
Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

Releasing the Power of In-Network Aggregation
With Aggregator-Aware Routing Optimization

Shouxi Luo, Xiaoyu Yu, Ke Li, Huanlai Xing

Abstract—By offloading partial of the aggregation computation
from the logical central parameter servers to network devices
like programmable switches, In-Network Aggregation (INA) is a
general, effective, and widely used approach to reduce network
load thus alleviating the communication bottlenecks suffered by
large-scale distributed training. Given the fact that INA would
take effects if and only if associated traffic goes through the
same in-network aggregator, the key to taking advantage of INA
lies in routing control. However, existing proposals fall short in
doing so and thus are far from optimal, since they select routes
for INA-supported traffic without comprehensively considering
the characteristics, limitations, and requirements of the network
environment, aggregator hardware, and distributed training jobs.

To fill the gap, in this paper, we systematically establish
a mathematical model to formulate i) the up-down routing
constraints of Clos datacenter networks, ii) the limitations raised
by modern programmable switches’ pipeline hardware structure,
and iii) the various aggregator-aware routing optimization goals
required by distributed training tasks under different parallelism
strategies. Based on the model, we develop ARO, an Aggregator-
aware Routing Optimization solution for INA-accelerated dis-
tributed training applications. To be efficient, ARO involves a
suite of search space pruning designs, by using the model’s
characteristics, yielding tens of times improvement in the solving
time with trivial performance loss. Extensive experiments show
that ARO is able to find near-optimal results for large-scale
routing optimization in tens of seconds, achieving 1.8∼4.0×
higher throughput than the state-of-the-art solution.

Index Terms—Distributed machine learning, in-network aggre-
gation, routing optimization, programmable switches

I. INTRODUCTION

Nowadays, machine learning (ML), especially deep learn-
ing, has demonstrated great capabilities and achieved great
success in abundant fields like machine vision [1], natural
language processing [2], weather prediction [3], content gen-
eration [4], and game playing [5]. With the development of
ML, new advanced models are constantly proposed. Both the
size of the model and the scale of the training dataset show
explosive growth trends. In order to complete the model train-
ing in a reasonable time, distributed machine learning (DML),
especially with the paradigm of data parallelism, has become
an inevitable design. However, simply increasing the cluster
scale to enhance the compute capacity often fails to achieve the

This work was supported in part by NSFC under Projects 62002300
and 62202392, in part by the Fundamental Research Funds for the Central
Universities under Project 2682024ZTPY050, and in part by NSFSC under
Project 2023NSFSC0459. (Corresponding author: Shouxi Luo.)

The authors are with the School of Computing and Artificial Intelligence,
Southwest Jiaotong University, Chengdu 611756, China, and also with the
Engineering Research Center of Sustainable Urban Intelligent Transportation,
Ministry of Education, Chengdu 611756, China (e-mail: sxluo@swjtu.edu.cn;
yu2022@my.swjtu.edu.cn; keli@swjtu.edu.cn; hxx@swjtu.edu.cn).

corresponding performance improvements. During the data-
parallel distributed training, to guarantee the convergence
of the global model, training workers have to synchronize
their locally trained gradients or updated model parameters
periodically [6]. As confirmed by recent studies [7–10], with
the training cluster’s scale increases, the communication cost
of model synchronization gradually becomes a prominent
performance bottleneck for the entire training.

Regarding the implementation of model synchronization,
the well-known communication architecture of Parameter
Server (PS) is widely used [6]. In this architecture, participat-
ing nodes are logically divided into workers responsible for
distributed model training, and parameter servers responsible
for the serving and aggregation of model parameters and
gradient. To synchronize models with PS, training workers
will send the gradient (or updated model parameters) to one
or more PSs and then fetch the updated results every one or
more epochs of local training. In this process, network com-
munication is usually the bottleneck of the entire distributed
training [8, 11]. Thus, reducing the traffic triggered by model
synchronization and resolving the bottleneck have become the
keys to improving the performance of such DML systems.

Since the calculations involved in the aggregation of gra-
dients and model parameters are usually simple operations
like summation and weighted average, a general, effective, and
widely used approach is to offload partial of them to network
devices (e.g., programmable switches, middlebox, smart NICs)
for in-network aggregation (INA) [7, 10–13]; thereby both
the workload of PS and the volume of traffic in the network
could be greatly reduced. Following this direction, various
solutions, e.g., SwitchML [8], PANAMA [13], ATP [11], and
Libra [14], have been proposed, demonstrating the benefits of
INA for data-parallel distributed training. Then, a critical and
fundamental question is raised: In an INA-enabled cluster, how
to fully release the power of these deployed aggregators to
accelerate the aggregation of gradients for training workers,
e.g., by maximizing their throughput of gradient uploading?

Since the prerequisite requirement of performing INA is
that the associated traffic passes through the same aggregation
devices during the journey, the key to exerting the capability
of aggregators deployed in a network lies in routing control.
The concept of routing (or path) control (or optimization)
here is more than selecting the next hops for a packet just
based on its destination address. Compared with schemes
(e.g., ATP [11]) that directly reuse the ECMP routing scheme
for INA-supported traffic, a fine-grained yet application-aware
path control is needed. Fortunately, existing readily deployable
explicit routing techniques like OpenFlow [15], SRv6 [16], and

1

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

XPath [17] have provided such abilities. As we will show in
this paper, for INA-supported networks, a poor routing scheme
would lead to insufficient use of the aggregation capability of
network devices, which is more prominent in scenarios where
only a part of the switches support INA.

The recent work of [18] has noted the importance of routing
and proposed a solution named GRID. However, it limits each
gradient data to be aggregated by in-network aggregators at
most once before reaching its PS, thus being unable to make
efficient use of available INA capabilities. Another recent work
on this topic is AggTree [19], which takes the characteristics of
both the network topology and link capacities into account for
routing control. But, it builds upon a heuristic algorithm design
that generally only finds local optimum, thus far from optimal
as well, especially when links have homogeneous capacities.
Besides, existing routing optimization schemes also do not
explicitly formulate the possible impacts of the pipelined
hardware structure of the aggregators [20], suffering from
possible performance loss as Section II-B will show.

To fully exploit the power of INA with routing optimization,
we identify i) the constraints raised by both the routing
principle of datacenter networks and the hardware structure
of modern multi-pipelined programmable switches, which are
widely used as aggregators, and ii) the attributes that a practi-
cal aggregator-aware routing optimization scheme must have.
Based on the findings, we accurately formulate the aggregator-
aware routing optimization problem for Clos networks, the de
facto networking architecture for production datacenters [21],
as a math model and then design our routing optimization
solution ARO. By using commercial off-the-shelf solvers like
Gurobi [22], the math model of ARO can be solved efficiently.
As ARO could give the optimal results for INA-aware routing
optimization, it can be used as the baseline for future solutions.

Compared with existing solutions [11, 18, 19], ARO not
only fully encodes the characteristics of the datacenter net-
works and the constraints of the pipeline structure of aggre-
gator hardware, but also supports various distributed training
scenarios. Specifically, by utilizing the topology characteristics
of Clos networks, ARO ensures that the found routes always
satisfy the well-known up-down routing principles [23, 24]; by
formulating the relationship between pipelines explicitly, ARO
is aware of the infeasibility of cross-pipeline aggregation,
if unsupported [11, 25]; and by providing hyperparameters,
ARO allows users to limit the search space size for faster
model solving, respecting their requirements—Results show
significant solving accelerations with trivial loss of throughput.
Beyond supporting the case where a group of workers conduct
data-parallel model training using a single PS, ARO could
also optimize routes for the scenarios of multiple concurrent
aggregation tasks respecting one or more training jobs. Ex-
tensive experiments imply that ARO can find near-optimal
routing plans for aggregation tasks within tens of seconds
using accelerations, even if the network involves 240 switches.

To summarize, our main contributions are four-fold.

• A thorough analysis that identifies the problems stem-
ming from the pipeline structure of modern aggrega-
tor hardware along with the challenges for conduct-

ing aggregator-aware routing optimization for distributed
training in modern datacenter networks (§II);

• ARO, a generic aggregator-aware routing optimization
scheme—It not only accurately encodes the constraints
of aggregator’s pipelined hardware structure and the char-
acteristics of Clos datacenter networks but also supports
multi-PSs and multi-jobs distributed training scenarios
(§III-A,§III-B,§III-D).

• A suite of acceleration designs that could greatly reduce
the time cost of model solving with controllable through-
put loss, by taking advantage of the characteristics of both
the math model and the Clos network (§III-C).

• Extensive evaluations validating the effectiveness of ARO
and demonstrating its significant performance improve-
ments over state-of-the-art solutions (§IV).

In the rest of this paper, Section II first introduces the back-
ground and motivation, then, Section III illustrates the design
details of ARO, and Section IV evaluates its performance.
After discussing the related work in Section V, we finally
conclude the article in Section VI.

II. BACKGROUND AND MOTIVATION

A. In-Network Aggregation

With the rapid growth of both the size of the training
datasets and the number of model parameters, DML tech-
niques, especially data-parallel distributed training, are widely
employed nowadays to train models in a reasonable time. To
guarantee the coverage of the trained model, workers would
periodically synchronize their local training results like the
newly generated gradients or updated model parameters. In
practice, the well-known parameter servers (PS) architecture
is widely employed for this purpose [6]. According to their
roles, participant servers in PS-based distributed training are
logically classified into two types, namely training work-
ers and parameter servers, respectively. Taking the popular
data-parallel distributed training as an example, during the
training, workers would iteratively train its local replica of
the model with the subset of training data it holds. Every
several training epochs, they must send either the generated
gradients or updated model parameters to one or more PSs for
aggregation, and then fetch the results to drive the next round
of training. During such a workflow, the PSs are prone to be
the communication bottleneck. For the bottleneck effects faced
by the delivery of the global aggregated results, techniques like
IP multicasting is able to eliminate duplicated traffic [26–28]
and the reverse of the routes planned for aggregation can be
used for the delivery. Thus, in this paper, we mainly focus on
relieving the efficiency of result upload and aggregation.

