
1

Towards Practical and Near-optimal Coflow
Scheduling for Data Center Networks*

Shouxi Luo, Hongfang Yu, Yangming Zhao, Sheng Wang, Shui Yu, and Lemin Li

Abstract—In current data centers, an application (e.g., MapReduce, Dryad, search platform, etc.) usually generates a group of parallel
flows to complete a job. These flows compose a coflow and only completing them all is meaningful to the application. Accordingly,
minimizing the average Coflow Completion Time (CCT) becomes a critical objective of flow scheduling. However, achieving this goal in
today’s Data Center Networks (DCNs) is quite challenging, not only because the schedule problem is theoretically NP-hard, but also
because it is tough to perform practical flow scheduling in large-scale DCNs. In this paper, we find that the optimal result of minimizing
the average CCT of a set of coflows is bounded by that of the well-known problem of minimizing the sum of completion times in a
concurrent open shop. As there are abundant existing solutions for concurrent open shop, we open up a variety of techniques for
coflow scheduling. Inspired by the best known result, we derive the 2-approximation algorithm from concurrent open shop for coflow
scheduling, and further develop a decentralized coflow scheduling system, D-CAS, which avoids the system problems associated with
current centralized proposals while addressing the performance challenges of decentralized suggestions. Trace-driven simulations
indicate that D-CAS achieves a performance close to Varys, the state-of-the-art centralized method, and outperforms Baraat, the only
existing decentralized method, significantly.

Index Terms—Coflow, datacenter networks, decentralized, scheduling

F

1 INTRODUCTION

Today’s data centers widely employ cluster computation frame-
works (e.g., MapReduce [1], Dryad [2], CIEL [3], and Spark [4])
to deal with the increasing data process and analysis demands. In
these frameworks, data-intensive jobs are divided into multiple
successive data-parallel computation stages, and a succeeding
computation stage cannot start until all its required inputs are
in place, which are the outputs of the previous stage. Recent
studies [5]–[7] have shown that the intermediate data transmission
is not a negligible phase in the process of a job. For example, it ac-
counts for 33% of the job running time in Facebook’s system [5].
Accordingly, speeding up data transfers between computation
stages will accelerate the job completions and increase resource
utilizations [5]–[7].

In general, an inter-stage data transfer of a job involves a group
of parallel flows. Such a collection of flows sharing the same
performance goal like minimizing the latest flow’s completion
time or ensuring that all flows meet a common deadline are defined
as a coflow [6, 8]. To optimize the completion times of jobs, the
hypervisor needs to schedule flows at coflow level rather than
individual ones, because only completing all flows in a coflow
will let the job computation enter its next stage. Such a feature
makes the flow scheduling in Data Center Networks (DCNs) quite
challenging as the “coflow-level” relations between flows need
to be considered. As a result, the problem of optimizing job

• S. Luo, H. Yu, Y. Zhao, S. Wang, and L. Li are with the Key Laboratory
of Optical Fiber Sensing and Communications, Ministry of Education,
University of Electronic Science and Technology of China, Chengdu
611731, P.R.China. E-mail: rithmns@gmail.com, {yuhf, zhaoyangming,
wsh keylab, lml}@uestc.edu.cn

• S. Yu is with the School of IT, Deakin University, Victoria, 3125, Australia.
E-mail: syu@deakin.edu.au.

*This version corrects some errors in the version published in TPDS.

completions is to find the best schedule to minimize the average
Coflow Completion Time (CCT).

Several recent works [5]–[7, 9, 10] have attempted to inves-
tigate this schedule problem of minimizing average CCTs. To
the best of our knowledge, Varys [6] and Baraat [7] are the
state-of-the-art schemes in centralized and decentralized fashions,
respectively. However, centralized schemes like Varys suffer from
the scalability problem. On one hand, it is difficult for a central
controller to collect all the real-time coflow information in a
large scale DCN; on the other hand, calculating schedule schemes
for the entire network also involves lots of computation. What’s
worse, the computed schedule schemes need be executed by
flow senders (or switches), yet it is impossible to accurately
synchronize all senders (or switches, respectively) in real time.

Different from Varys, Baraat [7] is a decentralized solution
scheduling coflows according to their arrival orders. Baraat shows
that FIFO based schemes achieve good performance if coflows are
homogeneous, i.e., their sizes vary in a limited range and do not
follow a heavy-tail distribution. However, this is not always the
case in practice, where coflows would be heterogeneous as both
their sizes and numbers of flows vary widely [6]. Accordingly,
non-preemptive policies like FIFO suffer from the head-of-line
blocking problem [6, 7]. Despite Baraat detects large size coflows
online and adopts fair sharing to mitigate head-of-line blocking, it
still badly underperforms (even worse than the naive per-flow fair
sharing) on heterogeneous coflows as we will show.

To make effective coflow schedules, we firstly studied the
minimization of CCTs in theory. By formulating the schedule of
coflows as the management of their flow priorities, we showed
that the optimal result of minimizing the average CCT for a set of
coflows is bounded by that of minimizing the sum of completion
times in a concurrent open shop, which is a well-known NP-
hard problem [11]. Then, based on the best known result of
concurrent open shop [11], we reformed the 2-approximation

http://dx.doi.org/10.1109/TPDS.2016.2525767


2

schedule algorithm for minimizing average CCTs.
To perform practical coflow scheduling, we deeply analyzed

the properties that a practical scheduling system should have, and
proposed D-CAS, a Decentralized, Coflow-Aware scheduling Sys-
tem, based on the 2-approximation algorithm. Since the original 2-
approximation algorithm is offline and requires a central controller
to make complicated schedules, we reformed it to an online,
decentralized algorithm, which just schedules each coflow by
dynamically setting its packet priorities according to the maximum
remaining size (i.e., the size of untransmitted data) on senders.
Following this, D-CAS avoids the system problems associated
with centralized Varys (i.e., scalability, fault-tolerance, etc.) while
addressing the performance challenges of decentralized Baraat
(i.e., underperforming on heterogeneous coflows).

We developed a simulator based on that of Varys [12], and used
coflow traces generated with real parameters [6, 12] to evaluate
the performance of D-CAS under various settings. Extensive
simulations confirmed the effectiveness of D-CAS: it improves
the average CCTs about 2–3 times over per-flow fairness; the
performance improvements are close to that of the state-of-the-art
centralized scheme Varys – the gap is always less than 15%; and
it outperforms the only existing decentralized scheme Baraat by
1.4–4 times. In addition, even when switches have limited priority
queues and senders are agnostic of remaining sizes, D-CAS still
obtains good performances – it outperforms the per-flow fairness
more than 2.5 times.

In summary, the contributions of this paper are twofold.

• We analyzed the connection between coflow scheduling
and concurrent open shop on the object of minimizing the
average completion times, and showed how the findings
from the latter motivates the schedule of coflow.

• We proposed D-CAS, a simple, flexible, effective, practi-
cal, and readily-deployable decentralized coflow schedul-
ing system, to optimize average CCTs in DCNs.

The rest of the paper is organized as follows. Section 2 briefly
overviews the background and motivation of our work. Section 3
relaxes the coflow scheduling into the problem of concurrent
open shop. Section 4 designs the practical schedule algorithm
and Section 5 further develops D-CAS. After that, extensive
simulations are presented in Section 6. Finally, related work and
conclusions follow in Section 7 and Section 8, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we present three key desirable properties of flow
schedulers for minimizing average CCTs in DCNs, which motivate
our design of schedule algorithms and D-CAS.

By defaults, the term flow is used to indicate a sequence of
packets from a source computer to a destination belonging to the
same data transport task, such as a worker reads the input data
from another [1], or replicates the result to a replica node of the
cluster file systems [13]. At the application-level, those flows with
associated semantics and a collective objective (e.g., belonging to
the same MapReduce job’s data shuffle phase, or result replicating
phase [1, 8]) compose a coflow.

