solution given
by Mosek 8.1.67 [31], a commercial off-the-shelf LP solver),
yielding a bandwidth allocation to admit coflow C𝑖 . However,
such a schedule is not work-conserving since no traffic occurs
in slot 𝑡1. As a result, at time 1, coflow C𝑗 would get rejected
since there does not exist enough bandwidth to guarantee
its requirements. For this specific instance, it is possible to
achieve work-conserving bandwidth allocation by assigning
decreasing weights to slotted rates in the objective (e.g.,∑𝑛

𝑖=1
∑ |𝐹𝑖 |

𝑗=1
∑𝜏𝑖, 𝑗

𝑡=1
𝑟𝑖, 𝑗,𝑡

𝜏𝑖, 𝑗
). However, such a design is impractical

as POCO might under-allocate bandwidth in future slots on
admission control for fairness.

(6)


1 ≤ 𝑟𝑖,1,1 + 𝑟𝑖,1,2 ≤ 2

0 ≤ 𝑟𝑖,1,1 ≤ 2
0 ≤ 𝑟𝑖,1,2 ≤ 2

(6a)
(6b)
(6c)

Maximize 𝑟𝑖,1,1 + 𝑟𝑖,1,2 𝑠.𝑡. (6) (7)

To address this, POCO employs a post-processing to adjust
the rate schedule given by LP. Basically, if there is remaining
bandwidth in earlier slots, POCO greedily moves parts of a
slot’s task up, until no movement can be made. In the end,
a work-conserving rate schedule is obtained. In case there
are multiple flows going through the same under-loaded link,
flows with unmet completeness requirements would occupy
the available bandwidth before those whose completeness
requirements are already satisfied; and for either requirement-
unmet or met flows, residual slotted link capacities are al-
located to them fairly or in non-decreasing order of their
deadlines. Revisit the schedule of coflow 𝑖 shown in (7) as
an example, with the post-processing for work-conservation,
its scheduled rates will be updated from 𝑟𝑖,1,1 = 0 ∧ 𝑟𝑖,1,2 = 2
to 𝑟𝑖,1,1 = 2 ∧ 𝑟𝑖,1,2 = 0.

Scalability. Because of the fine-grained slotted bandwidth
allocation, the model involves a large number of variables,
taking non-trivial time for LP solvers to deal with. In addition,
the aforementioned process for work-conservation might also
introduce significant delays since the number of slots to be
checked could be huge. To overcome these, 𝑖) POCO lets
flows that already meet their completeness requirements have
the rate of 0 for model pruning and merges successive time
slots between flow expiration events into a single one. Then,
𝑖𝑖) POCO employs advanced solvers [1, 28, 29] to solve the
compacted LP in parallel by leveraging the specific structure
of its constraints. Finally, 𝑖𝑖𝑖) POCO modifies the results given
by the LP solver to make work-conserving adjustments. Next,
we describe how POCO merges time slots and performs post
progresses and leave the detail of why advanced solvers could
be employed to §IV-D.
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𝑓1,1

𝑓2,1

𝑟1,1,1 𝑟1,1,2

𝑟2,1,1 𝑟2,1,2 𝑟2,1,3 𝑟2,1,4 𝑟2,1,5

𝑟3,1,1 𝑟3,1,2 𝑟3,1,3 𝑟3,1,4 𝑟3,1,5 𝑟3,1,6 𝑟3,1,7 𝑟3,1,8 𝑟3,1,9𝑓3,1

ҧ𝑟1,1,1

ҧ𝑟2,1,1

ҧ𝑟3,1,1

ҧ𝑟2,1,2

ҧ𝑟3,1,2 ҧ𝑟3,1,3

𝑓1,1

𝑓2,1

𝑓3,1

∆𝑇
(1)
= 2∆𝑇 ∆𝑇

(2)
= 3∆𝑇 ∆𝑇

(3)
= 4∆𝑇

𝜏(1) = 𝜏1,1

𝜏(2) = 𝜏2,1

𝜏(3) = 𝜏3,1

merge

tnow

Fig. 3. An example showcases how time-slotted variables are merged. There
are three flows, 𝑓1,1, 𝑓2,1, and 𝑓3,1, with deadlines 2Δ𝑇 , 5Δ𝑇 and 9Δ𝑇 ,
respectively. After merging variables, the number of time-slotted rate variables
are reduced from 2 + 5 + 9 = 16 to 1 + 2 + 3 = 6, which is independent of
either flow lifespans or the width of configured time slot.

On performing admission controls, if no flow expires from
time slot 𝑡1 to 𝑡2, it is reasonable to assume that all flow rates
keep consistent during the interval, without impacting either
the feasibility or optimality of the problem. Such a design
is equivalent to adding the constraints of 𝑟𝑖, 𝑗 ,𝑡 = 𝑟𝑖, 𝑗 ,𝑡−1 for
unexpired flows { 𝑓𝑖, 𝑗 : ∀𝜏𝑖, 𝑗 > 𝑡} and slots {𝑡 : �𝜏𝑖, 𝑗 = 𝑡}.
Following this, merged time slots are with various lengths.
Suppose that flows involve 𝑁 diverse deadlines and let Ω(𝑘)
be the number of flows involving the 𝑘-th deadline; then,
the number of merged rate variables would be reduced to∑𝑁

𝑘=1 𝑘Ω(𝑘), which is independent of either flow lifespans
or the setting of slot width. This would yield up to several
orders of magnitude improvement in terms of the solving time.
Denote the 𝑙-th expired time as 𝜏 (𝑙) and let 𝜏 (0) be 0. Then,
for the 𝑙-th merged time slot, starting from 𝜏 (𝑙−1) to 𝜏 (𝑙) ,
the corresponding available capacity of link 𝑒 for admission
control, is corrected as 𝛽𝑙𝑐𝑒, in which 𝛽𝑙 is the corresponding
correction factor of link capacity defined in (10). Accordingly,
the problem of (5), along with its constraints (4), can be
reformulated to (9), where 𝜋𝑖, 𝑗 is the interval index of the
diverse expired time 𝜏𝑖, 𝑗 (11), Δ