Since a PS would complete the aggregation only after it
has obtained all the inputs from the workers and the data
sent by each worker could be dense and with an identical
size, such a process is dominated by the slowest uploading
flow. Accordingly, we name the smallest uploading rate among
all workers as their throughput, and aim to optimize the
throughput(s) for training tasks in this paper.

Fortunately, as demonstrated by recent studies [8, 11, 13],
by upgrading partial or all of the legacy switches with new

2

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

S0 S1

L0 L1 L2 L3

PS W0 W1 W3W2 W4

Spine
Switches

Leaf
Switches

Workers
1/5 1/5 1/5 1/5 1/51

Hottest

(a) Without INA

S0 S1

L0 L1 L2 L3

PS W0 W1 W3W2 W4
1 1 1 1 11

INA-able
Switches

Aggregated
Flows

(b) With INA

Fig. 1: Examples showcase the benefits of INA. Without
INA, workers would suffer from a low throughput of 1

5 when
uploading their locally trained results to the PS, where the
link from L0 to the PS is the most congested under the given
routes; while if L1, L2, and S1 support INA, the amount of
triggered traffic could be reduced on the way to the PS and
all workers would enjoy the uploading throughput of 1.

INA-supported devices that could selectively aggregate associ-
ated packets passing by, both the volume of the triggered traffic
in the network and the workload of PS(s) could be greatly
reduced. Such a design is generic and powerful. For instance,
consider that 5 workers are training a deep neural network
model in a data-parallel manner with the help of a single PS.
These worker nodes along with the PS nodes are networked
with 4 leaf switches and 2 spine switches which formulate a
typical leaf-spine topology. All links have the capacity of 1
unit. Figure 1a shows a possible state of routes for the traffic
from workers to the PS when ECMP is used. Because all flows
squeeze into the link from L0 to the PS, this link becomes
the hottest one across the network, yielding a bottleneck
sending rate (e.g., throughput) of 1

5 unit among all workers,
under the bandwidth-sharing principle of per-flow fairness.
Distinguished from Figure 1b, when L1, L2, and S1 are INA-
enabled, by offloading part of the aggregation computation
from the PS to them, the amount of data transmitted in the
network can be reduced and all workers can upload gradients
at the rate of 1 unit.

B. Multi-Pipelined INA Hardware

Regarding the implementation of INA, the most widely
used design today is to use the commercially available data-
plane programmable switches as the in-network aggregator.
Several recent switch ASICs like Tofino [20] and Trio [12]
have provided such abilities and works like SwitchML [8] and
ATP [11] have shown successful case designs upon them.

As Figure 2 shows, according to the hardware design,
to increase the number of ports while ensuring forwarding
efficiency, the data plane of programmable switching ASICs
like Tofino is usually divided into multiple pipelines, each of
which is responsible for processing packets received at and
sent to a portion of the ports [20]. Functionally, each pipeline
is made up of two sub-parts in turn, namely, ingress and egress,
respecting their logical locations in the workflow of packet
processing. For each incoming packet, after being processed
by the ingress pipeline, a traffic manager would bring it to the
selected egress pipeline(s) for further processing; and finally,
this packet might get dropped, forwarded to the subsequent de-
vice(s), or subjected to other operations [20]. To achieve high-

pipeline 0

pipeline P-1

Ingress Pipeline

Traffic
Manager

Ingress Pipeline

Egress Pipeline

Egress Pipeline

Fig. 2: High-performance programmable switch ASICs like
Tofino [20] generally contain multiple hardware pipelines that
have independent, unshareable memories. Cross-pipeline ag-
gregation is not natively supported, since the stateful aggrega-
tion operation resides in the ingress pipeline by design [8, 11].

performance line-rate packet processing, different pipelines in
the ASIC, including both the ingress and egress, do not share
memories by design [8, 11, 20].

In practice, for the sake of performance and design conve-
nience, current switch-based INA solutions like [8, 10, 11,
18, 29] generally run the aggregation logic in the ingress
pipeline by design.1 This makes the associated INA-supported
flows that pass through the same switch but different ingress
pipelines unable to be directly aggregated since aggregation
is a stateful operation that generically uses the high-speed
memories residing in the hardware pipeline. As the example in
Figure 2 shows, for these three flows, f1 and f2 can be aggre-
gated since they pass by the same ingress pipeline, generating
the aggregated flow of f4, while f3 can not participate in the
aggregation since it goes through a different ingress pipeline.

Technically, the recirculation feature of P4 hardware [20]
makes the tasks of implementing cross-pipeline aggregation
from scratch and upgrading existing aggregators like ATP [11]
to support the goal possible. However, it not only requires non-
trivial engineering efforts, making both the implementation of
the INA function and the management of INA-supported traffic
more complex, but also might cause performance degradation
as the data plane has to process each involved packet multiple
times [20, 31]. Accordingly, when aggregators are built upon
pipelined hardware but without enabling cross-pipeline aggre-
gation, the awareness of the pipeline structure would benefit
the routing optimization for the efficient use of INA capacities.

C. Why Existing Routing Schemes Fall Short

Despite abundant INA proposals have been proposed [8, 11],
they mainly focus on the problem of how to implement
INA functions efficiently and make them ready-deployable,
without looking into the impacts of routing schemes on the
performance of INA. Indeed, the prerequisite requirement of
performing INA is that the associated traffic goes through the
same aggregation-enabled network device. As we will show,
the unawareness of either aggregators or their pipeline hard-
ware structures in routing control would prevent them from
fully releasing INA abilities, resulting in poor performance.

Take the advanced ATP as an example [11]. It directly reuses
the default ECMP scheme to route INA-supported traffic
and only deploys the aggregation functions on ToR switches.

1In some scenarios, network measurement functions (e.g., heavy-hitter
detection) might take up most memory of the egress pipeline [30], making it
impossible to run INA at egress as well.

3

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

Figure 3a shows a possible route status for the uploading flows
stemming from workers W0, W1, W2, W3, and W4 to the
PS under ECMP. In this instance, despite that all the 4 ToR
(Leaf) switches support INA, the aggregated flows from L2
and L3 compete for the bandwidth of the link from S1 to L0,
resulting in a bottleneck sending rate of 1

2 . Revisit the example
shown in Figure 1b, with just three programmable switches,
a well-planned routing could enable all workers to enjoy the
sending rate of 1, significantly higher than that ATP obtains.
Such a result demonstrates the necessity of supporting non-leaf
INA deployments and INA-aware route optimization for the
acceleration of gradient aggregation, as a better performance
could be obtained even with fewer INA-enabled switches.

GRID [18] and AggTree [19] are two typical publicly re-
ported works on aggregator-aware routing control. The core of
GRID is i) formulating the problem of selecting an aggregator
or the PS to aggregate the traffic from each worker as a mixed
integer linear programming (MILP) model, such that workers
could have the maximum throughput, then ii) solving it with
an algorithm based on randomized rounding. However, since
the model overlooks many important facts about the underlay
datacenter networks, the routes given by GRID are far from
optimal and might violate the principles of routing schemes
in modern datacenter networks. More specifically, the model
of GRID does not encode the feature of datacenter networks,
leading to unreasonable routes from workers to the PS(s)
with high probabilities. Take the case shown in Figure 3b as
an example. GRID may choose L1 as the aggregator for all
workers. To achieve this in the given leaf-spine topology, the
paths from workers W2, W3, and W4 to the PS would go up
to a spine first, then down to L1, and then up to the spine S0,
and finally down to the PS. Such a route violates the well-
known up-down datacenter routing principles [23, 24]. More
fundamentally, GRID limits that INA-support traffic should
be aggregated by in-network aggregators at most once before
reaching the PS, thus being unable to make efficient usage
of the aggregation capabilities of available programmable
switches. For example, as Figure 1b shows, compared with
the result of GRID shown in Figure 3b, by allowing the traffic
stemming from workers W0, W1, W2, and W3 to go through
multiple aggregators, we could obtain the bottleneck sending
rate of 1, rather than 1

2 . Last but not least, the model of GRID
overlooks the pipeline structure of the aggregator hardware we
have explained in Section II-B [20]. Hence, the routes it plans
might not contribute to INA, if cross-pipeline aggregation is
not supported by the aggregator.

Different from GRID, AggTree heuristically determines
routes for workers one by one [19]. If there are multiple
possible paths, it chooses the one with the most available
bandwidth to the PS. Here, the maximum available bandwidth
a worker would obtain on a link with the original capacity
of b, is estimated by b

w . w denotes the number of workers
that have selected this link to send traffic. For each INA-
enabled switch, AggTree also defines an aggregation rate to
represent its aggregation capacity and limit the total rates
of flows passing through it. Such a heuristic design only
guarantees the local optimum of the generated routes, thus are
far from optimal. As a result, AggTree is more suitable for the

S0 S1

L0 L1 L2 L3

PS W0 W1 W3W2 W4
1/2 1/2 1/2 1/2 1/21

Hottest

(a) An example of ATP.

S0 S1

L0 L1 L2 L3

PS W0 W1 W3W2 W4
1/2 1/2 1/2 1/2 1/21

Hottest

(b) An example of GRID.
S0 S1

L0 L1 L2 L3

PS W0 W1 W3W2 W4
1/3 1/3 1/3 1/3 1/31

Hottest

(c) An example of AggTree.

Fig. 3: Examples showcase the drawbacks of existing schemes,
where Figures 3a, 3b, and 3c show a possible route state under
the control of ATP [11], GRID [18], and AggTree [19], respec-
tively. In Figure 3a, despite that all leaf switches are INA-
enabled, workers only achieve a throughput of 1

2 , because of
ATP’s random and INA-agnostic routing designs. In Figure 3b,
all workers might choose L1 as their aggregator under the
control of GRID; to enforce this in leaf-spine datacenters,
paths from workers to the PS would violate the up-down
routing principle [23, 24]. In Figure 3c, AggTree selects spine
switches for flows from leaf switches in a load-balancing
manner, unable to fully leverage the capability of aggregators.

case where there are significant differences in the capacities
of links, and the PS’s access link has sufficient bandwidth.
Once links have homogeneous capacities or the weight of
each path is always dominated by the b

w value of the PS’s
access link, according to [19], AggTree would degrade into
conducting routing controls quite similar to ECMP. Besides,
AggTree also does not explicitly capture the impact of ag-
gregators’ pipeline hardware structures, thus suffering from
additional performance loss when cross-pipeline aggregation is
not supported by the underlying. Because of these drawbacks,
it is unable to fully release the power of aggregators. As
the example in Figure 3c shows, due to the heuristic routing
optimization algorithm designs, workers might only achieve
the throughput of 1

3 under the control of AggTree.
In contrast to these schemes, by routing INA-supported

traffic following the paths shown in Figure 1b, which is exactly
the results generated by ARO, training workers would obtain
the maximum and optimal throughput of 1.