�✁✂✄✁☎ ✆✝ ✞✄✁☎ ✆✝ ✟✠✡☛

☞
✌✍✎ ✏

✌✍✑ ✒

✓
✌✔✎ ✕

✌✔✑ ✖

✗✘✙✙✚✛✜✛✢✣
✤✥✦

✤✥✧

✤★✦

✤★✧

✌✍✎

✌✔✎
✌✩✑

✌✔✑

✪
✫✬✭✭✮✯✰✯✱✲ ✫✳✰✴✵✶✴✭✷

✸✹✺

✪✹✻

✻ ✼ ✽ ✪✾

✭✶✿✯

✪
✫✬✭✭✮✯✰✯✱✲ ✫✳✰✴✵✶✴✭✷

✪ ✺ ❀ ✪✾

✭✶✿✯❁❂❃ ✌✔✎ ✌✩✑ ✌✔✑

✪
❄❅❆❆❇❈❉❈❊❋ ❄●❉❍■❏❍❆❑

✪✹✸

✻✸ ▲ ✪✾

✭✶✿✯

✌✍✎ ✌✔✎

✌✩✑ ✌✔✑

▼◆❖ P✛◗❘❙✚✘❚ ❯❱❲◗✜✛❳❳ ▼❨❖ ❩✘❙✚✘❚❘❱❚❱◗✛

▼✢❖ P✛◗❘❙✚✘❚ P◗❲✘◗❲✙❲❬❱✙❲✘✜

❭❪❫

❴✎

❴✑

❴❵

Fig. 1. Motivating example1. (a) Four concurrent flows from two
coflows competing for a single bottleneck link; (b) Fair sharing,
avg(CCT )=9.5; (c) Smallest-flow-first, avg(CCT )=8; (d) Smallest-
coflow-first, avg(CCT )=7.

2.1 Why Coflow-aware Scheduling

The goal of flow scheduling is to optimize CCTs. Conventional
coflow-agnostic scheduling methods designed to minimize the
average Flow Completion Time (FCT), e.g., pFabric [16] and
PDQ [15], cannot reach the optimum solution.

Consider the example illustrated in Fig. 1. There are four
concurrent flows belonging to two coflows (Coflow A: fA1, fA2;
Coflow B: fB1, fB2.). All flows arrive simultaneously and
their demands are shown in Fig. 1a. With per-flow max-min
fairness–the de facto standard of today’s bandwidth allocation
schemes [14], the result is illustrated in Fig. 1b. In this case, all the
unfinished flows in the network obtain the same bandwidth, and
flows 〈fA1, fA2, fB1, fB2〉 will complete at time 〈4, 9, 7, 10〉.
Hereby, coflow A and coflow B complete at time 9 and 10,
respectively. Their average CCT is 9+10

2 = 9.5. Similarly, the
smallest-flow-first scheme [15, 16] that minimizes the average
FCT can only derive the average CCT 6+10

2 = 8 as Fig. 1c shows.
If the coflow-aware flow scheduling scheme, such as smallest-
coflow-first (i.e., the coflow with the minimum total flow volume is
scheduled first) [6] is adopted, the average CCT is only 4+10

2 = 7
as shown in Fig. 1d. There is a saving of ∼ 26% compared to fair
sharing scheme and a saving of ∼ 13% compared to flow level
scheduling scheme.

In a word, the coflow-aware scheduling policy can bring
benefits to the average CCT in DCNs.

1. In the case of per-flow max-min fairness [14], initially, four concurrent
flows compete the ingress bandwidth of H3 and each flow get 1/4 unit of
bandwidth. After 4 units of time, the flow with the smallest demand (i.e., fA1)
completes; then each of the remaining 3 flows obtains 1/3 bandwidth as Fig. 1b
shows; and so on. After 10 units of time, all flows complete and their FCTs
are 4, 9, 7, 10, respectively.

Differently, in the case of smallest-flow-first scheduling [15, 16], flows
preempt the bottleneck bandwidth according to their flow-level demand sizes,
1, 3, 2, 4, resulting in the FCTs of 1, 6, 3, 10 as Fig. 1c demonstrates.

Similarly, with smallest-coflow-first mechanism, the priority numbers of
fA1, fA2, fB1, and fB2 are respectively set to 1, 1, 2, and 2, according to their
coflows’ demand sizes. As a result, they preempt the bottleneck bandwidth as
Fig. 1d demonstrates, which leads to FCTs 4, 4, 10, and 10.



3

2.2 Why Decentralized Scheduling
Intuitively, if all coflow information is available, one can schedule
coflows following the coflow-level minimum-remaining-time-first
(MRTF) policy by using a central scheduler like Varys [6]. How-
ever, this idea is not practical in reality. Firstly, current data centers
have hundreds of thousands of hosts and millions of concurrent
flows [17], it is difficult to collect all flow information (such as
the sources, destinations and remaining sizes) to compute a global
scheduling scheme. Moreover, it is hard to enforce the computed
scheduling actions to all flows from different senders in real time.
Accordingly, the control delay of the centralized scheduling is too
big for pervasive small coflows since these coflows may complete
within a few RTTs (Round-Trip Time) [7]. On the other hand, as
a centralized scheduling system, the central scheduler also bears
other problems such as scalability and fault-tolerance.

Accordingly, the decentralized scheduling is preferred in a
system to improve the average CCT in DCNs.

2.3 Why Preemptive Scheduling
To minimize the average CCT, a flow scheduler should pursue the
coflow-level MRTF principle in decentralized fashions. Namely,
on hosts, smaller coflows should be scheduled before larger ones.
In an online system, we cannot suppose smaller coflows always
arrive earlier than the larger ones. Therefore, preemptive schedule
schemes are necessary. Otherwise, the system would suffer from
the head-of-line blocking problem, i.e., small coflows arriving later
being blocked by those early arrived large coflows.

Baraat is a non-preemptive system addressing the head-of-
line blocking problem by deploying a Limited Multiplexing (LM)
scheme on switches. LM would dynamically change the level of
multiplexing and let flows with the lower priority to be served
when the current coflow is detected as large. Due to Baraat’s non-
preemptive property, it is subjected to two major shortcomings.
First, LM scheme performs badly when coflow sizes are heteroge-
neous. In some cases, it is even worse than the naive fair sharing
scheme. Second, with the increasing of multiplexing level, the
performance of Baraat approaches that of the fair sharing, which is
demonstrated to be unsuitable for minimizing average completion
times [6, 15, 16].

Hereby, preemption is a necessary property to minimize the
average CCT in DCNs.

3 A THEORETICAL ANALYSIS OF THE AVERAGE
CCT MINIMIZATION

In this section, we theoretically analyze the minimization of
average CCTs. By formulating the schedule of coflows as the
management of their flow priorities, we make a low bound analysis
of minimizing the average CCT for a given set of coflows, which
in turn gives insights for designing coflow schedule algorithms.

3.1 Network Model
We start by introducing two basic assumptions that we make in our
theoretical analysis as well as algorithm design, named Prioritized
Fairness and Ideal Rate Control, respectively.

• Prioritized Fairness: When multiple flows compete on an
ingress, egress, or link, flows with the higher priority will
preempt those with the lower priority, and flows with the
same priority share the bottleneck’s bandwidth fairly (i.e.,

�✁

�✂

�✄

☎✆✝✞✟✠✠ ✡☛✞☞✠ ✌✝✞✟✠✠ ✡☛✞☞✠

✍✁

✍✂

✍✄
✎✏ ✑✒✓✞✔✕

✖✗✘✙✚✛✜✢ ✣✤✥✛✜✦✧★ ✖✗✘✙✚✛✜✢ ✩✪✫✜✥✛✜✦✧★

Fig. 2. Conceptual view of the network: the fabric is non-blocking and
packets (or flows or coflows) preempt the bandwidth according to their
priorities.

bandwidth allocation follows the TCP style per-flow max-
min fairness [14, 18] within each priority).

• Ideal Rate Control: Each flow sender performs a TCP-
alike rate-control. All rate adjustments complete immedi-
ately and the network bandwidth is always fully used in
the prioritized fairness fashion.

These two assumptions capture the common key feature of
current data center transport schemes [15, 16, 19, 20] and make
the theoretical analysis of coflow scheduling easy. We note that yet
there is a gap between the point that currently deployed transport
schemes could achieve and the ideal one obtained under the
assumptions. Especially, current congestion control algorithms are
not ideal [19]–[21]—They might take time to get convergence; ac-
cordingly, the network might not always be fully used. Fortunately,
recent studies [16] have shown that, by setting flow priorities
dynamically and explicitly (the design that our final proposal
employs), the need for rate control is minimal and simple rate-
control schemes would achieve near-optimal results. Thus, our
final proposed solution does not rely on the assumptions strongly
and would work well in common scenes. Additionally, many
recent research contributions have been made to achieve quick
convergences for rate control [15, 21], with which, the proposed
approach could reach a point closer to the ideal one in future.