(𝑙)
𝑇

is the width of the 𝑙-
th merged slot (12), and 𝑟𝑖, 𝑗 ,𝑙 is the rate of 𝑓𝑖, 𝑗 during
that interval. For instance, consider that there are three flows
namely 𝑓1,1, 𝑓2,1, and 𝑓3,1, belonging to diverse coflows. Their
deadlines are 2Δ𝑇 , 5Δ𝑇 , and 9Δ𝑇 , respectively. As Figure 3
shows, with variable merging, POCO could reduce the number
of time-slotted rate variables from 2+5+9 = 16 to 1+2+3 = 6.

(8)



∑︁
(𝑖, 𝑗) ∈𝐺𝑖,𝑘

𝜋𝑖, 𝑗∑︁
𝑙=1

Δ
(𝑙)
𝑇
𝑟𝑖, 𝑗 ,𝑙 ≥ 𝜙𝑖,𝑘 , ∀𝑖, 𝑘

𝜋𝑖, 𝑗∑︁
𝑙=1

Δ
(𝑙)
𝑇
𝑟𝑖, 𝑗 ,𝑙 ≤ 𝑣𝑖, 𝑗 , ∀𝑖, 𝑗∑︁

(𝑖, 𝑗):𝑒∈𝑝𝑖, 𝑗

𝑟𝑖, 𝑗 ,𝑙 ≤ 𝛽𝑙𝑐𝑒, ∀𝑒, 𝑙

𝑟𝑖, 𝑗 ,𝑙 ≥ 0, ∀𝑖, 𝑗 , 𝑙

(8a)

(8b)

(8c)

(8d)

Maximize
𝑛∑︁
𝑖=1

|𝐹𝑖 |∑︁
𝑗=1

𝜋𝑖, 𝑗∑︁
𝑙=1

𝑟𝑖, 𝑗 ,𝑙Δ
(𝑙)
𝑇

𝑠.𝑡. (8) (9)

𝛽𝑙 B

∑𝜏 (𝑙)−1
𝑡=𝜏 (𝑙−1) 𝛽(𝑡)

𝜏 (𝑙) − 𝜏 (𝑙−1) + 1
(10)

𝜋𝑖, 𝑗 B argmax
𝑙

{𝑙 : 𝜏 (𝑙) ≤ 𝜏𝑖, 𝑗 } (11)

Δ
(𝑙)
𝑇

B (𝜏 (𝑙) − 𝜏 (𝑙−1) )Δ𝑇 , 𝑙 = 1, · · · , 𝑁 (12)

Moreover, in case the number of coflows is extremely
huge, we can fix the completion of some coflows in the LP
solving to further reduce the number of involved variables,
thus accelerating the solving process further.

As for the post bandwidth adjustment, POCO repeats to
fully fill available slotted link capacities by moving parts of a
slot’s task up until no link capacity is left. Since the result of
LP yields a bandwidth allocation to the future, POCO could
work in the pipelines by keeping making work-conserving
adjustments for slots only in the near future to keep low
process delay.

D. Efficient Solver

To support large-scale selective coflow scheduling, the LP
solver of POCO must be very efficient. According to the theory
of linear optimization [30], Problem (9) can be reformulated
into its matrix format as (13) shows. Here T stands for the
operator of transpose; and A, the constraint matrix, has the
multiple-level primal block-angular structure as (14) specifies,
which can be employed by advanced interior-point methods
based solver to parallelize the costly algebraic operations dur-
ing the solving, yielding orders of accelerations by making use
of the abundant cores in modern servers. Now, we reformulate
the problem of (9) to identify its block-angle structure.

Minimize wTx 𝑠.𝑡. Ax = b (13)

Ax =


A1

A2

. . .
A𝑛

B1 B2 · · · B𝑛 𝐼



x1
x2
...
x𝑛

x𝑠

 =

b1
b2
...
b𝑛
b∗

 (14)

To identify the block-angular structure of A, let us revisit
the constraints specified in (8). Notably, the corresponding
requirements to admit a new coflow request are made of
two classes: 𝑖) meeting each coflow’s minimum transfer de-
mands within their deadlines (i.e., (8a)) without excusing the
maximum size of each flow (i.e., (8b)); and 𝑖𝑖) making sure
that no link gets overloaded through the transmitting (i.e.,
(8c)). Let Γ be the set of all time-slotted link bandwidth
resources that would be used by coflows, and further denote
the corresponding link and time index of the 𝑜-th time-
slotted link resource 𝜅𝑜 as 𝜅𝑒𝑜 and 𝜅𝑡𝑜, respectively. Then,
the associated time-slotted link capacity POCO could use for
admission control now can be computed by 𝛽𝜅 𝑡𝑜𝑐𝜅

𝑒
𝑜

. By using
A𝑖 and B𝑖 to indicate these two types of constraint matrices
for coflow 𝑖, respectively, the linear constraints shown in (8)
can be reformed as a primal block-angular structure as (14)
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shows, in which x𝑠 is the vector of slack variables for the
constraints of link capacity at each time interval, and the
details of x𝑖 , b𝑖 , and b∗ follow in (15), (16), and (17).

x𝑖 B [(𝑟𝑖,1,1, · · · , 𝑟𝑖,1, 𝜋𝑖,1 , 𝑟+𝑖,1),
· · · ,
(𝑟𝑖, |𝐹𝑖 |,1, · · · , 𝑟𝑖, |𝐹𝑖 |, 𝜋𝑖, |𝐹𝑖 | , 𝑟

+
𝑖, |𝐹𝑖 |),

𝑟−𝑖,1, · · · , 𝑟
−
𝑖, |R𝑖 |]