D. Our Work And Design Targets

Based on the above analysis, in this paper, we design an
aggregator-aware routing optimization scheme that satisfies
the requirements of the up-down principle to fully release the
power of deployed aggregators in Clos networks. Currently,

4

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

various techniques including SRv6 [16], OpenFlow [15], and
XPath [17] have provided ready-deployable ways to setup ex-
plicit and flexible routing paths for traffic in modern datacenter
networks. Hence, we mainly focus on designing algorithms
to obtain optimized routing paths for workers. However, it
is quite challenging to achieve this goal, since the proposed
solution must possess the following attributes.

• Expressiveness. First of all, to make efficient usage of the
capacities of deployed aggregators while satisfying the
up-down routing principles, besides supporting multiple-
stage aggregation, the proposed algorithm should be ex-
pressive enough to accurately characterize i) the structure
of datacenter networks, ii) the effects of aggregation on
the volume of flows, and iii) the constraint of the pipeline
structure of aggregator hardware if it involves.

• Flexibility. Second, in production, the model parameters
of a training job might get sharded among multiple PSs;
and moreover, as a shared infrastructure, there might be
multiple training jobs using these aggressors at the same
time [32, 33]. Thus, the proposed algorithm should be
flexible to support multi-PSs and multi-jobs aggregator-
aware routing optimization scenarios.

• Scalability. Last but not least, in practice, there might be
multiple training jobs using the shared infrastructures and
the scales of both the distributed training and datacenter
networks might be very large. Hence, to be practical, the
proposed algorithm should be able to obtain optimized
routing results within a reasonable time cost.

III. AGGREGATOR-AWARE ROUTING OPTIMIZATION

Now, we describe the design of ARO in detail. Motivated by
the fact that modern datacenters widely employ Clos network
topology designs [21], the current version of ARO is special-
ized in conducting aggregator-aware routing optimization for
Clos datacenter networks.

ARO relies on a logical network controller to collect the
needed states of the network, including i) the involved links
and their bandwidth, ii) the subset of programmable switches
that support INA, along with their pipeline structures and
port mapping relationships. Then, for distributed training jobs,
the controller formulates the problem of finding the routes
to maximize the gradient upload throughput of workers as a
Mixed Integer Quadratic Programming (MIQP), which not
only precisely encodes the state of the network and the
requirement of the triggered communication task, but also
enforces the up-down routing principles on the Clos networks
(§III-A, §III-B). The core notations involved in this model are
summarized in Table I. By solving the model with acceleration
designs, ARO is able to find and construct optimized routes
for aggregation tasks within a reasonable time (§III-C, §III-D).
Finally, the network controller carries them out for efficient
INA, using any of the explicit routing control techniques
supported by the underlying network [15–17].

A. Network Model

Unfolding the topology for up-down routing principles.
In this paper, we consider the cluster following the switch-

S0 S1

L0in L1in L2in L3in

L0out L1out L2out L3out

W0 W1 W3W2 W4

PS

Fig. 4: The unfolded directed graph of the leaf-spine network
(a well-known folded Clos topology [21]) shown in Figures 1
and 3. To simplify the graph for routing planning, only the
directed shortest paths from workers to the corresponding PSs
are selected as candidates.

pipeline 0

pipeline P-1

Ingress

Traffic
Manager

Ingress

Egress

Egress

INP0

INP P-1

OP0

Fig. 5: By decoupling each INA device into P INPs and one
abstracted OP, we can capture the limitations raised by the
pipeline structure of INA hardware.

centric design, where the routing operations are carried out by
switches2 and both the worker and PS servers lie at the edge
and connect to the network with network interface cards. To
observe the up-down routing principle and avoid loops, for a
given Clos network, ARO unfolds it to form a new directed
graph for route planning. Also, to reduce the size of the graph,
it only takes the directed shortest paths from workers to the
corresponding PSs as the candidates. As an example, Figure 4
shows the result of i) unfolding the leaf-spine network, a
typical folded Clos topology, used in Figures 1 and 3, and
ii) extracting the possible paths for the flows from the workers
to their shared PS. Here, each leaf switch, saying L0 for
instance, has been unfolded into two nodes, i.e., L0in and L0out.
Note that, we only keep the shortest path in the graph. Thus,
in case there are workers under the same leaf switch with the
PS, e.g., L0 in this case, they are directly connected to L0out

rather than L0in in the unfolded network.

Decoupling INA devices to capture pipeline structures.
Given that the aggregation operations are generally imple-
mented at the ingress pipeline by design, then, as Figure 5
shows, ARO decouples each INA-supported programmable
switch involving P pipelines into P Input Pipelines (INPs)
together with one abstracted Output Pipeline (OP), to encode
the limitation raised by the pipeline hardware structure. In-
deed, even for aggregators that do not employ pipeline-based
hardware designs (e.g., Trio [12]), we can just treat them as
involving a single flat pipeline (i.e., P = 1). Therefore, besides

2This paper focuses on planning the forwarding paths for workers and thus
treats switches and routers as exchangeable.

5

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

workers and PSs, there are other three types of forwarding
nodes in the network, i.e., INP, OP, and INA-agnostic common
switch (CS), respectively. Their relationships are as follows:
i) an INP would receive packets from other CSs, OPs, and
workers; it then tries to aggregate multiple related flows into
a single one, and forward the flow to the corresponding OP of
the same programmable switch, ii) an OP would only receive
packets from the INPs of the same programmable switch, and
then send them to the next hop(s), which might be INP, CS, or
PS, iii) a CS would receive packets from workers and other
CSs and OPs, and then forward them to the next hop(s), which
might be INP, PS, or CS.

Encoding network states with constants. According to the
above definition, in an unfolded directed graph, there are 5
types of nodes in total, namely worker (w), PS (ps), CS (cs),
INP (inp), and OP (op), respectively. Given a pair of nodes,
saying u and v for instance, we use the binary constant avu
to represent whether there is a directed link from u to v; and
if so, we use bvu to represent its available bandwidth. Note
that, according to the definition, in the unfolded and decoupled
directed graph, there are several facts: i) a reasonable routing
always starts from a worker to the task’s PS, without encoun-
tering any loops; ii) the next hop of a worker must be either
INP or CS, and the pre-hop of a PS must be either CS or OP;
and iii) the next hop of an INP must be the corresponding OP,
and the pre-hop(s) of an OP must be the corresponding INP(s).
Accordingly, there are nine possible types for the value of
link parameter (u, v), i.e., (w, cs), (w, inp), (cs, cs), (cs, inp),
(cs, ps), (inp, op), (op, inp), (op, cs), and (op, ps). Besides,
we also use Kv

u and Ku to denote the set of aggregation tasks
that might go through link (u, v) and node u, respectively.

B. Problem Formulation

In this paper, we define the case, in which a group of data-
parallel training workers send aggregatable data to the same
PS for result aggregation, as an aggregation task. Given that
the completion of the aggregation is dominated by the slowest
sending rate among workers (referred to as throughput), with-
out loss of generality, enforcing all workers to send data at
this rate would not defer the completion. Indeed, as aggregator
devices like Tofino switches [20] generally have limited cache
sizes, workers sending the related data at the same rate (i.e.,
synchronously) would maximize the effect of INA.

Without loss of generality, for an aggregation task i, we
use N [i]κ, where κ ∈ {w, ps, cs, inp, op}, to denote the set of
nodes with the type of κ that this task involves, and define
variable r[i] to denote its throughput. Obviously, for each
aggregation task, it has only one PS in N [i]ps and we refer to it
as D[i]. In practice, a PS could support multiple training jobs;
and similarly, it is possible for a server (worker) to run multiple
training jobs at the same time. Thus, different aggregation
tasks are not required to have entirely distinct workers and
PSs. The above formulation of aggregation tasks is flexible
enough to support various training scenarios.

Objectives. According to the number of aggregation tasks and
training jobs in the cluster, there are three typical training
scenarios for the problem of INA-aware routing optimization.

1) Single-Job-Single-Task (SJST) routing optimization:
As the simplest case, the objective of planning routes
to accelerate the completion of a single aggregation
task can be straightforwardly formulated as maximizing
its throughput (i.e., the bottleneck sending rate of all
workers), using Equation 1.

Maximize r[i] (1)

2) Single-Job-Multiple-Task (SJMT) routing optimiza-
tion: In practice, to relieve the bottleneck effect of PS,
the model might be sharded among a group of PSs, and
these data-parallel training workers could send different
parts of their gradients or model parameters to different
PSs for better performance. Then, a training job can
involve multiple aggregation tasks, and we name this an
aggregation job. By letting Ts be the set of aggregation
tasks for the training job s, the objective of accelerating
the aggregation for training job s by planning routes for
involved workers and balancing the workloads among
multiple PSs can be formulated as Equation (2). Here,
the values of r[i]s also give a guideline for the ratio of
how the workload should be distributed among these PSs
to make efficient use of them.

Maximize
∑
i∈Ts

r[i] (2)

3) Multiple-Job-Multiple-Task (MJMT) routing opti-
mization: Furthermore, if there are multiple training jobs
in the cluster, to achieve per-job fairness, the target of
routing optimization would be maximizing the minimum
total throughput for all aggregation jobs, as specified by
Equation (3). Here, S refers to the set of all active ag-
gregation jobs, and βs is a weight representing the model
size of job s; µ is a small constant (0 < µ≪ 1) helping
ARO making work-conserving bandwidth allocations.