For simplicity and in common with Varys [6], we further
abstract the entire data center network as a non-blocking fab-
ric [6, 16, 18, 22], in which all ports have the same normalized
unit capacity, and bandwidth competition only appears in ingresses
or egresses. Such an abstraction is reasonable and matches with
recent full bisection bandwidth topologies widely used in current
production data centers [17, 23]—To provide uniform high capac-
ity as well as other targets like equidistant endpoints with network
core, unlimited workload mobility, etc., today’s production data
center networks widely adopt non-blocking Clos topologies by
design [17, 22, 23]. As an example, Fig. 2 shows a case of a small
non-blocking DCN connected with 3 hosts, in which tree coflows
preempt the network according to their priorities (with different
colors).

3.2 Problem Statement

We consider the offline scheduling of n coflows on a non-blocking
DCN withm hosts, i.e., there arem ingresses andm egresses, and
their capacity is 1. Without loss of generality, we assume that each
coflow involves m × m parallel flows between the m ingresses
and m egresses. Then, the coflow indexed by k is a collection of
flows D(k) = {d(k)

i,j |1 ≤ i ≤ m, 1 ≤ j ≤ m}, where d(k)
i,j is the

size of the flow to be transferred from host i to host j. Note that,



4

for any coflow k, if it involves multiple parallel flows from i to j,
we merge their demands and treat them as a single big flow. On
the contrary, if the coflow does not involve any flow from host i
to host j, we just set d(k)

i,j = 0.

Let r(k)
i,j (t) be the rate of coflow D(k) from host i to host j at

time instance t, and Ck be its completion time; then, for a given
set of coflows, labeled 1, . . . , n, minimizing their average CCT
is equivalent to minimizing their sum of CCTs, while subjecting
to the capacity constraints on senders (i.e., Constrains (2b)) and
receivers (i.e., Constrains (2c)), as the mathematical program {(1),
(2a), (2b), (2c), (2d)} denotes. During our following analysis,
we use Equation (1) as the optimization objective that coflow
scheduling methods pursue.

min
n∑
k=1

Ck. (1)

Subject to:

∀(k, i, j) :

∫ Ck

0
r

(k)
i,j (t)dt = d

(k)
i,j (2a)

∀(t, i) :
n∑
k=1

m∑
j=1

r
(k)
i,j (t) ≤ 1 (2b)

∀(t, j) :
n∑
k=1

m∑
i=1

r
(k)
i,j (t) ≤ 1 (2c)

∀(k, i, j, t) : 0 ≤ r(k)
i,j (t) ≤ 1 (2d)

3.3 A Low-bound Analysis

In this subsection, we show that, on the target of minimizing the
total completion times for a given set of coflow, the result obtained
from the optimal order permutation of its associated concurrent
open shop scheduling problem gives a bound of the original coflow
scheduling, i.e., Proposition 1. Based on this, we get the guideline
for the schedule of coflows.

As a brief introduction, we sketch the concurrent open shop
scheduling problem as following: Consider that there are n∗ jobs
and each job involves at mostm∗ types of concurrently operations,
which should be processed by m∗ specific machines, respectively.
The objective of concurrent open shop scheduling is to find a
job execution order that could minimize the total job completion
times, or the number of late jobs when each job has a hard
deadline, or other objectives [11, 24].

Proposition 1. The optimal solution of minimizing the sum of job
completion times in a concurrent open shop gives a low bound of
minimizing the total CCTs for a given set of coflows.

Firstly, let’s consider the minimization of a single coflow’s
completion time. For any coflow D(k), denote ρ(D(k)) (or ρk for
short) to be its maximum load on hosts calculated by Equation (3).
Then, obviously, the completion time of D(k) (i.e., Ck) must not
be smaller than ρk/1 = ρk. That is to say, ρk gives a low bound
of a coflow’s completion time. Actually, as Lemma 1 says, this
bound is exactly the optimum of minCk and it is easy to achieve.

ρ(D(k)) = max

max
i


m∑
j=1

d
(k)
i,j

,max
j

{
m∑
i=1

d
(k)
i,j

} (3)

Lemma 1. For coflow k, we can achieve its optimal completion
time ρ(D(k)) by simply setting all its flows with the highest and
exclusive priority.

Proof. The proof is quite simple. If coflow k does not complete
within ρk, it must not get the smallest and exclusive priority value,
or the bottleneck port must not be fully used. These two cases
contradict with the assumption of Prioritized Fairness or Ideal
Rate Control, respectively.

Lemma 1 discusses the case of minimizing a single coflow’s
completion time. Next, we look into the schedule of two coflows.
As a technical convenience, thereafter, we use “+” to present the
operation of treating two coflows as a single one. That is to say,
for two m × m coflows, D(k1) and D(k2), D(k1) + D(k2) will
produce another m ×m coflow D(k3), whose demand from host
i to host j is d(k3)

i,j = d
(k1)
i,j + d

(k2)
i,j . Then, based on Lemma 1, we

get the following lemma for minimizing the sum of two coflows’
completion times.

Lemma 2. For two coflows, say D(k) and D(l), the optimum of
min max{Ck, Cl} is ρ(D(k) +D(l)), which can be achieved by
setting their flows with the same highest and exclusive priority.

Proof. We first prove that ρ(D(k) + D(l)) is the low bound
of min max{Ck, Cl}. Obviously, with any scheduling schemes,
max{Ck, Cl} must not be smaller than ρ(D(k) + D(l)). This
is because, if max{Ck, Cl} < ρ(D(k) + D(l)), it means both
coflow k and coflow l can complete before ρ(D(k) + D(l)), i.e.,
coflow D(k) +D(l) can complete before ρ(D(k) +D(l))—There
is a contradiction.

Then, we show how to get ρ(D(k) + D(l)). Similar to
Lemma 1, if these two coflows have the same smaller flow priori-
ties than all others, they must complete within ρ(D(k)+D(l)).

Lemma 2 indicates that, on making the optimal schedule of
two coflows, say D(k) and D(l), the minimized completion time
of the latter one must be ρ(D(k) + D(l)). If both the first and
the second coflow can simultaneously achieve their minimized
completion times, the optimum of min (Ck + Cl) must be ei-
ther ρ(D(k)) + ρ(D(k) + D(l)), or ρ(D(l)) + ρ(D(k) + D(l)),
corresponding to the permutations of the two coflows. Unfortu-
nately, in some cases, their optimal values can not be reached
at the same time. As an example, consider the schedule of
{d(1)

1,1 = 1, d
(1)
2,2 = 1} and {d(2)

1,3 = 1, d
(2)
2,3 = 1}, in which,

ρ(D(1)) + ρ(D(1) + D(2)) and ρ(D(2)) + ρ(D(2) + D(1)) are
3 and 4, respectively, while their minimized sum of completion
times is 4. So, this permutation-based computation gives a lower
bound of the two coflow’s schedule.

With mathematical induction, it is easy to generalize this
conclusion to the optimal schedule of n coflows. According, we
get the fact that this low bound analysis of total completion time’s
minimization given by optimal priority permutation always exists
for coflow scheduling as Lemma 3 states, in which, π[k] denotes
the priority number (i.e., permutation index) of coflow k, T (π),
calculated by Equation (4), stands for the sum of the ideal coflow
completion times under priority permutation π.

T (π) =
n∑
i=1

ρ(
i∑

j=1

D(π[j])) (4)

Lemma 3. For a set of coflows, minπ∈Π T (π) gives a low bound
of their total CCT, where Π is the set of all their permutations.



5

So far, we have transferred the low bound of minimizing total
CCTs for a given set of coflows into the problem of finding an
optimal order permutation for them, which is quite similar to the
well-known concurrent open shop scheduling. Indeed, this T (π)’s
minimization problem is exactly the optimization of minimizing
the total completion times in a concurrent open shop as Theorem 1
says. By Lemma 3 and Theorem 1, we finally obtain Proposition 1.

Theorem 1. Finding coflows’ priority permutation π to minimize
their T (π), is equivalent to the problem of minimizing the sum of
job completion times in a concurrent open shop.

Proof. For each coflow D(k), let d(k)
i =

∑m
j=1 d

(k)
i,j for ingress

i = 1 . . . n, and d
(k)
j+m =

∑m
i=1 d

(k)
i,j for egress j = 1 . . . n.