T

(15)

b𝑖 B
[
𝑣𝑖,1, · · · , 𝑣𝑖, |𝐹𝑖 | , 𝜙𝑖,1, · · · , 𝜙𝑖, |𝑅𝑖 |

]T (16)

b∗ B
[
𝛽𝜅 𝑡1

𝑐𝜅𝑒1 , · · · , 𝛽𝜅 𝑡|Γ|𝑐𝜅𝑒|Γ|
]T

(17)

As (15) shows, x𝑖 is made up of the rate allocations of
flows belonging to coflow 𝑖, along with a few slack variables
{𝑟+

𝑖, 𝑗
} and {𝑟−

𝑖, 𝑗
}. Likewise, as (18) indicates, the constraint

matrix involved by each coflow also follows exactly the similar
pattern of block-angular structure, in which, 𝜓𝑖,𝑘, 𝑗 is either 1
or 0, indicating whether the 𝑘-th requirement 𝐺𝑖,𝑘 involves 𝑓𝑖, 𝑗
or not. As for B𝑖 , constant ℏ𝑜,𝑖, 𝑗 ,𝑙 is either 1 or 0, indicating
whether 𝑓𝑖, 𝑗 goes through link 𝜅𝑒𝑜 during time interval 𝜅𝑡𝑜 (23).
Here, we also have 𝜅𝑡𝑜 ≡ 𝑙.

A𝑖B



a𝑖,1 1
a𝑖,2 1

. . .

a𝑖, |𝐹𝑖 | 1
𝜓𝑖,1,1a𝑖,1 0 · · · · · · 𝜓𝑖,1, |F𝑖 |a𝑖,1, |𝐹𝑖 | 0 −1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

𝜓𝑖, |𝑅𝑖 |,1a𝑖,1 0 · · · · · · 𝜓𝑖, |𝑅𝑖 |, |F𝑖 |a𝑖, |F𝑖 | 0 −1


(18)

a𝑖, 𝑗 B [Δ(1)
𝑇

, · · · ,Δ(𝜋𝑖, 𝑗 )
𝑇

] (19)

𝜓𝑖,𝑘, 𝑗 B

{
1 (𝑖, 𝑗) ∈ 𝐺𝑖,𝑘

0 otherwise
(20)

B𝑖B


· · · ℏ1,𝑖, 𝑗,1 · · · ℏ1,𝑖, 𝑗, 𝜋𝑖, 𝑗 0 · · · 0
. . .

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
· · · ℏ|Γ|,𝑖, 𝑗,1 · · · ℏ|Γ|,𝑖, 𝑗, 𝜋𝑖, 𝑗 0 · · · 0

 𝑗=1, · · · , |𝐹𝑖 |

(21)

B𝑖B


ℏ1,𝑖,1,1 · · · ℏ1,𝑖,1, 𝜋𝑖,1 0 · · · · · · ℏ1,𝑖, |𝐹𝑖 |,1 · · · ℏ1,𝑖, 𝑗, 𝜋𝑖, |𝐹𝑖 |

0 0

.

.

.
. . .

.

.

.

.

.

.
. . .

. . .
.
.
.

. . .
.
.
.

.

.

.

.

.

.
ℏ|Γ|,𝑖,1,1 · · · ℏ|Γ|,𝑖,1, 𝜋𝑖,1 0 · · · · · · ℏ|Γ|,𝑖, |𝐹𝑖 |,1 · · · ℏ|Γ|,𝑖, |𝐹𝑖 |, 𝜋𝑖, |𝐹𝑖 | 0 0


(22)

ℏ𝑜,𝑖, 𝑗 ,𝑙 B

{
1 𝜅𝑒𝑜 ∈ 𝑝𝑖, 𝑗 ∧ 𝑙 ≤ 𝜋𝑖, 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(23)

Regarding the value of w shown in (13), for rate variables
involved in 𝑙-th merged time slots, their 𝑤𝑖s are set to −Δ(𝑙)

𝑇
,

and for other slack variables, their 𝑤𝑖s are set to 0.

V. TRANSPORT LAYER ENHANCEMENT

The naive design to meet the QoS requirements of ad-
mitted coflows is limiting the sending rates of their flows
respecting the scheduling strictly [32]. However, in practice,
many applications coexist in clusters; some of them are not
under the control of POCO and might have non-negligible
impacts on POCO flows. Thus, only limiting POCO flows’
rates is not enough. Moreover, to guarantee the completion

p p+1

Applications send data

Socket
TCP/QUIC

Shim layer based on 
MPTCP/MPQUIC
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subflow

rate-limited 
subflow

NIC/Switch/Router
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𝑓!

Applications receive data

Socket
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subflow
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queuesqueues
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Fig. 4. At the low level, POCO would launch a rate-limited subflow along
with an affiliated subflow for each POCO flow task.

of admitted coflow, the link capacities POCO employs for
the LP-based coflow scheduling are conservative. Accordingly,
the actual bandwidth coflows are able to use might be larger
than the promised, hence a simple rate-limiting would prevent
coflows from making full use of the network. In this section,
we describe how POCO could address the problem elegantly
with a readily-deployable transport layer enhancement scheme
(§V-A), and verify its effectiveness with packet-level simula-
tions (§V-B).

A. Enhancement Designs

Similar to prior arts [32, 33], the transport layer enhance-
ment of POCO involves two key designs. Firstly, by making
use of the priority queues supported by modern data center
networks, it lets different types of traffic make prioritized
use of link capacities, such that the interference between
them is controlled. Secondly, based on prioritized bandwidth
allocation, for each POCO flow in a coflow, besides limiting its
sending rates according to the schedule, POCO also launches
an affiliated subflow with a lower priority to make full use
of the residual bandwidth as Figure 4 illustrates. Indeed, as
simulation results in §V-B and §VI-B will show, the design
of affiliated flow not only makes POCO able to take advan-
tage of dynamically available bandwidth but also tolerable to
foreground bursts.