Maximize min
∀s∈S

βs

∑
i∈Ts

r[i] + µ
∑
∀s∈S

βs

∑
i∈Ts

r[i] (3)

Routing control variables. Due to INA, for aggregation task i,
its data transfer rate on a link must be a (non-negative) multiple
of r[i], where this multiple denotes the number of flows on this
link. Therefore, for a link whose avu = 1 and an aggregation
task i ∈ Kv

u, we define a non-negative integer variable y[i]vu ∈
N0 to represent the number of aggregated flows belonging to
this task on the link. Indeed, {y[i]vu : ∀(u, v)} implicitly denote
the routing states for this aggregation task i. In the following
Section III-D, we will show the details of how ARO generates
forwarding paths for workers with an efficient algorithm.

y[i]vu ∈ N0, (u, v, i) ∈ {(u, v, i) : ∃avu = 1 ∧ i ∈ Kv
u} (4)

Constraints. The constraints of our model are as follows.

1) Constraints of the sending rates of workers: The
worker u of task i must send its data to the connected
switch v, which may be a CS or an INP:

6

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

TABLE I: Table of notations

Notation Description
avu a 0-1 constant indicating whether there is a directed link from node u to node v in the unfolded graph
bvu the available bandwidth of the directed link from node u to node v: i.e., (u, v)

N [i]κ the set of nodes with the type of κ that might be involved by the aggregation task i, where κ ∈ {w, ps, inp, op, cs}
D[i] the target PS for the aggregation task i, where N [i]ps = {D[i]}
Ts the set of aggregation tasks for the training job s
βs a weight representing the model size of job s
S the set of aggregation jobs
Ku the set of aggregation tasks that might go through the node u
Kv

u the set of aggregation tasks that might go through the directed link (u, v)

r[i] a variable indicating the throughput, i.e., the bottleneck sending rate of workers, for the aggregation task i
x[i]u a 0-1 variable, indicating whether the traffic belonging to the aggregation task i goes through the INP u,
y[i]vu an integer variable, indicating the ratio of r[i], i.e., the number of the aggregation task i’s aggregated flows, on the link (u, v)

∑
v:∃av

u=1∧i∈Kv
u

y[i]vu = 1, u ∈ N [i]w,∀i (5)

2) Constraints of the aggregation on traffic loads: For task
i that may go through INP u, since INP can aggregate
multiple associated flows into one, the outgoing sending
rate of INP u for task i is either r[i] or 0, depending on
whether other workers, OPs, or CSs send data of task i
to this INP or not. Hence, for each INP u and task i, we
use binary variable x[i]u to represent whether there is a
flow for the task passing through this INP.

x[i]u ∈ {0, 1}, u ∈ N [i]inp,∀i (6)

1

M

∑
u:∃av

u=1∧i∈Kv
u

y[i]vu ≤ x[i]v ≤
∑

u:∃av
u=1∧i∈Kv

u

y[i]vu,

v ∈ N [i]inp,∀i
(7)

x[i]u =
∑

v:∃av
u=1∧i∈Kv

u

y[i]vu, u ∈ N [i]inp,∀i (8)

Here, M is a constant value larger than the number of
available workers in the cluster. Using it, constraints (7)
could enforce the value of x[i]v (v ∈ N [i]inp) to be either
1 or 0, depending on whether there is traffic of task i
passing by, or not. Then, the constraint (8) specifies that
the outgoing traffic load of task i after the aggregation of
INP u should equal to x[i]u, i.e., either 1 or 0. Thus, the
impacts of INA on the traffic load have been encoded.

3) Constraints of the forwarding rates of OPs and CSs:
For both OP and CS nodes, since they do not conduct
aggregation, the total receiving rate for an aggression task
must be equal to its total sending rate on each node.
By using u and v to denote the possible upstream and
downstream nodes for this OP or CS z, respectively, we
would have the following constraints.

∑
u:∃az

u=1∧i∈Kz
u

y[i]zu =
∑

u:∃av
z=1∧i∈Kv

z

y[i]vz ,

z ∈ N [i]op ∪N [i]cs,∀i
(9)

4) Constraints of link capacities: Last but not least, for
each link (u, v), the total transfer rates of all tasks

passing through it should not exceed its capacity bvu,
i.e., constraints (10).3 Regarding the “virtual” links from
INPs to their OP that we add for decoupling, there is
no need to consider their capacity limits. Thus, we have
v ̸∈ ∪iN [i]op.

∑
i∈Kv

u

y[i]vur[i] ≤ bvu,

(u, v)∈{(u, v) :∃avu=1 ∧Kv
u ̸=∅ ∧ v ̸∈ ∪iN [i]op}

(10)

Among the above three scenarios, SJMT is a specific
instance of MJMT and SJST is a specific instance of SJMT
in turn; thus, MJMT is the most generic.

C. Efficient Model Solving

So far, we have formally formulated the optimization prob-
lem of planning the routes to accelerate the completion of
aggregation tasks respecting various scenarios including SJST,
SJMT, and MJMT as Mixed Integer Quadratic Programming
(MIQP). In this model, there are three types of variables for
each task i, i.e., r[i] ≥ 0, y[i]vu ∈ {0, 1}, and x[i]u ∈ {0, 1}.
For these models, a straightforward solution is directly em-
ploying commercial off-the-shelf solvers like Gurobi [22] to
solve. However, with the increase in the network scale and
the number of tasks, the time cost would grow fast, becoming
unacceptable (up to hours and days and even more in our tests).
To deal with this issue, we provide three heuristic methods,
namely, staged routing optimization (SRO), aggregator pre-
pruning (APP), and quantized sending rates (QSR), to accel-
erate the solving, at the possible expense of tiny performance
loss. By default, ARO enables all these optimizations jointly.
These acceleration schemes are generic and applicable for
the aggregator-aware routing optimization of various Clos
networks. In the following, we use the leaf-spine networks
as concrete examples to explain how they work in detail.

Staged routing optimization (SRO). Given an aggregation
task, there might be a group of aggregators, from which,

3In some cases, the aggregation of data and the multicast of results might
execute in pipeline thus both types of traffic coexist. To support this, we can
let the multicast traffic go the converse routes of the aggregation using the
same sending rate, and upgrade the left-hand side of the constraints (10) from∑

i∈Kv
u
y[i]vur[i] to

∑
i∈Kv

u
y[i]vur[i] +

∑
j∈Ku

v
y[j]uv r[j].

7

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

CS1

CS2

W0

OP0

INP0 INP1

OP1

INP2 INP3

OP2

INP4 INP5

CS0

W1 W2 W3 W4 W5 W6

AA0 AA1

PS

5 1 2 4

x score

Fig. 6: An example showcases how ARO selects an appro-
priate candidate aggregator (referred to as AA for short) for
aggregation based on the variance of their INPs’ scores, shown
as shaded numbers alongside INPs. Here, INA-supported pro-
grammable switches are framed in black dashed boxes. The
scores of INP2, INP3, INP4, and INP5 are 5, 1, 2, and 4,
respectively, leading to the variances of (5 − 5+1

2)2 + (1 −
5+1
2)2 = 8 and (2 − 2+4

2)2 + (4 − 2+4
2)2 = 2 for AA0 and

AA1, respectively. Hence, ARO would select AA1 rather than
AA0 as the spine aggregator when only one is allowed.

ARO could select one or multiple to conduct INA-accelerated
data delivery. We call these aggregators forming an alternative
aggregator (or AAs for short) group, as they are functionally
interchangeable. Following the definition, the smallest AA
group can contain just one aggregator. In Clos networks,
it is straightforward to split INA-supported switches into
AA groups based on their locations. Consider the leaf-spine
network as an example. In this type of network, ARO needs to
determine a spine switch for each cross-leaf flow. If there are
multiple INA-supported spine switches in the unfolded graph,
they act as a group of AAs. Observably, when there are a
large number of aggregators in this AA group, according to
the design of ARO, it would try to enforce the flows of an
aggregation task to use a part rather than all these AAs to
maximize the benefits of INA. Motivated by this, ARO splits
the routing optimization into two stages. In the first stage, for
each aggregation task, it tries to “estimate” INPs that might
not be used. ARO achieves this by 1) just removing all INA-
agnostic spine switches along with the involved paths from
the graph, then 2) solving the math model in Section III-B to
check the x[i]u values for each INP—“zeros” means no use. In
the second stage, ARO excludes these aggregators along with
the involved paths from the unfolded graph model to find the
finally optimized routes for all tasks. Besides, we can get the
minimum value of r[i] in the first stage as the lower bound of
the r[i] in the second stage. Since the core of both these two
stages is to solve a simplified model, ARO could still obtain
a smaller total time cost. For more complex Clos networks
like fat-tree, there might be multiple groups of AAs for each
aggregation task and this optimization is applicable as well.

Aggregator pre-pruning (APP). Given that the number of

AAs affects the size of the search space for routing optimiza-
tion, thus impacting the solving efficiency greatly, a generic
yet efficient design is to directly limit the scale of each AA
group. Take the case of the leaf-spine network as an example
again. Supposing that there are n programmable spine switches
supporting INA, ARO could only use ⌊αn⌋ of them as the
candidate AAs for each aggregation task. A straightforward
design is to employ random selection. However, such a design
suffers from the problem of imbalanced aggregator usages with
a high probability, leading to significant performance loss. To
avoid this issue, ARO selects these ⌊αn⌋ AAs respecting the
variances of their INPs’ maximum possible traffic loads and
in round robin.