By substituting d(k)
i and d(k)

j+m into Equation (4), we obtain the
fact that finding the optimal permutation π to minimize coflows’s
T (π) is exactly the case of making permutation schedules to
minimize the total job completion time in a concurrent open shop.
In this constructed concurrent open shop problem, there are 2m

machines, and d(k)
i (or d(k)

j+m, resp.) denotes the operations of job
k that need be executed by machine i (or j +m, resp.).

Given a set of coflows, let opt be the optimal result of their
sum of completion times, and Π be the set of all their permuta-
tions. From Proposition 1, we know that minπ∈Π T (π) ≤ opt.
For each permutation π, suppose T ∗(π) to be the sum of their
completion times under the setting that flows belonging to the i-th
coflow (i.e., D(π[i])) carry with the packet priority value i. Then,
optmust be bounded by minπ∈Π T (π) ≤ opt ≤ minπ∈Π T

∗(π).
That is to say, we can obtain good total completion time optimiza-
tion with a good permutation order. Indeed, recent literature has
implied that the permutation order suggested by the results of
relaxed concurrent open shop schedule could also derive bounded
solutions for coflow scheduling [10]. That inspires us to “borrow”
excellent proposal from optimal concurrent open shop scheduling
for coflow scheduling, as Guideline 1 says.

GUIDELINE 1. The permutation order suggested by the optimal
result of the corresponding concurrent open shop problem would
derive a good schedule for the optimization of average CCT.

3.4 Hardness
Recent literature [6, 10] has shown the NP-hardness of the
minimization of average CCT by reducing it to the well-known
concurrent open shop schedule problem. And [11, 24] have shown
that minimizing the sum of weighted completion times in a
concurrent open shop is strongly NP-hard and inapproximable
within a factor strictly less than 6/5 if P6=NP.

4 SCHEDULING ALGORITHM DESIGN

Inspired by the findings of Section 3, we design effective and
practical coflow schedule algorithms in this section.

We firstly introduce a 2-approximation schedule algorithm for
offline coflow schedules based on the best known result of con-
current open shop [11, 25]. Then, as this 2-approximation offline
algorithm works in a centralized fashion and performs complicated
scheduling, we realistically reform it to an online algorithm that
is much simpler and easier to operate in decentralized fashions.
We use coflow traces generated with real-world parameters to
evaluate the impacts of our simplification on effectiveness. Results
indicate that our simplified approach, SOA-II, achieves a close

performance with the original 2-approximation algorithm. Conse-
quently, we choose to schedule coflows with SOA-II. The detail
of how SOA-II drives our practical scheduling system, D-CAS,
follows in the next section.

4.1 The 2-approximation Solution
The 2-approximation solution (or 2-approx for short) is a per-
mutation based algorithm [11]. Within O(n(m+ n)) elementary
operations, it outputs a schedule order of coflows, standing for
their flow priorities that could achieve the 2-approximation aver-
age CCT minimization.

Algorithm 1 shows how 2-approx schedules a set of coflows.
It starts by finding the last coflow to complete, then the second
to the last (i.e., the next-to-last), the third to the last, and so on
(Line 7). At each turn, it first observes the port with the maximum
load (Line 8) (either an ingress from a sender or an egress from
a receiver), picks out the coflow with the minimum weight-to-
processing time ratio on that port (i.e., wk/g

(k)
µ ), and sets it as

the last coflow to complete (Line 9)—I.e., this coflow will get
the lowest priority. Then the algorithm adjusts the weights of
other coflows (Line 11), subtracts this coflow’s loads from the
ports’ loads (Line 12), and proceeds in determining the next-to-last
coflow in a similar way (Line 7). In the optimization of average
CCTs, all coflows have the same unit weight; accordingly, the
adjusted weights are initialized as 1s at the beginning (Line 6).

By setting coflow priority values with the output π, one can
achieve near-optimal offline coflow schedule in theory.

Algorithm 1 2-approximation Approach (2-approx for short)
Input: number of coflows n; number of hosts m; flow
demands d(k)

i,j ∈ R≥0 for all k ∈ N , i ∈M and j ∈M
Output: permutation schedule (i.e. priority) of coflows π :
{1, . . . , n} 7→ N .

1: U ← {1, 2, . . . , n} . unscheduled coflows
2: P ← {1, 2, . . . , 2m} . the index of port
3: g

(k)
i ←

∑
j∈M d

(k)
i,j for all k ∈ N and i ∈M . Ingress

4: g
(k)
j+m ←

∑
i∈M d

(k)
i,j for all k ∈ N and j ∈M . Egress

. g
(k)
p denotes coflow k’s aggr. load on port p.

5: Li ←
∑
k∈N g

(k)
i for all i ∈ P . total load of port i.

6: wk ← 1 for all k ∈ N . initialize adjusted weights
7: for z ← n, n− 1, . . . , 1 do
8: µ← arg maxi∈P Li

. determine the “bottleneck” port for coflow π(z)

9: π(z)← arg mink∈U wk/g
(k)
µ . determine priority

10: θ ← wπ(z)/g
(π(z))
µ

11: wk ← wk − θ · g(k)
µ for all k ∈ U . adjust weights

12: Li ← Li − g(π(z))
i for all i ∈ P . update port loads

13: U ← U \ {π(z)} . update unscheduled coflows
14: end for

4.2 From the 2-Approximation Approach to SOA-II
The 2-approx is proven to be effective; however, it is impractical
for coflow scheduling in DCNs due these reasons:

• Offline v.s. Online: 2-approx only makes offline schedules,
while coflows occur dynamically in practice [5]–[8];

• Centralized v.s. Decentralized: 2-approx is a centralized
solution performing schedules based on the global coflow



6

information; however, as Section 2.2 discusses, large scale
datacenters prefer decentralized scheduling systems.

In this part, we realistically simplify 2-approx to one that is
much simpler and easier to work in decentralized fashions.

4.2.1 Simplify the Scheduling with Two Relaxations
As Algorithm 1 indicates, the key of 2-approx is to set the lowest
priority to the coflow with the minimum weight-to-processing time
ratio on the port with the maximum load, and then handles the
next-to-last coflow. In practice, coflows occurs online and the load
of each port varies with time. On average, all ports would have
the same load since today’s datacenters generally assign jobs with
load balancing [1, 7]. If so, the schedule process does not need to
take the load diversity of ports into account; a straightforward
relaxation of 2-approx is to directly set the coflow with the
maximum per-port load with the lowest priority at each round
of the for-loop in Algorithm 1 (1st relaxation). Even so, in a
decentralized manner, it is quite hard for a data receiver to figure
out a coflow’s loads on its port before that coflow completes. On
the contrary, a data sender (i.e., the ingresses in the DCN fabric)
generally knows a coflow’s load on their ports, because it holds
all the data to be transferred in advance2. Accordingly, we just
consider the load information on senders3 (2nd relaxation).

With these two relaxations4, we reduce 2-approx to one
scheduling coflows based on their maximum loads on senders as
Algorithm 2 shows. But yet, such a procedure is still centralized
and offline, as it has to compute a global priority sequence for all
coflows once a new coflow arrives (Line 3).

Algorithm 2 SOA-I: Simplified Offline Approach
Input: number of coflows n; number of hosts m; flow
demands d(k)

i,j ∈ R≥0 for all k ∈ N , i ∈M and j ∈M
Output: permutation schedule (i.e. priority) of coflows π :
{1, . . . , n} 7→ N .

1: g
(k)
i ←

∑
j∈M d

(k)
i,j for all k ∈ N and i ∈M . Ingress

2: gk ← maxi∈M g
(k)
i for all k ∈ N

3: Sort [g1, g2, . . . , gn] in non-decreasing order and store their
indexes in π.

Furthermore, consider the case where switches support arbi-
trary priority values [16], then senders can just use the maximum
load value of each coflow (i.e., maxi

∑m
j=1 d

(k)
i,j for coflow k) as

its priority value when transmitting. This mechanism decouples
the process of inter-coflow scheduling, so that each coflow can
individually handle the schedule of its own flows. Even if switches
only support a restricted number of priorities (e.g., hardware
switches only has several priority queues), we can design schemes
to map arbitrary priority values to the supported priority levels
(we propose two mapping schemes and make evaluations in

2. In some cases like streaming flows, data senders also do not know the
accurate information of a flow remaining size. As Section 6.3 will show, our
final schedule system, D-CAS, can handle this effectively as well.

3. Note that, a host might act as a receiver of a coflow and a sender of
another simultaneously. For each coflow, we just consider its own senders.