Basically, we can classify flows that are out of the control
of POCO into two categories: i.e., foreground flows that are
more important than POCO flows, and background flows that
are less important than POCO flows. Figure 4 sketches how
POCO takes advantage of the priority queues as well as
how it launches two subflows to deliver 𝑓𝑖’s data segments,
cooperatively. To achieve the design goal, these subflows
occupy two priority queues: the rate of subflow 𝑓 𝑅

𝑖
is limited

respecting the scheduling strictly and it delivers data segments
using the priority queue of 𝑝; while the affiliated subflow 𝑓 𝐴

𝑖

would deliver diverse data segments using the priority queue of
𝑝 + 1, which is used by other background traffic as well. Note
that, the rate of 𝑓 𝐴

𝑖
is not explicitly scheduled. Accordingly,

all these affiliated flows, along with other background flows
in the network, would share the possible residual bandwidth

7
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fairly. Regarding foreground flows, they could use a priority
equal to or higher than 𝑝. Following this way, the impacts
of POCO flows on foreground flows and the impacts of back-
ground flows on POCO flows are reduced and controlled. Since
switches in modern data center networks generally support 4-8
priority queues per port, such a design is readily-deployable.

As for the implementation, both the widely supported
MPTCP (Multipath TCP) [33] and emerging MPQUIC (Mul-
tipath QUIC) [34] have already provided the ability to launch
and manage multiple subflows for the delivery of a data stream
cooperatively; we can extend them to achieve the transport
layer enhancements required by POCO with techniques like
eBPF. Regarding the rate-limiting, POCO can directly employ
the widely available software-based solutions like Traffic Con-
trol (TC) [35], which can work with many of existing transport
protocols like DCTCP, QUIC, etc. Thus, POCO is readily
implementable and deployable. The full implementation and
advanced optimization of the enhanced transport protocol are
beyond the scope of this paper and we leave it as future work.

B. Behavioral Study

To verify the effectiveness of the aforementioned POCO
protocol enhancement, we conduct packet-level simulations to
study the detailed behavior of POCO-scheduled (co)flows in
dynamic networks. The simulator is written in Python 3 and
its behaviors are proven to be consistent with the results of
both math model analysis and Mininet implementations. A
more detailed description of its design can be founded at [11].

Firstly, let us consider a simple case in which two POCO
flows 𝑓1 and 𝑓2 go through the same link with the capacity of
10 × 104 pps (packets per second), latency of 1ms, and their
sending rates are scheduled to (24a) and (24b), respectively.
Each port of the link is equipped with 4 priority queues
and scheduled by a Deficit Weighted Round Robin (DWRR)
controller with the associated weights of 1000, 100, 10, and
1. For each queue, it is able to hold 800 data packets at most
and would mark en-queuing packets with ECTs once its queue
occupancy reaches the threshold of 160 data packets. Besides
POCO traffic, a background long-lived flow 𝑓𝐵 appears at time
0.1s and another foreground flow 𝑓𝐹 involving 400 packets
appears at time 0.25s. Table I summarizes the simulation
settings, in which the foreground flow 𝑓𝐹 uses the highest/first
priority, rate-limited subflows 𝑓 𝑅1 and 𝑓 𝑅2 employ the second
priority, and both the affiliated subflow 𝑓 𝐴1 and 𝑓 𝐴2 along with
the background flow 𝑓𝐵 share the third priority. As for the
transport layer protocol, all flows employ DCTCP.

𝑟1 (𝑡) =
{

7 × 104𝑝𝑝𝑠 if ∃𝑖 ∈ 𝑁 : 0 ≤ 𝑡 − 0.2𝑖 < 0.1
2 × 104𝑝𝑝𝑠 otherwise

(24a)

𝑟2 (𝑡) =
{

2 × 104𝑝𝑝𝑠 if ∃𝑖 ∈ 𝑁 : 0 ≤ 𝑡 − 0.2𝑖 < 0.1
7 × 104𝑝𝑝𝑠 otherwise

(24b)

Figure 5 shows the observed goodput of each (sub)flow.
According to their rate schedules (24a) and (24b), there is
about 10% link capacity left slack for possible foreground
and background traffic. Obviously, with affiliated subflows 𝑓 𝐴1

TABLE I
SETTINGS OF THE PACKET-LEVEL SIMULATION SHOWN IN FIGURE 5.

Flow Description
𝑓1 A POCO flow task whose rate is scheduled following (24a).
𝑓 𝑅
1 The rate-limited subflow of POCO flow 𝑓1.
𝑓 𝐴
1 The affiliated subflow of POCO flow 𝑓1.
𝑓2 A POCO flow task whose rate is scheduled following (24b).
𝑓 𝑅
2 The rate-limited subflow of POCO flow 𝑓2.
𝑓 𝐴
2 The affiliated subflow of POCO flow 𝑓2.
𝑓𝐹 A foreground flow with 400 packets starting at time 0.25s.
𝑓𝐵 A background long-lived flow starting at time 0.1s.
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Fig. 5. The transport layer enhancement enables POCO to tolerate network
dynamics and make full use of available bandwidth. Refer to Table I for
simulation settings.

and 𝑓 𝐴2 , POCO is able to make full use of the link bandwidth
when there are no foreground and background flows. Let 𝑛𝑖 (𝑡)
and �̂�𝑖 (𝑡) be the number of packets that are expected to be
delivered and actual acked by POCO flow 𝑓𝑖; we denote the
value of �̂�𝑖 (𝑡) − 𝑛𝑖 (𝑡) as the number of absent packets for this
task at time 𝑡, and count the change of those of 𝑓1 and 𝑓2
over time. For �̂�𝑖 (𝑡) − 𝑛𝑖 (𝑡), the smaller value is better; and
a negative value indicates that the actually sent data volume
is larger than expected. As Figure 6a implies, despite the
window of POCO flows collapses because of packet loss, their
affiliated subflows enable 𝑓1 and 𝑓2 to tolerate the impacts
of foreground bursty traffic 𝑓𝐹 easily. Noticeably, because
of transmission and acknowledgment delays, the number of
absent packets is larger than 0 at the very beginning. In
contrast, as Figure 6b shows, the naive rate-limiting scheme
without affiliated subflows is impractical, since their number
of absent packets would increase for each foreground burst.
Besides DCTCP, we also use the protocol of TCP-Reno to
rerun the tests and obtain consistent results, implying that the
transport layer enhancement design of POCO is generic.