Basically, when there is a significant difference in the
maximum possible traffic loads (referred to as scores) among
INPs in an AA, it will increase the bandwidth pressure on INPs
with higher scores. Therefore, ARO prefers to keep smaller
differences in scores, represented by variance, among INPs
under the same AA. Figure 6 shows an example, where ARO
prefers to select only one spine switch, out of AA0 and AA1,
as the aggregator for the aggregation task. To compute the
variance of the INPs’ scores for AA0 and AA1, ARO needs
to compute the scores of INP2, INP3, INP4, and INP5 first.
For INP2, as it might receive data from both OP0 and CS1,
its score is the number of flows that OP0 and CS1 may send
to it. Since the flows from W0 and W1 are aggregated at
INP0, the number of flows that OP0 may send is 2 rather
than 3. As a result, the score of INP2 is 2+3=5. Similarly, the
scores of INP3, INP4, and INP5 are 1, 2, and 4, respectively.
Accordingly, for AA0, its mean score is 1+5

2 = 3, yielding the
variance of (5−3)2+(1−3)2 = 8; and for AA1, its mean score
is 2+4

2 = 3, yielding the variance of (2− 3)2 + (4− 3)2 = 2.
Thus, AA1 would be selected.

In the case that there are multiple aggregation tasks i.e.,
SJMT or MJMT, to reduce the overlapping use of AAs
between these tasks, ARO allocate AAs to each task in a
round-robin manner. ARO maintains a list with the initial
state involving all AAs to generate the ⌊αn⌋ candidates for
aggregation tasks one by one. At each time, ARO pops out
the AA with the least variance from the list for the current
task, until ⌊αn⌋ AAs have been selected. If the list becomes
empty or all left AAs in the list have been selected for the
current task, but the allocation has not been over yet, ARO re-
initializes the list to continue the generation. Also, it is worth
noting that, for other Clos networks rather than leaf-spine,
to prevent the model from being unsolvable, ARO will add
constraints when generating the candidate set. For instance, in
fat-tree networks, if all switches in a pod support INA, at each
level, at least one switch should be chosen for this pod.

Quantized sending rates (QSR). By default, the variable
of the task i’s throughput r[i] is defined as a non-negative
real number, making the model an MIQP. We experimentally
observe that by enforcing the value of r[i] to be chosen only
from a limited set of integers, i.e., using quantized sending
rates instead of continuous values, we can transform the
original model into a pure Integer Quadratic Programming
(IQP). Such a design could achieve a significant improvement

8

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

in the solving efficiency, with only trivial performance loss.
Generally, there is a trade-off between the level of quantization
and the loss of achieved bottleneck sending rate. Thus, to make
this tunable, we assume that r[i] ∈ {0, 1, · · · , N} and update
the right-hand value of constraint (10) from bvu to

⌈
bvuN/b̄

⌉
,

where N controls the level of quantization and b̄ is the upper
bound of all the original links, computed via Equation (11).
Then, for each computed integer r[i], it is easy to get the
actual throughput (i.e., sending rate) using r[i]b̄/N . In this
paper, ARO uses 100 as the default value of N .

b̄ = max
(u,v):∃av

u=1∧v ̸∈∪iN [i]op
bvu (11)

D. Route Generation

Now, we describe the details of how ARO generates the
optimized routes for each aggregation task i based on the
solved values of {y[i]vu : ∀(u, v)}.

According to the definition, y[i]vu stands for the number
of aggregated flows belonging to aggregation task i passing
link (u, v). Hence, for each worker s of aggregation task
i (i.e., ∀s ∈ N [i]w), ARO needs to find a path from this
worker to its PS D[i] in the unfolded (directed) Clos network,
saying l for instance, while ensuring that the y[i]vu value of
each involved link (u, v) is non-zero, i.e., y[i]vu > 0 for all
(u, v) = (l[0], l[1]), (l[1], l[2]), · · · , (l[n − 2], l[n − 1]), where
n = len(l), denoting the number of nodes in path l. Indeed,
thanks to the staged topology structure of Clos networks
and shortest-path-based routing designs, there is no loop in
the unfolded directed graph. Thus, the well-known depth-first
search (DFS) algorithm yields an efficient solution to generate
paths. Recall that an INP node will aggregate the multiple
related flows passing by into a single one. Accordingly, if
ARO finds an available path from a worker s to INP u, and
there is already a path from u to the PS, the flow stemming
from s must reuse this existing subpath starting from u. Thus,
for each INP, ARO only needs to maintain one determined
path from it to the PS. However, such a characteristic is held
neither by CS nor OP, since they might distribute multiple
flows to multiple next hops for load balancing.

Putting all the above observations together, Algorithm 1
specifies the details of how ARO generates paths, following
the workflow of DFS. For each worker, INP, and PS node,
if a path from u to the PS has been founded, ARO would
record it in R[u] and reuse it to accelerate the process when
necessary (Line 14). To start the search, ARO first initialize
the path from the PS D[i] to itself as [D[i],] (Line 1) and
sets the value of all other R[u] to nil (Lines 2-4). Then, ARO
iteratively finds paths for all workers (Lines 5-22). Here, l
is used to record the path to generate. Each time, ARO first
checks whether it has reached a node (i.e., the current location
u) already having an established path to the PS (Line 8). If
so, it directly extends the found path l with R[u] (Line 14);
otherwise, it appends u to the tails and continues to find and
move to a new node v that has a non-zero y[i]vu from its current
location u (Lines 9-12). Finally, the path to the PS would be
generated. Once the path is estimated, for each INP in the
path, saying l[j] for instance, ARO would record the subpath

from l[j] to the PS with R[l[j]] (Line 19), which might be
used when processing other following workers (Line 14).

In practice, after getting the routes of all workers for each
aggregation task, ARO can establish the paths with existing
techniques like OpenFlow [15], XPath [17], and SRv6 [16].

Algorithm 1 Generate Routes for Aggregation Task i

Input: i, {y[i]vu}, N [i]w, D[i], N [i]inp
Output: {(s,R[s]) : s ∈ N [i]w}

1: R[D[i]]← [D[i],] ▷ The path from PS D[i] to itself
2: for u ∈ {u : ∃y[i]vu > 0} do
3: R[u]← nil
4: end for
5: for s ∈ N [i]w do ▷ Generate path for each worker
6: l← [] ▷ Record the route to D[i]
7: u← s ▷ Current node
8: while R[u] = nil do
9: l.append(u) ▷ Expand l to the current node u

10: v ← min {v : y[i]vu > 0} ▷ Select next node
11: y[k]vu ← y[k]vu − 1
12: u← v ▷ Move to the next node
13: end while
14: l.extend(R[u]) ▷ u is either INP or PS
15: R[s]← l ▷ The generated path from s to D[i]
16: n← len(l)
17: for j ← 1, 2, · · · , n− 1 do
18: if l[j] ∈ Ninp and R[l[j]] ̸= nil then
19: R[l[j]]← l[j : n] ▷ Path from this INP to PS
20: end if
21: end for
22: end for
23: return {(s,R[s]) : s ∈ N [i]w} ▷ Generated paths

IV. PERFORMANCE

Now, we evaluate the performance of ARO through exten-
sive tests and use the state-of-the-art schemes GRID, ATP, and
AggTree as baselines. Extensive results imply that:

1) ARO is effective and flexible. Compared with the
state-of-the-art scheme, i.e., AggTree, it achieves about
2.2∼4.0×, 1.8∼2.5×, and 1.9∼2.3× higher throughput
for SJST, SJMT, and MJMT scenarios, respectively.

2) ARO is very efficient. Even for scenarios involving
hundreds of switches and workers, thanks to the novel
acceleration designs, it obtains near-optimal optimized
routes within a few minutes.

A. Methodology

Workloads and metrics. Following the settings used in sev-
eral recent works [10, 18], in tests, we consider that distributed
training jobs are executed by a leaf-spine cluster, in which
576 servers are networked with 24 leaf switches (with 24
servers under each leaf) and 24 spine switches. And all links
have the same bidirectional capacities of 100Gbps. By default,
consistent with the setting of [18], among these 48 switches,
γ = 20% randomly selected switches are programmable thus

9

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

supporting INA, and each contains 4 hardware pipelines [20].
We mainly consider three types of training scenarios: SJST,
SJMT, and MJMT, respectively. Thus, there might be one
or multiple aggregation tasks in the cluster, depending on
the test settings. By default, in the scenario of SJST, SJMT,
and MJMT, we assume that the scale of each aggregation
task is 200, 100, and 100 workers, respectively. And for the
aggregation task i, we further assume that its PS D[i] is located
under the i-the leaf switch which always supports INA. Note
that, in the case of SJMT and MJMT, as the training jobs
we consider here follow data parallelism distributed training
designs, if multiple aggregation tasks belong to the same
job, they share the same set of worker servers, but distinct
PS nodes. Finally, these exclusive worker servers of all the
training jobs are distributed in the cluster uniformly at random.

Regarding the metrics, we mainly use the achieved bottle-
neck sending rate (i.e., a job’s throughput) along with the
time cost of route computation to assess the performances
of routing optimization algorithms. Note that, in the case of
SJMT, where multiple concurrent aggregation tasks Ts belong
to the same training job s, their achieved bottleneck sending
rate is computed by

∑
i∈Ts

r[i]; and in the case of MJMT,
there is a group of training jobs S—their achieved throughput
is mainly evaluated by the values: mins∈S βs

∑
i∈Ts

r[i] +
µ
∑

∀s∈S βs

∑
i∈Ts

r[i], where βs=1 for s ∈ S and µ=0.001.

Baselines and simulators. Regarding the baselines, we mainly
compare ARO with ATP [11] (referred to as RANDOM),
GRID [18] and AggTree [19] using the following settings.

• RANDOM. In ATP [11], all leaf switches support INA,
and flows are routed randomly, using ECMP. However,
in the scenarios we consider in this paper, not all leaf
switches support INA, and some spine switches might
support INA as well. Thus, we upgrade ATP to select
a random programmable spine switch to generate routes
and refer this method to as RANDOM hereafter.

• GRID. As for GRID [18], we set its switch processing
capacity to a maximum of 3200, and then solve its
relaxed LP model with Gurobi. To ensure that the routing
paths generated by GRID do not violate the rule of
up-down routing [24], for each worker, we let GRID’s
model only consider its directly connected programmable
leaf switches, all programmable spine switches, and the
programmable leaf switch connected to the PS, as can-
didate aggregators. By solving this augmented model,
we determine the aggregator for each worker. Given that
the model of GRID does not take CS into consideration,
we then use a new MILP to compute the practical and
optimal routes for workers to maximize their throughput,
without considering the pipeline structure. Finally, we
incorporate the impacts of pipeline into this route and
obtain the actual throughput for aggregation tasks.