4. To illustrate how the two relaxations help, revisit the toy case of Fig. 1
as an example: With global coflow knowledge, the original 2-approx knows
that the maximum per-port loads of coflow A and B are max(1, 3, 4) = 4
and max(2, 4, 6) = 6, respectively. Following the complicated Algo-
rithm 1, 2-approx finally obtains the priority assignment π(coflow A) =
1;π(coflow B) = 2. Differently, with the relaxations, SOA-I only needs the
load knowledge at ingresses; by directly sorting {max(1, 3),max(2, 4)}, it
gets π(coflow A) = 1;π(coflow B) = 2 as well.

TABLE 1
Proportion of the effectiveness loss of SOA-I and SOA-II over 2-approx .

Loss of effectiveness 6 .00 6 .05 6 .10 6 .15
with SOA-I (Algorithm 2) .0 3.5% 37% 82.5%
with SOA-II (Algorithm 3) .0 24.5% 87.5% 100%

Section 6.3). By using a coflow’s maximum load value as its
flow priority, once a new coflow comes, data senders only need
to recheck each coflow’s remaining load on them, and set each
coflow’s priority with its maximum load value.

In our solution, senders periodically fetch the remaining size of
each coflow and use the maximum value to update their priorities
as Algorithm 3 shows. Ideally, SOA-II should be executed on
every flow arrival or completion event.

Algorithm 3 SOA-II: Simplified Online Approach
Note: this procedure is recalled periodically
Input: number of online coflows n; number of hosts m;
remaining flow demands rem(k)

i,j ∈ R≥0 for all k ∈ N ,
i ∈M and j ∈M
Output: priority for each coflow πp : {1, . . . , n} 7→ R≥0.

1: g
(k)
i ←

∑
j∈M rem

(k)
i,j for all k ∈ N and i ∈M . Ingress

2: πp[k]← maxi∈M g
(k)
i for all k ∈ N

4.3 How Far is SOA-II From the Optimal?

Obviously, with reasonable relaxations, we have simplified the
2-approx to one that is online and easy to operate in decentral-
ized manners. Then, a following doubt is “how much does the
simplification affect the schedule effectiveness?”

To answer this, we investigate the completion times of a set of
coflows under three scheduling schemes—the original 2-approx,
SOA-I, and SOA-II. We consider the schedule of 200 coflows
served by a small-scale cluster consisting of 40 hosts. These hosts
are connected with a non-blocking network fabric, where each port
(both ingresses and egresses) has the capacity of 1 Gbps. Coflow
traces are synthesized using the generator of Varys with the same
real-world parameters detailed in Section 6. As for the schedule
of SOA-II, we assume that the operation of priority update shown
in Algorithm 3 is called every 0.01 second and the simulator runs
at 0.01 second decision intervals.

Since coflows are generated randomly (refer to the genera-
tor’s code [12]), we repeat the numerical simulation 200 times.
Table 1 shows the proportions of AvgCCT with SOA-I

AvgCCT with 2 -approx − 1 and
AvgCCT with SOA-II

AvgCCT with 2 -approx − 1, respectively. It indicates that SOA-II
achieves better average CCTs than that of SOA-I. By denoting

AvgCCT with SOA-x
AvgCCT with 2 -approx − 1 to be the effectiveness loss of SOA-x
over 2-approx, the statistics also imply that the gap between
SOA-II and 2-approx is less than 10% in most cases, and might
not exceed 15%.

As Fig. 3 shows, we further calculate the distributions of
coflow completion times. The curves indicates that SOA-II
achieves close effectiveness to 2-approx while slightly prolonging
completion times of small coflows.

In summary, with realistic assumptions, we have simplified the
complex, offline, and centralized 2-approx to the simple, online,
and decentralized SOA-II, at a little cost of effectiveness, as
Table 2 says. Accordingly, we choose to schedule coflows with



7

�

�✁✂

�✁✄

�✁☎

�✁✆

✝

�✁��✝ �✁�✝ �✁✝ ✝ ✝� ✝�� ✝���

✞
✟✠
✡
☛☞
✌
✍
✌
✎
✏
✌
✎✑
✌
✒
✓

✔✕✖✗✕✘ ✔✕✙✚✗✛✜✢✕✣ ✤✢✙✛ ✥✦✛✧✕✣★✩✪

✫✬✭✮✮✯✰✱

✲✳✴✬✵

✲✳✴✬✵✵

Fig. 3. CCT distributions for 2-approx , SOA-I, and SOA-II. Note that the
X-axes are in logarithmic scale.

SOA-II and the detail of how it drives practical coflow scheduling
follows in next section.

TABLE 2
Comparison of the three approaches.

#Scheme Sched-Mode Work-Mode Procedure Performance
2-approx Offline Centralized Complex High
SOA-I Offline Centralized Simple High
SOA-II Online Decentralized Simple High

5 TOWARDS PRACTICAL SCHEDULER

In this section, we present the detail of how we design D-CAS, a
practical decentralized coflow scheduling system. Basically, driven
by SOA-II, D-CAS natively performs preemptive and work-
conserving schedules. Nevertheless, in practical terms, D-CAS
must also be able to handle small coflows and avoid perpetual
starvations. Accordingly, we devise approaches to make D-CAS
support small coflows and starvation-free.

To clearly present D-CAS, we first give some key definitions
D-CAS uses in Section 5.1, then introduce the core designs
in Section 5.2, explain the algorithm details that senders and
receivers perform in Section 5.3, and finally discuss the overheads
and scalability of D-CAS in Section 5.4.

5.1 Key Definitions

Coflow (and its property): A coflow is a set of flows with
associated application-level semantics and only completing them
all could push forward the application process. We say a coflow is
the parent coflow of all its flows. The length of a coflow is defined
as the volume of its largest flow, while the width is the number of
flows in it. By summing up the volume of all its flows, we get the
size of this coflow.

Subcoflow: A subcoflow S consists of all the flows in a coflow
(say C) that stem from the same source host. For simplicity, we
call C as the parent coflow of subcoflow S. Thus, a subcoflow
can be identified by the tuple of its parent coflow and the source
host. Similarly, the size of a subcoflow is the total volume of all
its flows.

Priority: In D-CAS, each source host (i.e., data sender) dy-
namically sets priorities to packets to realize the coflow scheduling
and small coflows always preempt large coflows. For convenience,
we design the priority number as a tuple 〈T, P 〉, and call the
two items, T and P , as main priority and secondary priority,

(a) Announce desired-priority (b) Get priority feedbacks then update

Fig. 4. Framework overview: how a coflow’s subcoflows (S1, S2, S3)
implement SOA-II using a negotiation mechanism with the help of its
own data receivers (R1, R2).

respectively. We say, 〈T1, P1〉 is a higher priority than 〈T2, P2〉,
iff T1 < T2, or T1 = T2 and P1 < P2. In Section 6.3, we will
discuss how to encode such tuple-based priorities to the practical
priorities supported by today’s commercial switches.

5.2 Core Design Overview
5.2.1 Implementing Decentralized SOA-II
Recall that, in SOA-II, each coflow uses its maximum remaining
load on senders as its flow priority. Consequently, for each coflow,
D-CAS needs to 1) find out its maximum remaining subcoflow
size value, and 2) notify this value to all its data senders. Motived
by the specific communication patterns of coflow [8], D-CAS
implement this with a simple decentralized negotiation mechanism
as Fig. 4 shows5. Roughly, the negotiation mechanism works as
follows:

1) For each coflow, each of its senders (i.e., subcoflows) an-
nounces a desired-priority presenting the remaining sub-
coflow size on this hosts to all its data receivers. See the
example shown in Fig. 4(a), the desired-priorities of the
three subcoflows are 4, 2, and 1, respectively, based on their
remaining sizes.

2) On getting a desired-priority message, the data receiver
replies a feedback that is derived by a predefined function
Ψ(·) and received messages. As shown in Fig. 4(b), R1 and
R2 get feedbacks to the senders with x = Ψ([4, 2]) and
y = Ψ([4, 2, 1]), respectively.

3) At last, when the sender collects feedbacks from data re-
ceivers, it gets the target priority by computing Φ([x, y]).

Obviously, by letting both Ψ(·) and Φ(·) be max(·), D-CAS
implements SOA-II in a decentralized fashion.