0.0 0.2 0.4 0.6 0.8
Time (s)

2500

2000

1500

1000

500

0

500

Nu
m

be
r o

f a
bs

en
t p

ac
ke

ts

With affiliated (sub)flow
f1 f2

(a) With affiliated (sub)flow

0.0 0.2 0.4 0.6 0.8
Time (s)

0

500

1000

1500

2000

2500

Nu
m

be
r o

f a
bs

en
t p

ac
ke

ts

Without affiliated (sub)flow
f1 f2

(b) Without affiliated (sub)flow

Fig. 6. Compared with its native implementation, affiliated flows enable POCO
to tolerate burst traffic and make full use of available bandwidth.
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Fig. 7. An example showcases the utility of POCO: there are three iterative
training jobs, namely A, B, and C; during each round of training, each of them
first makes exclusive use of the entire cluster then performs all-to-all model
synchronizations (see (a)). To achieve fair and efficient use of the cluster,
operators configure these three jobs to use exactly the same amount of time
for each round of training computation and prefer their followed all-to-all data
transmission to be completed in deadlines, such that the entire cluster could
be fully used with pipelined scheduling as (b) shows.

VI. PACKET-LEVEL SIMULATION BASED CASE STUDIES

To showcase POCO’s utility, in this section, we employ
it to orchestrate coflows for concurrent Distributed Machine
Learning (DML) jobs through packet-level simulations. Re-
sults confirm that, by exploring the tolerance of DML and
trading transfers’ completeness for deadlines, POCO enables
concurrent training jobs to make perfect use of the cluster.

A. Demands and Settings

Let us consider the case that three distributed machine
learning jobs A, B, and C, use a shared cluster involving 4
workers for data-parallel model training as Figure 7 shows. In
every round of training, each job would make exclusive use
of the entire cluster, followed by an all-to-all synchronization
among the involved workers. To make fair and efficient use
of the cluster, operators configure all jobs to use exactly the
same amount of training times in each round and execute in
pipelines so that one job could perform the synchronization
when others are training using the cluster [36]. To do so,
the coflow involved in synchronization should complete in
deadlines; otherwise, the training would be blocked by the
slow synchronization, resulting in under-utilizations of the
cluster. We implement a simulator based on the one mentioned
before to precisely simulate the behavior of such a training
system under the schedule of POCO or not. For all jobs, the
training is blocked until the dependent previous synchroniza-
tion completes. When no POCO is employed, workers in the
cluster directly launch DCTCP flows to conduct their all-to-all
synchronizations.

As a concrete example, we assume that these 4 workers are
networked to the same top-of-rack switch with bidirectional
1Gbps links. Each port at the switch support 4 priority queues
scheduled by the DWRR controller using the weights of 1000,
100, 10, and 1, respectively. By default, foreground flows
occupy the first queue, then the rate-limited flows for POCO-
controlled (co)flows occupy the second one, and the affiliated
flows together with the background flows share the third
queue. To reduce queuing latency, the ECN marking threshold
of each queue is 10KB. For jobs A, B, and C, we suppose that
it takes 0.5s for each worker to conduct a round of training,

and the data each worker needs to synchronize between every
other partner worker is 30MB, 20MB, and 10MB, respectively.
To achieve the perfect scheduling, operators would like every
synchronization to complete within 1s. Regarding the tolerance
of partial data transmission, based on the empirical study
of [12], each worker is assumed to deliver at least 85% of the
total data it should send, and obtain at least 85% of the data
it was supported to receive. By default, all jobs are configured
to conduct 100 rounds of training.

B. Simulation Results

Effectiveness of POCO scheduling. Figure 8 shows the
observed utilization ratio of the cluster with and without
the schedule of POCO during the training. Here, we assume
that there is neither foreground nor background traffic in the
cluster, thus, the protocol enhancement of POCO is disabled.
Obviously, POCO successfully ensures that all synchroniza-
tions achieve their completeness requirements within dead-
lines, resulting in perfect and 100% use of the entire cluster.
By contrast, without POCO the cluster is under-loaded (about
63%) because the training computations of both jobs A and B
always be blocked by their slow synchronizations as Figure 8b
demonstrates: i.e., the time costs of their synchronizations are
always larger than the desired deadline of 1s. Furthermore,
even when all flows are relaxed to only transmit 85% of
its data volume, the training computations for both A and B
are still blocked by slow synchronization, yielding the cluster
utilization of about 77%. We also look into the detail of
transfers’ achieved completeness under the schedule of POCO.
As Figure 8c shows, only flows triggered by job A do not
achieve 100% completeness; indeed, most flows triggered by
A deliver about 90% of their data, larger than the minimum
completeness requirement of 85%. Results also show that the
achieved completeness of several flows is slightly smaller
than 85%; their completeness requirements are still satisfied
because some other flows under the same volume constraint
have contributed more, indicating the fact that POCO does
trade some flows’ completeness for that of others on demand.