• AggTree. Regarding AggTree [19], in our tests, all links
have the same capacity; thus, each path’s weight is always
dominated by that of the last hop (i.e., the PS’s access
link), and AggTree behaves just like ECMP. Since INA-
supported leaf switches might aggregate the flows sent
by workers, slightly distinguished from the algorithms

TABLE II: ARO and its variants used in tests

SRO APP QSR
ARO # # !

ARO-ACC ! ! !

ARO-SRO ! # !

ARO-APP # ! !

ARO-RAW # # #

ARO-QSR # # !

specified in [19], we directly select spine switches for
(possible aggregated) flows, rather than raw workers in a
load-balancing manner to drive experiments.

• Our proposed ARO and its variants. To investigate the
benefits and costs of the proposed solving acceleration
designs specified in §III-C, in some instances, besides
the raw version of ARO (i.e., ARO-RAW), we also em-
ploy the accelerated versions of ARO, including ARO-
ACC, ARO-SRO, ARO-APP, and ARO-QSR as base-
lines, which have all or parts of proposed acceleration
optimization designs enabled, as specified in Table II. By
default, we use N = 100 for QSR, α = 0.6 for APP,
and compare the performances of ARO and ARO-ACC
against these of RANDOM, GRID, and AggTree.

We implement a simulator with Python 3 that could op-
timize routes for aggression tasks with ARO along with its
variants and baselines. For the solving of LP, MILP, MIQP,
and IQP models, it directly employs the commercial off-the-
shelf Gurobi solver [22]. All experiments are conducted on
a desktop PC equipped with an Intel i5-12400 CPU and two
16G memory cards. To reduce the impact of random factors
in the setting on the experiment results, we repeat each group
of experiments 30 times and report the average values.

B. Effectiveness

SJST case studies. We first look into the case where there is
only one training job containing one single aggregation task
in the cluster. Figure 7a shows the details of the throughput
achieved by different routing optimization schemes when the
aggregation task involves 200 workers, where the red lines
in the displayed violins indicate the mean values. Obviously,
compared with RANDOM, GRID, and AggTree, whose average
throughput is 7.92Gbps, 1.75Gbps, and 8.76Gbps, respectively,
the result of ARO is 26.33Gbps, yielding about 3.3×, 15×,
and 3× improvements. We also find that GRID generally
achieves the worst throughput. There are two main reasons,
rooted in GRID’s design. Firstly, GRID limits flows to be
aggregated at most once, missing opportunities for multiple-
stage aggregation. As a contrast, RANDOM, AggTree, and our
proposed ARO would not; under their route planning, flows
might be aggregated 2 or 3 times when passing the tested leaf-
spine network. Secondly, GRID tends to use a small number of
aggregators, while RANDOM and ARO would distribute flows
across all usable aggregators. Results also show that ARO-
ACC achieves excellent performance as well—Compared with
ARO, its throughput loss is within 6.4%.

10

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

Random GRID AggTree ARO ARO-ACC
0
5

10
15
20
25
30

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Throughput when γ = 20%.

10% 20% 30% 40% 50% 60% 70%
0
5

10
15
20
25
30

Th
ro

ug
hp

ut
 (G

bp
s)

Random GRID AggTree ARO ARO-ACC

(b) Impacts of aggregator amount.

100 150 200 250 300 350 400
Number of Workers

0
5

10
15
20
25
30

Th
ro

ug
hp

ut
 (G

bp
s) Random

GRID
AggTree
ARO

ARO-ACC

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Workers (Normalized)

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
ize

d) 1/x
Random

GRID
AggTree

ARO
ARO-ACC

(c) Impacts of the aggregation task’s scale.

Fig. 7: [SJST] When there is only one training job containing
one aggregation task in the cluster, compared with RANDOM,
GRID, and AggTree, ARO could achieve up to 4× higher
throughput. Also, the gaps between ARO and ARO-ACC are
trivial, within 7%. By default, the aggregation task involves
200 workers and there are 9 INA-supported programmable
switches (a.k.a., aggregators) in the network.

Impacts of aggregator amount. To study the impacts of
aggregator amount on the achieved throughput of different
schemes, we fix the aggregation task’s scale to 200 workers
and increase the proportion of INA-enabled switches from
10% to 70%. Figure 7b shows the results. As the number of
aggregators increases, the throughput achieved by RANDOM,
AggTree, and PRID gradually increases overall, while that
achieved by GRID has little change. The reason for this has
been mentioned above: GRID will only select a small number
of aggregators, so when the number of aggregators reaches a
certain value, its impact on GRID is small. We also observe
that, as the number of aggregators increases, the performance
loss of ARO-ACC relative to ARO is decreasing. Because as
the number of aggregators increases, the increase in throughput
by aggregators will decrease.

Impacts of aggregation task scale. Figure 7c shows the
change in the average throughput achieved by different
schemes with the aggregation task’s scale (i.e., the number of
involved workers) growing from 100 to 400. As expected, for
all schemes, the throughput decreases. Ideally, without INA,
increasing the scale g× would make the throughput decrease
from 1 to 1

g . Such a phenomenon is observed in the results of
GRID, implying that its routing schemes are far from optimal.
Distinguished from this, thanks to the outstanding routing
optimization designs, the degradation encountered by ARO
is smaller than 1

g , exhibiting its high efficiency.

Impacts of the number of pipelines (P). Then, we study
the impact of the number of hardware pipelines for each
aggregator (i.e., P) on the achieved throughput for all schemes.
As Figure 8a shows, if each aggregator is made up of a
single flat pipeline, i.e., related flows arriving at the same
programmable switch would always get aggregated, both

Random GRID AggTree ARO ARO-ACC
0

10

20

30

40

50

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Throughput when P = 1.

1 2 3 4 5 6 7
Number of Pipelines

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s) Random

GRID
AggTree

ARO
ARO-ACC

(b) Impacts of P .

Fig. 8: [SJST] ARO always achieves much higher throughput
than all other schemes, even under the case where each
aggregator is built upon a flat pipeline. With the number
of pipelines increasing, the room for routing optimization
decreases, leading to tapered throughput for all schemes.

GRID and AggTree are able to achieve higher throughput
than the case where each aggregator contains 4 pipelines
(i.e., Figure 7a). Even so, they still underperform ARO a
lot. Such results not only confirm the excellent effectiveness
of ARO on aggregator-aware routing optimization, but also
imply that ARO could work very well for the case where
the aggregators do not have the pipelined hardware constraints
(e.g., [12, 34]). From Figure 8b, we also observe that, with the
number of pipelines increasing, the achieved throughput would
decrease gracefully for most schemes. This is reasonable.
Basically, the increase in the pipelines leads to a decrease in
the possibility of in-network aggregation for pipeline-agnostic
schemes like GRID and AggTree, and a narrower room for
the routing optimization of pipeline-aware schemes like ARO
and ARO-ACC. However, RANDOM is an exception, which
is reasonable—under this scenario, the bottleneck sending rate
among workers is determined by the number of workers under
the same common leaf switches, irrelevant to aggregators.

SJMT & MJMT. Now, we evaluate the performance of each
scheme in the cases of SJMT and MJMT. For SJMT, we
consider that there is a single training job involving 1, 2,
3, and 4 aggregation tasks (e.g.,1J4T), which share the same
set of workers. As for MJMT, we test scenarios with 1, 2,
3, and 4 jobs each having 2 aggregation tasks (e.g.,4J2T).
For RANDOM, GRID, and AggTree, we calculate routes for
each task separately, and finally overlay the routes of all tasks
and calculate the throughput. Figures 9a and 9b show the
minimum and total throughput among all tasks, respectively.
Results indicate that, by considering multiple tasks at the
same time, ARO achieves more than twice the improvement
compared to other schemes. It is also obvious that, without
expectation, the minimum throughput decreases, and the total
throughput increases as the number of tasks increases. In the
scenario of 1J4T, the minimum throughput achieved by ARO-
ACC is more than that achieved by ARO in Figure 9a, which
seems abnormal. This is reasonable. According to the current
objective design of SJMT (see Eq. 2), ARO optimizes the
total throughput of aggregation tasks belonging to the same
job without looking into their minimum throughput. Thus, the
relationship between the minimum throughput of aggregation
tasks achieved by ARO and ARO-ACC is uncertain. As shown
in Figure 9b, both ARO and ARO-ACC achieve the upper

11

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

1J1T0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (G

bp
s)

1J2T 1J3T 1J4T

GRID Random AggTree ARO ARO-ACC

(a) Minimum Throughput.

1J1T0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

1J2T 1J3T 1J4T

GRID Random AggTree ARO ARO-ACC

(b) Total Throughput.

Fig. 9: [SJMT] In the case of a single job involving multiple
aggregation tasks, compared with baselines, ARO achieves
more than 2× higher performance in terms of both the
minimum and total aggregation task throughput.

1J2T0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (G

bp
s)

2J2T 3J2T 4J2T

GRID Random AggTree ARO ARO-ACC

(a) Minimum Throughput.

1J2T0

40

80

120

160

200

Th
ro

ug
hp

ut
 (G

bp
s)

2J2T 3J2T 4J2T

GRID Random AggTree ARO ARO-ACC

(b) Total Throughput.

Fig. 10: [MJMT] As expected and similar to the case of SJMT,
ARO significantly outperforms baselines in the scenario that
multiple training jobs trigger multiple aggregation tasks.

limit of the total throughput of 100Gbps for all tasks in the
scenario of 1J4T. In the case of MJMT, a similar regularity is
observed, as Figures 10a and 10b show.

C. Efficiency

0
20
40
60
80

Th
ro

ug
hp

ut
 (G

bp
s)

3 4 5
0

200

400

600

800

So
lv

in
g

Ti
m

e
(s

)

ARO
ARO-SRO
ARO-APP
ARO-ACC

Fig. 11: [SRO&APP] ARO-ACC, which makes joint usage of
both SRO and APP, shows the best acceleration effect, with
trivial and controllable throughput loss.