5.2.2 Handling Small Coflows
In practice, the feedback mechanism of D-CAS needs a few
RTTs to take effect, while small coflows might have completed
within such a delay. Therefore, when a subcoflow is smaller than
a predefined threshold, D-CAS does not schedule it according to
SOA-II any more. Prior work of Baraat [7] has shown that FIFO
policy achieves good performances for minimizing the average
CCT when the flow size (i.e., coflow length) is distributed in
a small range. Accordingly, D-CAS schedules small coflows
following FIFO like Baraat [7].

5. In the case where there is no common data receivers between multiple
subcoflows, D-CAS randomly chooses one subcoflow’s host as a virtual
receiver for negotiating.



8

5.2.3 Avoiding Perpetual Starvation
If small coflows are arriving at a high rate, the preemption of
SOA-II would let large coflows cannot make any progress. To
avoid perpetual starvation, D-CAS introduces a simple adjustment
to the schedule: Once a subcoflow has not got any service during
the last T , it will obtain a higher priority in the next schedule in-
tervals δ (see Section 5.3 for details). By fixing tunable parameters
T and δ (T � δ), D-CAS is able to trade the average completion
times for the impacts of starvation.

5.3 D-CAS Details

This subsection explains the operations that each sender and
receiver perform in detail. At the end, we also discuss how to
upgrade D-CAS to perform other schedule policies, e.g., per-flow
fair sharing, by simply using different functions Ψ(·), Φ(·), and
getDesiredPriority(·) at end hosts.

5.3.1 Sender
In D-CAS, each sender periodically (every δ-interval) detects sub-
coflows’ remaining sizes and updates data transfers’ priorities, as
Algorithm 4 shows. Consider a subcoflow S whose parent coflow
is c; suppose cp is the Coflow-ID of c representing its arrival
order (same to the Task-ID in [7]). If S’s remaining size (rem in
Line 4) on the sender is less than the predefined thresholdVolume
(e.g., the bandwidth delay production–BDP), its flows will be sent
with priority value 〈0, cp〉, pursuing the FIFO scheduling (Line 7).
Otherwise, S is identified as a large subcoflow; its main priority of
its flows should be set to 1. Then, if this subcoflow has not received
any service during the last T -interval (T � δ), its secondary
priority will be set to be 0 to prevent starvation (Line 8). In this
case, all the unserved subcoflows share the network with per-flow
fairness mechanism. If not, the negotiation mechanism of SOA-II
is launched for the secondary priority. To this end, each sender
announces its desired priority to the receivers and waits several
RTTs (Line 11). Regularly, the sender uses the received feedbacks
to calculate the secondary priority with Ψ(·) (Line 15). However,
if all the feedbacks get lost due to network congestion or failure,
the sender just sets the secondary priority to its desired priority
(Line 17).

5.3.2 Receiver
In D-CAS, each receiver maintains a cache for the latest desired-
priority of each subcoflow. When receiving a desired-priority, it
operations as Algorithm 5 illustrates: (i) get (Line 3) and update
the cache (Line 4, messages older than expiredT ime will be
removed); (ii) derive the feedback using its cached desired-priority
information from the same coflow (Line 5), and (iii) send it back
(Line 6).

5.3.3 About Ψ(·), Φ(·), and getDesiredPriority(·)
To follow SOA-II, both Ψ(·) and Φ(·) are set as max(·). As for
getDesiredPriority(·), if all data senders have the same upstream
capacity, we can set getDesiredPriority(S) to simply return the
remaining size of S. However, the homogeneity of hosts do not
always exist in practice [26]. For example, in virtualized data
centers, such as Amazon’s Elastic Compute Cloud (EC2), different
types of instances (i.e., virtual machines) might have various
bandwidth capacities. To eliminate the ill effects of bandwidth
heterogeneity, D-CAS heuristically designs getLocalRemSize(·)

NICLineRate as

Algorithm 4 Coflow-aware Flow Scheduling in Sender
1: procedure SCHEDULE(Subcoflows S) . recall every-δ
2: for all S ∈ S do
3: c← S.coflowID
4: rem← getLocalRemSize(S)
5: d← getDesiredPriority(S)
6: if rem < thresholdVolume then
7: p← 〈0, getCoflowArriveOrder(c)〉 . FIFO
8: else if S.waitT ime() > T then
9: p← 〈1, 0〉 . Avoid Starvation

10: else
11: Announce d to all S’s data receivers.
12: Wait two RTTs.
13: M ← getFeedbackPrioritySet(c)
14: if M is not empty then
15: p← 〈1,Φ(M)〉
16: else
17: p← 〈1, d〉
18: end if
19: end if
20: Update the priority of S’s data transfers to p.
21: end for
22: end procedure

Algorithm 5 Reply Feedbacks in Receiver
1: procedure REPLY(msg m) . message from the sender

. m stores the subcoflow’s desired priority and information
2: c← m.coflowID
3: B ← getCachedMsgs(c)
4: Update B using m and remove expired messages.
5: p← Ψ(B.desiredPriorityValues())
6: Send the feedback-priority of c (p) to m.src.
7: end procedure

the return value, where NICLineRate denotes the capacity of the
host’s upstream link.

Additionally, it is worth noting that, one can easily up-
grade D-CAS to other existing system by adopting differ-
ent Ψ(·), Φ(·), and getDesiredPriority(·). For example, if
getDesiredPriority(·) ≡ 1 (while Ψ(·) and Φ(·) are max(·)),
D-CAS turns into a per-flow fair-sharing system. As well, if
getDesiredPriority(·) returns the interval to the coflow’s dead-
line, D-CAS then performs deadline-aware coflow scheduling.

5.4 Complexity and Overheads
In D-CAS, the operations that senders as well as receivers perform
are quite simple; the complexities are linear with the amount
of parallel flows the host is serving. In practice, to achieve fast
job computations while making efficient resource utilizations, the
maximum number of simultaneous tasks that a host is capable of
running in parallel is tuned according to its hardware capabilities
such as CPU, memory, Disk and network I/O [27, 28], and
the default setting in Hadoop is four [26]. That is to say, the
number of concurrent coflows that a host serves would be a
small constant determined by its hardware capability. Moreover,
the amount of concurrent flows that a coflow node involves is
generally defined by the job’s size and task splitting scheme,
which are independent from the total number of coflows as well as
the data center scales [26]–[28]. For instance, both Facebook and



9

Microsoft have reported that work nodes in their production data
centers involve tens of concurrent flows on average [19, 29]. Thus,
the computation overheads of performing coflow scheduling for
each host in D-CAS would be O(1). As for the traffic overheads
introduced by decentralized negotiations, two hosts periodically
exchange coflows’ desired-priority information only when they
have data to transmit. Compared with the size of the coflow’s
payloads, such a priority information only occupies a few bytes
and is very trivial in bandwidth usage.

Thus, D-CAS is efficient, lightweight, and highly scalable.

6 SIMULATION

We have implemented a Python-based simulator to evaluate the
performance of D-CAS by comparing it with Varys, Baraat, and
the per-flow fairness mechanism. Our simulator shares the same
design with that of Varys [12], and performs a detailed replay
of the similar coflow traces as well. Extensive simulation results
demonstrate: 1) D-CAS improves the average CCT about 2–3×
over per-flow fairness; 2) D-CAS achieves a performance very
close to Varys—the performance gap between D-CAS and Varys
is less than 15%; 3) D-CAS outperforms Baraat by about 4×
when coflows are heterogeneous, and about 1.4× when coflows
are homogeneous; 4) even when switches have limited priority
queues and senders are agnostic of remaining sizes, D-CAS still
outperforms the per-flow fairness more than 2.5×.

6.1 Methodology
6.1.1 Setup
We employ the generator provided by Varys [6] (i.e., the Cus-
tomTraceProduce in [12]) as well as the corresponding real-
world parameters obtained from Facebook’s data centers [6] to
synthesize coflow traces. Respecting to the statistics in Varys, all
the coflows are categorized to be four types in terms of their
length (the size of the largest flow in bytes for a coflow) and
width (the number of parallel flows in a coflow): Narrow&Short,
Narrow&Long, Wide&Short, and Wide&Long, where a coflow is
considered to be short if its length is less than 10 MB, and narrow
if it involves at most 50 flows.

By defaults, coflows are assumed to arrive in a Poisson process
with parameter λ, and each above type of coflows constitutes 52%,
16%, 15%, 17% of the coflow stream, respectively (according
to the statistics reported by [6]). Without declaration, simulation
results are based on 400 coflows served by an 80-hosts cluster
with following settings:
1). All the flows in a coflow arrive at the same time [5, 6], and the

upper bound of flow volume (i.e., the upper bound of coflow
length) is 500 MB.