Effectiveness of protocol enhancement. To study the effect
of the proposed protocol enhancement, we consider a similar
training scenario but reset all link capacities to 1.1Gbps,
among which 90% are promised to the POCO scheduler for
coflow scheduling. Besides (co)flows triggered by jobs A, B,
and C, we assume that there is exactly another long-lived
background flow, along with a burst foreground flow appearing
at 7.01s, coexisting on each link. We increase the foreground
flows’ sizes until any job’s synchronization could not achieve
the completeness requirements within deadlines. We find that,
when protocol enhancement is not enabled, due to the DWRR
scheduling, the background long-lived flows make job A’s syn-
chronization missing its completeness requirements slightly,
even when there is no foreground flow. To avoid this issue,
we must limit the aggregated rate of background flows to
their allocated rate of 1.1Gbps*0.1 = 0.11Gbps. Such a design
removes the impacts of background traffic on POCO-controlled
coflows, but also prevents them from making full use of other
available bandwidth. Figure 9 shows the maximum amount of
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Fig. 8. POCO enables concurrent training jobs A, B, and C, to make full use of the entire cluster as expected. Without POCO and even if every flow only
completes 85% of its data, the cluster would be underloaded because the training computation would be blocked by the unscheduled, slow synchronization.
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Fig. 9. The transport layer enhancement enables POCO to tolerate the impacts
of foreground and background traffic greatly. For instance, with and without
protocol enhancement designs, the size of a burst foreground flow that the
POCO-enabled concurrent model training can tolerate are about 27MB and
1.3MB, respectively, yielding a performance gap larger than 20× in this case.

foreground flow that POCO-controlled DML synchronizations
can tolerate, with and without the proposed protocol enhance-
ment. Results show that observed thresholds are 27MB and
1.3MB, respectively, yielding a gap larger than 20×.

VII. FLOW-LEVEL EVALUATION

In this section, we evaluate POCO through trace-based sim-
ulations. We compare it with state-of-the-art deadline-aware
coflow schedulers Varys [4], Con-Myopic [9], and the default
baseline Fair-Sharing (FS). Extensive results indicate that
POCO is flexible and robust to make very efficient tolerance-
aware coflow scheduling:

1) POCO lets more coflows meet their requirements by
trading the achieved completeness for the timeliness, and
trading one coflow’s completeness for those of others;

2) its scheduling algorithm makes very effective use of
the network to provide guaranteed performance to time-
sensitive coflow, outperforming that of the state-of-the-
art Varys up to 1.25× and even more (the performance
gain depends on the instance’s settings).

A. Methodology

Workload. The coflow workloads employed in evaluations
are generated using a coflow workload generator following
the design provided by Varys [4]. In short, it unsamples the

Facebook traces to the desired number of coflows, network
load, cluster scale, etc., while keeping workload characteristics
similar to the original Facebook trace. However, the Facebook
trace does not involve the attribute requirements of deadline
and completeness. In common with prior work [4, 5], for
each coflow C𝑖 , we set its deadline constraint to be (1 + 𝑧)𝜌𝑖 ,
where 𝜌𝑖 is the minimum completion time of coflow 𝑖 in
an empty network, and 𝑧 is a random number following
the uniform distribution 𝑈 [0; 2𝑥]. As for the completeness
requirements, we assume that each involves the requirements:
R𝑖 : {(F𝑖 , 𝛼𝑖

∑ |F𝑖 |
𝑗=1 𝑣𝑖, 𝑗 )}, where 𝛼𝑖 varies from 0 to 1. Unless

mentioned otherwise, our tests use the baseline of 300 coflows,
1.0 network load, 0.9 completeness requirements; and 𝑥, the
scale factor of the deadline (i.e., the mean of 𝑧), is set as 1.

Cluster. We find that simulations imply consistent results
under diverse cluster scales. To reduce the simulation time, we
consider a cluster comprising 60 servers here. In common with
recent work, the entire cluster network is abstracted out as a
non-blocking switch [4, 19], which interconnects all machines
with 1 Gbps access links.

Flow-level simulator. As the packet-level study in §V-B has
shown, by employing priority queues and affiliated flows,
POCO would presciently control the sending rate of POCO
flows respecting the rate schedules. To speed up the tests,
instead of performing packet-level simulations, similar to
that of Varys, we further develop flow-level simulators (in
Python 3) to perform detailed replays of the aforementioned
coflow traces, according to the scheduling policy of FS,
Varys, Con-Myopic, and the proposed POCO, respectively.
In short, FS is the max-min fair sharing policy adopted by
TCP and its variations. Varys is the state-of-the-art deadline-
guaranteed coflow scheduler, which performs admission con-
trols by letting coflows finish exactly at their deadlines, then
adjusting sending rates to achieve work-conservation [4]. Con-
Myopic is the only existing scheduler designed to support
partial completions; it greedy schedules coflows to maximize
their marginal partial throughput without considering their
exact deadlines [9]. POCO admits coflow requests based on
the results of (9), then adjusts flow rates to achieve work-
conservation. As for the back-end solver of POCO, our current
implementation is a simple prototype based on Scipy and writ-
ten in Python, slow than these highly-optimized commercial
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LP solvers like Mosek and Gurobi. It is not unreasonable to
speculate that by integrating our optimization designs, these
commercial LP solvers could do even better. To accelerate the
simulations, we mainly employ the Mosek solver as the core
here. In all tests, rejected requests do not get resubmitted.

Theoretically, a fine-grained slotted model would ensure
more efficient use of the network. However, smaller slots
would increase the running time of the simulation greatly.
Given that POCO is designed for bulk coflow tasks and
following the design of [37], we suggest the use of 𝑂 (100) ms
slots and let Δ𝑇 be 500 ms in our simulation. As for the tunable
parameter 𝑡∗ and 𝑡𝑜 for the control of available link capacity
in future, we let 𝑡∗ be 𝜏∗

(𝑢Δ𝑇 ) , and 𝑡𝑜 be 1000, respectively,
where 𝜏∗ is the 85-percentile of the involved coflows’ ideal
completion times and 𝑢 is the average network load, both of
which can be inferred from served coflows in practice.