Effects of SRO & APP. To study the effects of both
staged routing optimization (SRO) and aggregator pre-pruning
(APP), we consider the case where the cluster involves 48λ
switches (50%/50% for leaf and spine switches, respectively),
with 20% supporting INA and there are 5 concurrent training
jobs, each launching an aggregation task involving 100λ
workers. To ensure that Gurobi would terminate the solving
in a given time, in tests, we set its time limit parameter to

0

20

40

60

80

Th
ro

ug
hp

ut
 (G

bp
s)

0.4 0.5 0.6 0.7 0.8
0

25
50
75

100
125

So
lv

in
g

Ti
m

e
(s

)

baseline

Fig. 12: [APP] The impacts of α on the effects of aggregator
pre-pruning show that i) the achieved throughput of ARO is
not very sensitive to the setting of α, and ii) α = 0.6 is good
enough for the acceleration of model solving in many cases.

72.5
75.0
77.5
80.0
82.5

Th
ro

ug
hp

ut
 (G

bp
s)

baseline

10 50 100 200 500
N

0
200
400
600
800

So
lv

in
g

Ti
m

e
(s

)

(a) All 30 scenarios.

78
80
82
84
86
88
90

Th
ro

ug
hp

ut
 (G

bp
s)

baseline

10 50 100 200 500
N

0
100
200
300
400
500

So
lv

in
g

Ti
m

e
(s

)

(b) 13 non-timeout scenarios.

Fig. 13: [QSR] For the acceleration design of qunantized
sending rate, in general, a larger N leads to a less-yet-decaying
loss of achieved throughput with the cost of a longer-yet-
decaying solving time; we argue that N = 100 would be good
enough in practice since it would accelerate the model solving
about 4×, with less than 2% throughput loss.

20 minutes, i.e., TimeLimit=1200 [22]. Figure 11 shows the
performances of ARO and its variants when λ = 3, 4, 5,
respectively. We find that i) the design of both SRO and APP
could accelerate the model solving of ARO markedly, with
only tiny throughput losses, and ii) making a joint usage of
them, i.e., ARO-ACC, yields the best performance. Compared
to ARO, ARO-ACC could reduce the solving time by about
90% within less than 10% throughput loss. Especially, in
the case of λ=5, the performance of ARO-SRO, ARO-APP,
and ARO-ACC can exceed that of ARO, because ARO may
fail to obtain the optimal result within the limited time. In
addition, we also test the impact of α on the effects of APP.
As Figure 12 shows, with the value α growing, the number
of aggregators available for each task increases, leading to
slightly longer solving time and higher throughput. It can be
observed that when α = 0.4, compared to ARO, the amount of
degraded throughput for ARO-ACC is only about 5%. Hence,
in our tests, just letting α = 0.6 would bring excessive spine
aggregators for the optimization of routing.

Effects of QSR. Last but not least, we investigate the impacts
of N , the level of quantization, on the effects of quantized

12

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

sending rate (QSR). It should be mentioned that we set the
upper time limit of the model solving to 20 minutes, and
ARO-RAW is likely to encounter timeout events because its
MIQP model is hard to solve. As we can see in Figure 13a, the
throughput of ARO-RAW (i.e., baseline) is far from optimal—
because Gurobi has encountered timeout events in 17 out of
all the 30 tested scenarios in solve the ARO-RAW’s models;
even for the fastest scenario, it still takes about 242s for
Gurobi to solve the MIQP model of ARO-RAW. Instead,
Gurobi is able to find the optimal results for the IQP model
of ARO-QSR much faster. For example, when N = 100, for
the 30 testing scenarios, the maximum and minimum model-
solving time of ARO-QSR is 256s and 61s, respectively.
Moreover, Figure 7b shows the results when these 17 timeout
scenarios are excluded. As expected, with N increasing, the
time cost of model solving also grows gracefully with a
decaying throughput loss. Once N > 100, the amount of lost
throughput is negligible, only less than 2% in the tests, with
the advantage of reducing the solving time by about 85%.

In summary, the above performance studies have confirmed
the excellent performance of ARO. On one hand, it outper-
forms other schemes in terms of throughput significantly—
compared with RANDOM, GRID, and AggTree, it achieves
about 2.8∼4.1×, 8.2∼41.6×, and 1.8∼4.0× performance im-
provements, respectively. On the other, with the acceleration
design of SRO, APP, and QSR, its model-solving time can be
shortened by 90%, with less than 10% loss of throughput.

V. RELATED WORK

A. INA Solutions

Currently, there are various INA solutions having distinct
designs and implementations. For example, SwitchML [8] im-
plements the aggregator at data-plane programmable switches
(e.g., Tofino [20]) and uses it to completely replace the role of
PS. In contrast, ATP [11] employs switch-based aggregators
to conduct INA in a best-effort manner, aiming at reducing
the load of PS rather than replacing it. Different from them,
Libra [14] observes that during the training of sparse models,
there are “hot” parameters having a relatively higher update
frequency than others; motivated by this, it designs a sam-
pling mechanism to select such hot parameters out and only
aggregates them at programmable switches, thus reducing the
demand of the limited data-plane resources [14]. Likewise,
for sparse data, OmniReduce [9] designs a transport scheme
to only transmit non-zero data blocks, and further, ASK [35]
proposes a solution to support key-value stream aggregation.
Instead of relying on commercial off-the-shelf data-plane
programmable switches, NetReduce [34] and PANAMA [13]
explore the idea of using FPGA to implement aggregation and
combine them with switches to achieve INA; SHARP [36] and
Trio [12] design new switching chips and hardware for INA.

Given that INA devices like programmable switches gener-
ally have scarce memories, INAlloc [29] establishes a switch
memory management layer along with a friendly schedule
interface to support dynamic and consistent memory realloca-
tion for concurrent aggregation tasks. Furthermore, DSA [37]
implements priority-based preemptive aggregator allocation

to improve the utilization of switch memory and accelerate
the completion of jobs. A2TP [10] considers the impacts
of limited switch memory on the congestion controls and
designs an aggregator-aware in-network aggregation transmis-
sion protocol for better aggregation efficiencies. And Kim
et al [38] envision the possibility of empowering data-plane
programmable switches with remote memories.

As INA is able to reduce the traffic volume in the network,
SOAR [39] discusses how to deploy a limited number of
programmable switches in a determined INA task to minimize
the network load. Similarly, SMC [40] aims at alleviating
network congestion with aggregator placement.

As a supplementary, in this paper, we focus on designing
routing optimization schemes to release the power of de-
ployed aggregators for Clos networks fully. GRID [18] and
AggTree [19] are related works targeting this goal. However,
as discussed in Section II-C, they are far from optimal. Our
proposed ARO is effective and generic. It is not limited to
any specific aggregator designs and is thus able to work with
all these existing INA solutions jointly.

B. Explicit Routing Control

To implement the routes optimized by ARO in practice,
the cluster must support explicit routing controls. Fortunately,
there are abundant alternative solutions. For instance, many
modern switches have supported OpenFlow [15], which allows
the path of each flow to be precisely configured from a
logical central controller. Alternatively, emerging switches
and routers have wide support of the Segment Routing (SR)
techniques like SRv6 (Segment Routing over IPv6) [16]; with
SR, the sender of a flow can encapsulate the desired path’s
waypoint information in the packet header for path controls.
Besides, there are many other specialized proposals. For
example, XPath [17] computes and allocates optimized IDs
to all possible end-to-end paths, then installs their compressed
forwarding information into the switch to achieve ID-based
forwarding. By taking advantage of the up-down routing of
Clos networks, VL2 achieves fine-grained path control using
IP-in-IP encapsulation [41].

VI. CONCLUSIONS AND FUTURE WORK

As is known, INA is a generic, effective, and widely used
method to alleviate the communication bottlenecks in PS-
based distributed ML systems. Obviously, the premise of
performing INA is that associated flows pass through the same
aggregator during the journey. Thus, the key to releasing the
power of deployed aggregators lies in the optimization of
routing. However, existing schemes are far from optimal since
they ignore the detailed requirements and characteristics of
modern datacenter networks. To fill the gap, we systematically
analyze the constraints and design goals of providing prac-
tical routing optimization for INA-accelerated data-parallel
distributed machine learning workloads in modern datacenter
networks, and propose the novel solution of ARO. By formally
formulating the routing optimization problem as a math model
and accelerating the model solving with a suite of novel
designs, ARO is able to find optimal or near-optimal solutions

13

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

for the routing optimization of INA-supported traffic in Clos
networks within a reasonable time.

Recently, various studies [42, 43] have also shown the
benefits of employing in-network aggregation for other types
of distributed machine learning by using the computing power
of edge clouds. In future work, we will investigate how to
conduct INA-aware routing optimization for such scenarios.

REFERENCES

[1] K. He, X. Zhang et al., “Deep residual learning for image
recognition,” in Proceedings of CVPR, 2016, pp. 770–
778.

[2] J. Devlin, M.-W. Chang et al., “BERT: Pre-training of
deep bidirectional transformers for language understand-
ing,” in Proceedings of NAACL, vol. 1. ACL, Jun. 2019,
pp. 4171–4186.

[3] H. Wu, H. Zhou et al., “Interpretable weather forecast-
ing for worldwide stations with a unified deep model,”
Nature Machine Intelligence, vol. 5, no. 6, pp. 602–611,
Jun. 2023.

[4] S. Risi and J. Togelius, “Increasing generality in machine
learning through procedural content generation,” Nature
Machine Intelligence, vol. 2, no. 8, pp. 428–436, Aug.
2020.

[5] S. F. Gudmundsson, P. Eisen et al., “Human-like playtest-
ing with deep learning,” in Proceedings of the IEEE
Conference on Computational Intelligence and Games
(CIG), 2018, pp. 1–8.

[6] M. Li, D. G. Andersen et al., “Scaling distributed ma-
chine learning with the parameter server,” in Proceedings
of the 11th OSDI. Broomfield, CO: USENIX Associa-
tion, Oct. 2014, pp. 583–598.

[7] A. Feng, D. Dong et al., “In-network aggregation for data
center networks: A survey,” Computer Communications,
vol. 198, pp. 63–76, 2023.