2). The network model (i.e., the entire datacenter fabric) is ab-
stracted out as one non-blocking switch [6, 16] interconnecting
all the machines, and we only focus on its ingress and egress
ports (e.g., machine NICs); both the ingress and egress are set
with the capacity of 1 Gbps.

3). The arrival rate of coflow is set to λ = NetworkThroughput
MeanOfCoflowSize ; this

is to make the network neither be overloaded nor underloaded
since the network’s average load (i.e., E(NetworkLoad)6) is
1 within such a setting.

4). As for D-CAS, we use T=1 s, δ=0.1 s, expiredTime=2 s,
and thresholdVolume=1 MB.

6. Note that, E(NetworkLoad)= λ×MeanOfCoflowSize
NetworkThroughtput

5). As for Varys, since it only reschedules flows when a coflow
arrives and completes, it cannot fully utilize the network
resource [6]. To maximize its potentiality regardless of control
overheads, we let it reschedule flows on every flow arrival and
completion by defaults. As a supplement, we also implement
the original task-level event driven version, which is named as
Varys* in Section 6.3.3.

6). As for Baraat, we set its threshold of large-coflow identifying
to be 80th percentile of the coflow size. In fact, we repeat the
tests multi-times and observe that the results are insensitive to
the threshold setting in our simulation.

6.1.2 Metrics
We use the improvement in average CCT as our primary metric
and the improvement factor is defined as

Factor of Improvement =
Current Average CCT

Modified Average CCT
(5)

In all tests, we use the duration of per-flow fair sharing as a
baseline (i.e., it is the current duration by defaults), since per-
flow fair sharing represents the operation of current transport
protocols (e.g., TCP, DCTCP) in DCNs. It should be noted that,
as coflow traces are generated randomly, for each set of test
parameters, we generate 20 test instances. We observe that the
absolute value of average CCT varies with different input traces.
However, the conclusions they imply are consistent. Accordingly,
each improvement factor shown in the paper, except those shown
in Fig. 5(a), is the average value of 20 trials.

6.2 Detailed Results on Various Inputs

We firstly investigate the performance of D-CAS under different
network loads, cluster/network scales and coflow types.

6.2.1 The Performance of D-CAS
Fig. 5(a) shows the detailed improvements of Baraat, D-CAS,
and Varys w.r.t. per-flow fair-sharing, respectively. It implies
that both D-CAS and Varys greatly reduce the average and
95th percentile CCT across all coflow types. For example, the
improvement factors of D-CAS on average CCTs are 38.502
(Narrow&Short), 26.162 (Narrow&Long), 9.625 (Wide&Short),
2.145 (Wide&Long), and 3.036 (ALL), while that of Varys
are 39.278 (Narrow&Short), 30.578 (Narrow&Long), 9.972
(Wide&Short), 2.363 (Wide&Long), and 3.361 (ALL). We note
that, the performances of D-CAS and Varys are very close, and
the gap between their improvements is less than 10%. This is
due to the fact that the negotiation mechanism in D-CAS helps
each coflow using its maximum-subcoflow-remaining-size7 as its
priority. Thus the coflow with the smaller remaining size on all its
senders would be more likely to use the network. This makes the
scheduling scheme in D-CAS approach the SOA-II policy.

The results also imply the bad performance of Baraat on
scheduling heterogeneous coflows. Baraat only speeds up the com-
pletions of long (both Narrow&Long and Wide&Long) coflows
a little, while degrading the completions of short coflows. It
is inferior to the baseline on the overall average CCT. This is
because, the FIFO policy Baraat using leads to serious head-of-
line blocking problem and its limited multiplexing (LM) scheme

7. When all hosts have the same NICLineRates, getDesiredPriority(·) is
equivalent to getLocalRemSize(·).



10

�
✁�
✂
�

✄
✁☎
�
✂

�
✁�
✂
✂

✄
✁✆
✝
✆

�
✁✆
�
✞

�
✁�
✂
�

✄
✁☎
�
✟

�
✁�
✂
✟

✄
✁✆
✝
✟

�
✁✆
�
✆

✟
✠
✁✝
�
✡

✡
☎
✁✄
☎
✡

✞
✁☎
✡
✝

✡
✁✄
✂
✝

✟
✁�
✟
☎

✂
�
✁✂
☎
✂

✡
✆
✁�
�
✄

✞
✁✞
✂
☎

✡
✁✄
✂
✝

✟
✁�
✂
✟

✟
✞
✁✡
✆
✠

✟
�
✁✝
✆
✠

✞
✁✞
✆
✡

✡
✁✟
☎
✟

✟
✁✟
☎
✄

✂
✄
✁✟
�
✄

✟
✄
✁✆
✆
✡

✄
�
✁✟
�
✡

✡
✁✟
☎
✝

✟
✁✟
✆
�

☛

☞☛

✌☛

✍☛

✎☛

✏✑✒✒✓✔ ✕ ✖✗✓✒✘ ✏✑✒✒✓✔ ✕ ✙✓✚✛ ✜✢✣✤ ✕ ✖✗✓✒✘ ✜✢✣✤ ✕ ✙✓✚✛ ✥✙✙

✦
✧
★
✩✪
✫
✪
✬
✭✮
✯
✫✪
✰
✱
✮
✱
✲
✩

✳✴✵✶✴✷ ✸✹✺✻✼

✽✑✒✑✑✘ ✾✥✿✤✒✑✛✤❀ ✽✑✒✑✑✘ ✾❁❂✘✗ ❃✤✒❄✤✚✘✢❅✤❀ ❆❇❈✥✖ ✾✥✿✤✒✑✛✤❀

❆❇❈✥✖ ✾❁❂✘✗ ❃✤✒❄✤✚✘✢❅✤❀ ❉✑✒❊❋ ✾✥✿✤✒✑✛✤❀ ❉✑✒❊❋ ✾❁❂✘✗ ❃✤✒❄✤✚✘✢❅✤❀

(a) Improvements w.r.t. the default per-flow fairness mechanism in the average and 95th percentile.

�✁�

�✁✂

�✁✄

�✁☎

�✁✆

✝✁�

� ✞�� ✝��� ✝✞�� ✂���

✟
✠
✡

☛☞✌✍☞✎ ✏☞✑✒✍✓✔✕☞✖ ✔✕✑✓ ✗✘✓✏☞✖✙✚✛

✜✢✣✢✢✔

✤✥☛✦✘

✧✢✣★✚

✩✢✕✣✥✚✪✢✣✕✖✫

(b) CCT distributions.

Fig. 5. Detailed performance of Baraat, D-CAS, Varys and the default per-flow max-min fairness mechanism on coflow traces generated with
real-world parameters [6].

cannot solve this problem absolutely, especially when facing
heterogeneous coflows.

Fig. 5(b) shows the CDFs of CCT under different scheduling
schemes. It implies that, though the preemptive schemes like
D-CAS and Varys reduce the average CCTs, they prolong the
CCT tails. That is to say, in heavily loaded data centers, these
applications involving large coflows would experience longer
durations for data transmissions (compared with default per-flow
fairness scheme). This is trivial in cooperative environments such
as private datacenters. However, in multi-tenant environments like
public clouds, applications from different tenants can be non-
cooperative and fair sharing as well as performance isolation
is preferred. Then, non-preemptive schemes like Baraat [7] and
HUG [30] are more suitable; they cut the long tails of CCT with
the cost of enlarging average CCTs. As further work, D-CAS
would be extended to support average CCT optimizations with
performance isolation guarantees.

6.2.2 Impact of Network Load
To study the impact of network load, we vary the arrival rate
of coflow and investigate the performance of different scheduling
schemes. Note that, as each trial only involves 400 coflows, all
these coflows will finally get served even if their (peak) arrival
rate is larger than 1. Fig. 6(a) shows the simulation results. It
indicates: 1) regardless of the network load, the improvement
factor of D-CAS is always close to that of Varys and outperforms
Baraat a lot; 2) the improvement factors of D-CAS and Varys
slightly increase with the network load, while that of Baraat is
stable. This is because, the heavier the network load is, the larger
optimization space there is for preemptive scheduling schemes.