Metrics. Regarding the performance metrics, we mainly con-
sider the percentage of coflows that meet their requirements
of deadline and completeness. For specific test cases, we also
consider the (normalized) completed volume and achieved
completeness under various scheduling schemes. For each
parameter setting, we perform 8 trials.

B. Effectiveness

Case study. As Figure 10a shows, under the default parameter
settings, FS, Con-Myopic, and Varys let about 13.1%, 35.2%,
and 78.0% coflows meet their completeness and deadline
requirements, respectively. In contrast, the average percentage
achieved by POCO is 97.7%, yielding a performance gain of
7.46×, 2.78×, and 1.25×, respectively. For these test cases,
Figure 10b gives their detailed Complementary Cumulative
Distribution Function (CCDF) curves of all coflow requests.
Recall that both POCO and Varys employ admission controls
to provide performance guarantees; accordingly, their curves
involve line segments. However, Varys neglects the tolerance
nature of applications and always makes full completion for
admitted coflow, resulting in performance loss compared with
POCO. Regarding FS and Con-Myopic, they work poorly
since the agnosticism of application requirements. Meanwhile,
we also observe that the schedule of Con-Myopic does not
guarantee work-conservation, since it is designed to maximize
the marginal partial throughput at each slot [9].

To ascertain their performance details, we also count the
total transmitted volume in each case (normalized by the total
volume of all requests, Figure 10c) and the achieved com-
pleteness of each flow (Figure 10d). Obviously, POCO makes
very efficient use of the network as it transmits nearly 89.4%
of all the volume, accounting for about 92.6% of the total
volume of the coflow requests it admits. As for Varys, it makes
100% deliveries for all the coflows it admits, accounting for
about 62.8% of the total requested volume. A very interesting
observation is that FS only lets about 13.1% of requests meet
their requirements, however, its transmitted volume reaches
83.0% of the total. Such results imply that maximizing the
network goodput/throughput does not necessarily optimize
the completion of coflow. Thus, to perform efficient coflow
scheduling, the awareness of both completeness and deadline

is a must for the scheduler. As an example, POCO enables
more coflow requirements to be met by trading completeness
for timeliness and trading one coflow’s completeness for those
of others on demand. The illustration shown in Figure 10d
confirms the awareness and flexibility of POCO: all admitted
coflows do satisfy the completeness requirements of 0.9, yet
at the flow-level, less than 86% of the admitted flows achieve
the completeness level of 0.9 for their own tasks.

Impact of completeness. To investigate the impact of com-
pleteness, we change each 𝛼𝑖 , the required completeness level,
from 1 to 0.6, then rerun the tests and check the percentage
of coflows that could meet their requirements under various
schedule schemes. As Figure 11a illustrates, the results of
Varys keep consistent, because it is unaware of the tolerance
of completeness thus always performing 100% completions
for all admitted requests. Conversely, with the relaxation of
required completeness, all other three schemes schedule more
coflows to meet their requirements. Especially, POCO is able
to admit and satisfy all the requests, once their required
completeness level is less than 0.8. Such results imply the
ability of POCO on performing tolerance-aware scheduling,
again. Moreover, we find that POCO still outperforms Varys by
about 5%, even when all coflows require 100% completions.
That is to say, the rate schedule algorithm adopted by POCO
always makes more efficient use of the bandwidth than that
of Varys. This is reasonable since the schedule of POCO
is built upon LP and POCO obtains the optimal results in
polynomial time. Besides, the results of FS and Con-Myopic
also reveal that their percentages of met coflow increase
linearly with the decrease of the required completeness level.
This phenomenon is consistent with the observed distribution
shown in Figure 10b.

Impact of deadline. As the other requirement dimension of a
coflow request, we then test how the number of requirement-
satisfied coflow changes if coflows have looser deadlines. To
this end, we increase 𝑥, i.e., the mean value of 𝑧, or the so-
called scale factor of the deadline, from 1 to 5. As Figure 11b
reveals, for all schemes but POCO, a significantly increased
amount of coflows would meet their requirements when their
deadlines get relaxed. However, the results of POCO have
little change. This is reasonable since the relaxation of the
deadline would not reduce the network load indeed. As POCO
has already made very efficient use of the network to admit
the request, there is little room to improve.

Impact of network load. Next, we test the change of requir-
ement-satisfied coflow under various network loads. According
to the trace generator, the tested coflow requests are assumed
to arrive in a Poisson process whose rate is 𝜆. We vary the
network load from 0.6 to 1.2 by controlling the rate parameter
𝜆. Because a coflow will get expired automatically after its
deadline, there would be only a limited amount of coflows
to each server even if the network load runs into a load
value larger than 1. As Figure 11c indicates, for all schedule
schemes, the percentages would reduce with the increase of
network load, consistent with the fact that more requests will
get completely served if the network load is light. We also
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Fig. 10. The details of Fair-Sharing (FS), Con-Myopic, Varys, and POCO on scheduling coflows with 0.9-completeness and “𝑥 = 1”-deadline requirements.
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Fig. 11. Different from the significant performance degradation of FS, Con-Myopic, and Varys, the percentage of coflows admitted by POCO only decreases
slightly with the increase of required completeness and network load. As well, POCO always outperforms all other scheduling algorithms greatly.

notice that once the network load is under 0.6, POCO would
let all requests meet their requirements simultaneously. This
reflects that POCO does make very efficient rate allocations.