[8] A. Sapio, M. Canini et al., “Scaling distributed machine
learning with In-Network aggregation,” in Proceedings
of the 18th NSDI. USENIX Association, Apr. 2021, pp.
785–808.

[9] J. Fei, C.-Y. Ho et al., “Efficient Sparse Collective Com-
munication and Its Application to Accelerate Distributed
Deep Learning,” in Proceedings of the ACM SIGCOMM
Conference. ACM, 2021, pp. 676–691.

[10] Z. Li, J. Huang et al., “A2TP: Aggregator-Aware In-
Network Aggregation for Multi-Tenant Learning,” in
Proceedings of the 18th EuroSys. New York, NY, USA:
ACM, 2023, pp. 639–653.

[11] C. Lao, Y. Le et al., “ATP: In-network aggregation for
multi-tenant learning,” in Proceedings of the 18th NSDI.
USENIX Association, Apr. 2021, pp. 741–761.

[12] M. Yang, A. Baban et al., “Using Trio: Juniper Networks’
Programmable Chipset - for Emerging in-Network Appli-
cations,” in Proceedings of the ACM SIGCOMM Confer-
ence. New York, NY, USA: ACM, 2022, pp. 633–648.

[13] N. Gebara, P. Costa, and M. Ghobadi, “PANAMA: In-
network aggregation for shared machine learning clus-
ters,” in Proceedings of MLSys, April 2021.

[14] H. Pan, P. Cui et al., “Enabling fast and flexible dis-
tributed deep learning with programmable switches,”
CoRR, vol. abs/2205.05243v2, 2022.

[15] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey,
“Toward Adaptive and Scalable OpenFlow-SDN Flow
Control: A Survey,” IEEE Access, vol. 7, pp. 107 346–
107 379, 2019.

[16] P. L. Ventre, S. Salsano et al., “Segment routing: A com-
prehensive survey of research activities, standardization
efforts, and implementation results,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 1, pp. 182–221,
2021.

[17] S. Hu, K. Chen et al., “Explicit Path Control in Com-
modity Data Centers: Design and Applications,” in Pro-
ceedings of the 12th NSDI. Oakland, CA: USENIX
Association, May 2015, pp. 15–28.

[18] J. Fang, G. Zhao et al., “Grid: Gradient routing with in-
network aggregation for distributed training,” IEEE/ACM
Transactions on Networking, vol. 31, no. 5, pp. 2267–
2280, 2023.

[19] J. Nie and W. Wu, “AggTree: A routing tree with in-
network aggregation for distributed training,” in Proceed-
ings of IEEE IPCCC, 2023, pp. 116–122.

[20] Intel, “P416 Intel® TofinoTM Native Architecture – Public
Version (Application Note),” 2021, https://github.com/
barefootnetworks/Open-Tofino, Accessed on 2023-10-12.

[21] A. Singh, J. Ong et al., “Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter
network,” in Proceedings of the ACM SIGCOMM Confer-
ence. New York, NY, USA: ACM, 2015, pp. 183–197.

[22] Gurobi Optimization, LLC, “Gurobi Optimizer
Reference Manual,” 2023. [Online]. Available:
https://www.gurobi.com

[23] V. Giotsas and S. Zhou, “Valley-free violation in Internet
routing — Analysis based on BGP Community data,” in
Proceedings of IEEE ICC, 2012, pp. 1193–1197.

[24] S. Hu, Y. Zhu et al., “Tagger: Practical pfc deadlock
prevention in data center networks,” IEEE/ACM Trans-
actions on Networking, vol. 27, no. 2, pp. 889–902, 2019.

[25] “The implementation of atp,” 2021, https://github.com/
in-ATP/ATP, Accessed on 2023-10-12.

[26] S. Luo, H. Yu et al., “Efficient file dissemination in data
center networks with priority-based adaptive multicast,”
IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1161–1175, 2020.

[27] S. Luo, H. Xing, and P. Fan, “Softwarized ip multicast in
the cloud,” IEEE Network, vol. 35, no. 6, pp. 233–239,
2021.

[28] S. Luo, H. Xing, and K. Li, “Near-optimal multicast tree
construction in leaf-spine data center networks,” IEEE
Systems Journal, vol. 14, no. 2, pp. 2581–2584, 2020.

[29] B. Zhao, C. Liu et al., “Enabling Switch Memory
Management for Distributed Training with In-Network
Aggregation,” in Proceedings of IEEE INFOCOM, 2023,
pp. 1–10.

[30] M. Chiesa and F. L. Verdi, “Network Monitoring on
Multi-Pipe Switches,” in Proceedings of SIGMETRICS.
New York, NY, USA: ACM, 2023, pp. 49–50.

14

https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://www.gurobi.com
https://github.com/in-ATP/ATP
https://github.com/in-ATP/ATP

Published in IEEE/ACM Transactions on Networking (Volume: 32, Issue: 5, October 2024)

[31] “Can we recirculate packets to spe-
cific pipelines?” https://forum.p4.org/t/
can-we-recirculate-packets-to-specific-pipelines/1189,
Accessed on 2024-05-20.

[32] M. Jeon, S. Venkataraman et al., “Analysis of Large-
Scale Multi-Tenant GPU clusters for DNN training work-
loads,” in Proceedings of the USENIX ATC. Renton,
WA: USENIX Association, Jul. 2019, pp. 947–960.

[33] P. Zhou, X. He et al., “Jpas: Job-progress-aware flow
scheduling for deep learning clusters,” Journal of Net-
work and Computer Applications, vol. 158, p. 102590,
2020.

[34] S. Liu, Q. Wang et al., “In-Network Aggregation with
Transport Transparency for Distributed Training,” in Pro-
ceedings of the 28th ASPLOS, vol. 3. New York, NY,
USA: ACM, 2023, pp. 376–391.

[35] Y. He, W. Wu et al., “A Generic Service to Provide In-
Network Aggregation for Key-Value Streams,” in Pro-
ceedings of the 28th ASPLOS, vol. 2. New York, NY,
USA: ACM, 2023, pp. 33–47.

[36] R. L. Graham, L. Levi et al., “Scalable hierarchical
aggregation and reduction protocol (sharp)tm streaming-
aggregation hardware design and evaluation,” in High
Performance Computing: 35th International Conference,
ISC High Performance 2020. Berlin, Heidelberg:
Springer-Verlag, June 22–25 2020, pp. 41–59.

[37] H. Wang, Y. Qin et al., “Preemptive switch memory
usage to accelerate training jobs with shared in-network
aggregation,” in Proceedings of the 31st IEEE ICNP,
2023, pp. 1–12.

[38] D. Kim, Y. Zhu et al., “Generic external memory for
switch data planes,” in Proceedings of the 17th HotNets.
ACM, 2018, pp. 1–7.

[39] R. Segal, C. Avin, and G. Scalosub, “SOAR: Minimizing
Network Utilization with Bounded in-Network Comput-
ing,” in Proceedings of the 17th CoNEXT. New York,
NY, USA: ACM, 2021, pp. 16–29.

[40] R. Segal, C. Avin, and G. Scalosub, “Constrained In-
network Computing with Low Congestion in Datacenter
Networks,” in Proceedings of IEEE INFOCOM, 2022,
pp. 1639–1648.

[41] A. Greenberg, J. R. Hamilton et al., “VL2: A Scalable
and Flexible Data Center Network,” in Proceedings of the
ACM SIGCOMM Conference. ACM, 2009, pp. 51–62.

[42] S. Luo, P. Fan et al., “Eliminating communication bottle-
necks in cross-device federated learning with in-network
processing at the edge,” in Proceedings of IEEE ICC,
2022, pp. 4601–4606.

[43] L. Luo, C. Zhang et al., “Communication-efficient fed-
erated learning with adaptive aggregation for heteroge-
neous client-edge-cloud network,” IEEE Transactions on
Services Computing (Early Access), pp. 1–14, 2024.

Shouxi Luo (Member, IEEE) received the bachelor’s
degree in communication engineering and the Ph.D.
degree in communication and information systems
from the University of Electronic Science and Tech-
nology of China, Chengdu, China, in 2011 and 2016,
respectively. He is currently an Associate Professor
with Southwest Jiaotong University. His research
interests include data center networks, software-
defined networking, and networked systems.

Xiaoyu Yu received the bachelor’s degree in soft-
ware engineering from Southwest Jiaotong Univer-
sity, Chengdu, China, in 2022. Currently, he is pur-
suing the master’s degree in computer science and
technology at Southwest Jiaotong University. His
research interests include distributed deep learning
and networked systems.

Ke Li received the Ph.D. degree in communica-
tion and information systems from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2012. She is currently a Lecturer
with Southwest Jiaotong University. Her research
interests include machine learning, distributed sys-
tems, and the Internet of Things.

Huanlai Xing (Member, IEEE) received the B. Eng.
degree in communications engineering from South-
west Jiaotong University, Chengdu, China, in 2006,
the M. Eng. degree in electromagnetic fields and
wavelength technology from the Beijing University
of Posts and Telecommunications, Beijing, China, in
2009, and the Ph.D. degree in computer science from
the University of Nottingham, Nottingham, U.K., in
2013. Currently, he is an Associate Professor with
Southwest Jiaotong University. His research interests
include multi-access edge computing, time series

mining, evolutionary computation, multi-objective optimization, etc.

15

https://forum.p4.org/t/can-we-recirculate-packets-to-specific-pipelines/1189
https://forum.p4.org/t/can-we-recirculate-packets-to-specific-pipelines/1189

	Introduction
	Background and Motivation
	In-Network Aggregation
	Multi-Pipelined INA Hardware
	Why Existing Routing Schemes Fall Short
	Our Work And Design Targets

	Aggregator-Aware Routing Optimization
	Network Model
	Problem Formulation
	Efficient Model Solving
	Route Generation

	Performance
	Methodology
	Effectiveness
	Efficiency

	Related Work
	INA Solutions
	Explicit Routing Control

	Conclusions and Future Work
	Biographies
	Shouxi Luo
	Xiaoyu Yu
	Ke Li
	Huanlai Xing