Impact of the fairness parameter. To study the effective-
ness of the configurable fairness parameter, we increase the
arrival rate of coflows several times to make the network be
overloaded, and vary the value of parameter 𝜏∗ from 0.6 to
1. Obviously, a smaller 𝜏∗ means fewer link capacities in
the future could be allocated to admit the current incoming
coflow requests, i.e., fairer to future requests. Since coflows
used in these tests are with skewed sizes [4], this might result
in improved admission rates. As expected, under several-fold
overloaded scenarios, with 𝜏∗’s value growing, the achieved
amount of admitted coflows decrease slowly. That is to say, the
design of controlled temporal fairness takes effect. However,
in case the network load is light, the results keep almost the
same. This is reasonable since the issue of temporal fairness
occurs only when the network is heavily loaded.

Impact of skewed completeness requirements. By default,
for coflow 𝑖, we assume that it involves the completeness
requirement of R𝑖 : {(F𝑖 , 𝛼𝑖

∑ |F𝑖 |
𝑗=1 𝑣𝑖, 𝑗 )}. To study whether

the skewness in completeness requirements would impact the
effectiveness of POCO scheduling, for the 𝑗-th member flow in
coflow 𝑖, we further add the “per-flow” completeness require-
ment of {({ 𝑓𝑖, 𝑗 }, (𝛼𝑖 + 𝑦(1 − 𝛼𝑖))𝑣𝑖, 𝑗 )}, where 𝑦 is a number
randomly chosen from the uniform distribution of 𝑈 [−𝑠, 𝑠]
and 0 ≤ 𝑠 ≤ 1 is a tunable parameter indicating the level
of skewness. We observe that, compared with the case of no
per-flow completeness requirement, the percentage of coflows
that meet their requirements under the schedule of POCO has

a slight degradation, about 0.039 (0.025, respectively) when
𝛼𝑖 is 0.9 (0.95, respectively). However, with the value of 𝑠

increases from 0 to 1, the results stay the same, indicating that
the skewness in completeness requirements has little effect on
the performance of POCO scheduling.

VIII. RELATED WORK

Since the seminal work of Chowdhury and Stoica [2, 4],
researchers from both academia and industry have proposed
a large number of algorithms to optimize the completion of
coflow, such as minimizing their completion times [4, 22, 38],
reducing the missed deadlines [4, 5], providing isolation
guarantees [39], etc [9, 40–42]. As POCO aims at providing
flexible rate scheduling for deadline-constrained coflow, we
focus on the most related work here and refer the reader to [21]
and [43] for comprehensive surveys.

Basically, existing scheduling mechanisms designed for
deadline-sensitive coflows can be classified into two classes,
respecting whether performance guarantees are provided or
not. In the former case, network schedulers mainly involve
admission controls to ensure that serving the incoming request
would not hurt the deadlines of others [4, 6]. However,
a straightforward admission control design (e.g., Varys [4])
would result in unfairness, since admitting a big request might
over-allocate the bandwidth in the future. In the latter case,
best-effort coflow deliveries are acceptable, several preemptive
algorithms such as D2-CAS [5], Chronos [7], and OLPA [44]
have been proposed. In this paper, POCO is designed to
provide guaranteed yet flexible performances and it achieves
fairness with tunable admission control. By putting POCO in
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the context of customizable and intent-based network design,
we are not the first who design flexible schedulers for coflow.
For this type of purpose, Chen et al. developed a utility-
based scheduling model to support diverging application re-
quirements, in which, the formulation of utility function de-
scribes the performance goals desired by applications [41].
Nevertheless, all existing coflow scheduling study overlooks
the tolerance of emerging distributed applications. They are
designed based on the all-or-nothing service model, resulting
in loss of flexibility and performance. Different from them,
we explore this type of tolerance [10, 12, 13, 45] and design
POCO to trade completeness for timeliness on demand.

The recently proposed Con-Myopic [9] supports partial
coflow completions. However, it schedules coflows without
considering their exact deadlines thus providing no perfor-
mance guarantees. Such a characteristic limits its applicability
since the performance would be unpredictable. The protocol of
ATP proposed by Liu et al. [13] and the loss-bounded protocol
proposed by Xia [12] perform approximate data transmission
for application. However, they focus on designing new trans-
port protocols and do not consider the possible coflow traffic
pattern triggered by applications; thus, they are inefficient in
performing controllable tolerance-aware coflow scheduling. A
similar problem of scheduling deadline-bounded packets to
maximize their timely throughputs have also been studied
in the context of wireless network, which has completely
decentralized solutions [46, 47]. However, this type of problem
is essentially different from the one targeted by POCO in
two aspects. Firstly, their deadline requirements are bound to
the delivery of each packet rather than the entire (co)flow.
Moreover, different flows in [46, 47] are independent without
the relationship of coflow—Each of them would continuously
generate deadline-bounded packets in streaming, As flows
in a coflow could go across different or even link-disjoint
paths and might not share endpoints, distributed algorithms
making scheduling decisions based on each packet/flow’s own
information and the local network state without a global view
(e.g., [46]), are unable to explore the design space raised by
the tolerance of application at the level of coflow.

The design of POCO is motived by the observation that a
lot of emerging distributed applications are able to tolerate
incomplete inputs. Indeed, such a phenomenon has been
widely employed for the design of computing (e.g., big data
analytics), raising the area of approximate computation; a lot
of new systems have been proposed for better performance or
energy efficiency [48, 49]. Different from them, POCO em-
ploys the tolerance for efficient and flexible data transmission.

IX. CONCLUSION

Nowadays, an increasing number of emerging time-sensitive
distributed applications are able to tolerate loss-bounded inputs
by design [3, 12, 13, 41], yielding novel design space and
trade-offs for the schedule of their coflow transmissions.
Accordingly, this paper studied this type of trade-off and
proposed POCO, a policy-based coflow scheduler, to achieve
tolerance-aware coflow scheduling based on applications’ re-
quirements. As confirmed by extensive trace-driven simula-
tions, by trading loss-bounded completeness for timeliness

and trading one coflow’s completeness for those of others
on demand, POCO was able to achieve optimal bandwidth
allocations respecting user-specific requirements.
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