6.2.3 Impact of Cluster/Network Scale
To explore the impact of cluster/network scale, we investigate their
improvement factors under different sizes of clusters. The result
in Fig. 6(b) shows both the improvement factors of D-CAS and
Varys grow with the network size (coincides with the simulation
results in Varys [6]), while that of Baraat is relatively stable. Such
a phenomenon is mainly caused by the setting that we always
adjust λ to make E(NetworkLoad) = 1 in simulations. Under
such a setting, NetworkThroughtput would grow linearly with

the cluster size and there will be more concurrent coflows in a
larger cluster. Accordingly, preemptive coflow-aware scheduling
methods like D-CAS and Varys get more optimization spaces
than non-preemptive methods like per-flow fairness and Baraat.

6.2.4 Impact of Coflow Type
We now study the impact of coflow types. To highlight the com-
parison, we investigate the performance of different scheduling
schemes when there is only one type of coflows in the network.
In each simulation, we also hold E(NetworkLoad) = 1. From
the results shown in Fig. 6(c), we make two important observa-
tions. First, Baraat outperforms per-flow fairness in all the four
cases. This is because the FIFO scheduling policy gets good
performances when coflows are homogeneous. Second, all three
coflow-aware scheduling schemes perform better when the coflow
is longer and wider, and their increments of improvement factors
are more sensitive to coflow width than coflow length. This is
due to the fact that, the larger width coflows have, the more
likely they may interleave with each other, in which condition, the
performance of coflow-agnostic per-flow fair sharing mechanism
falls increasingly further behind as it is coflow-agnostic.

Besides, we also observe that: 1) D-CAS always outperforms
Baraat, about 4× when coflows are heterogeneous, and about
1.4× when coflows are homogeneous; 2) D-CAS achieves a
performance very close to that of Varys, their performance gaps
are always less than 15% in simulations.

6.3 Performances under Real-world Settings
The above subsection has studied the performance of D-CAS
under ideal conditions, where data senders are able to get the real-
time remaining size of each subcoflow precisely, switches support
arbitrary priority values like pfabric [16] and Baraat [7], and all
children flows of a coflow appear simultaneously. Unfortunately,
these assumptions are usually unsatisfied in practice. In this
subsection, we investigate the performance of D-CAS when these
assumptions are removed.

6.3.1 Errors in getLocalRemSize()

In real data centers, flows (or transfers) are transmitted online; it is
difficult to estimate the exact remaining size of a flow. Therefore,



11

�

✁

✂

✄

☎

�✆✝ �✆✞ ✁✆� ✁✆✂ ✁✆☎ ✁✆✝ ✁✆✞ ✂✆�

✟
✠
✡
☛☞
✌
☞
✍
✎✏
✑
✌☞
✒
✓
✏
✓
✔
☛

✕✖✗✘✙✚✛✜✢✚✙✣✤✛✥ ✦✤✧★

✩✪✫✪✪✬

✭✮✯✰✱

✲✪✫✳✴

(a) Impact of network load

�

✁

✂

✄

☎

✆

✄� ☎� ✆� ✝� ✞� ✟� ✠� ✁�� ✁✁�

✡
☛
☞
✌✍
✎
✍
✏
✑✒
✓
✎✍
✔
✕
✒
✕
✖
✌

✗✘✙✚✛✜ ✢✣ ✤✢✥✦✥

✧★✩★★✪

✫✬✭✮✯

✰★✩✱✲

(b) Impact of cluster/network scale

�
✁✂
✄

�
✁✄
✄ ☎

✁✆
✄

☎
✁✆
✝

☎
✁✆
✞

☎
✁☎
✟ ☎

✁✟
✠

☎
✁✡
✟

☎
✁�
✄

☎
✁✞
✠ ☎

✁✡
☎ ✞

✁✞
✡

☛

☞

✌

✍

✎

✏✑✒✒✓✔

✕ ✖✗✓✒✘

✏✑✒✒✓✔

✕ ✙✓✚✛

✜✢✣✤

✕ ✖✗✓✒✘

✜✢✣✤

✕ ✙✓✚✛

✥
✦
✧
★✩
✪
✩
✫
✬✭
✮
✪✩
✯
✰
✭
✰
✱
★

✲✳✴✳✳✵ ✶✷✸✹✺ ✻✳✴✼✽

(c) Impact of coflow type

Fig. 6. Improvements in the average CCT under different settings. Note that all the factor of improvements use per-flow fairness as baseline.

�

✁

✂

✄

☎

� ✂ ☎ ✆ ✝

✞
✟
✠
✡☛
☞
☛
✌
✍✎
✏
☞☛
✑
✒
✎
✒
✓
✡

✔✕✖✗✘ ✙✚✛✜✖✕✜✢✗ ✢✣ ✤✥✥✢✥ ✦✧★

✩✪✫✬✭

✮✯✰✱✲

Fig. 7. Impact of errors in getLocalRemSize().

�

✁

✂

✄

✁ ✂ ✄ ☎ ✆ ✝ ✞ ✟

✠
✡
☛
☞✌
✍
✌
✎
✏✑
✒
✍✌
✓
✔
✑
✔
✕
☞

✖✗✘✙✚✛ ✜✢ ✣✛✤✜✛✤✥✤✚✦

✧★✩✪✫✬✫✭

✮✫✯✰✪✱✲

Fig. 8. Impact of limited priority queues.

�

✁

✂

✄

☎

�✆� �✆✂ �✆☎ �✆✝ �✆✞ ✁✆� ✁✆✂ ✁✆☎

✟
✠
✡
☛☞
✌
☞
✍
✎✏
✑
✌☞
✒
✓
✏
✓
✔
☛

✕✖✗✘✙✚✛✖ ✜✗✢✣ ✤✥✥✚✛✘✗ ✦✧✥✘✙✚✢★ ✩✪✫

✬✭✮✯✰✱✲✳✮✴✵✴✶✭✷✸✹✭✰✺✻✷✼✽✼✷✾

✿✻❀❁❂

✬✭✮✯✰✲❃✳❄✴❅✴✼❄✸❅✷✳❆✻✷✼✽✼✷✾

Fig. 9. Impact of flow arrival interval.

we study how the error in the remaining size estimation would
impact D-CAS’s effectiveness. To this end, we randomly add
estimation errors, following normal distributions with parameter
N (0, σ), into the estimated remaining size. For example, if a
subcoflow’s remaining size is rem, its estimated remaining size
would be rem ×max(1 + x, 0.1), where X ∼ N (0, σ). Fig. 7
shows how the system performance changes with the variance of
errors (i.e., σ). From this figure, we find that D-CAS’s perfor-
mance is not sensitive to errors in the remaining size estimation.
In contrast, when estimation errors exist, the performance of
Varys will reduce, which makes it underperforming D-CAS.
Roughly, the larger estimation error is, the larger performance
gap there will be between D-CAS and Varys. This means that the
performance of Varys heavily relays on the accuracy of remaining
size estimation. As errors are inevitable, D-CAS is a better choice
in practice.

In addition, we also investigate the case where each sender is
totally agnostic of the remaining size of subcoflow. By simply
regarding the original size and the sent size as a subcoflow’s
remaining size, D-CAS would still get 2.85× and 2.39× im-
provements, respectively.

6.3.2 Limited Priority Number

In D-CAS, we assume that switches support arbitrary priorities in
common with others [7, 16]; however, this is not always the case in
real systems. For instance, today’s commodity switches typically
support 4-8 queues per port [16]. In these cases, D-CAS has to
assign multiple coflows with the same priority during the sched-
ule. Suppose the remaining subcoflow size ranges in [0, rem†];

then, there exists multiple schemes that divide [0, rem†] into
K intervals, where K is the number of priorities supported by
switches. Fig. 8 shows how D-CAS’s performance changes with
the available priority number in the system, under two simple
priority assignment schemes, named “Exponent” and “Uniform”,
respectively8. Under “Exponent” scheme, the length of each inter-
val is τ, 2τ, . . . , 2K−1τ , respectively, where τ = rem†

2K−1 ; while all

the intervals have the same size (i.e., rem
†

K ) under the “Uniform”
scheme. With priority converting, the subcoflows whose sizes are
in the i-th interval are assigned with the priority value i. From
Fig. 8, we observe that more priorities can bring more performance
improvements to the system, and “Exponent” priority assignment
scheme outperforms “Uniform” scheme.

The results also imply that, even with a small set of priority
numbers (e.g., 4) and a simple interval division scheme (e.g.,
“Exponent”), D-CAS still outperforms per-flow fairness more
than 2.5×. Moreover, we further test the cases of each sender
simply regarding a subcoflow’s original size or sent size as its
remaining size, the improvement factors are larger than 2.5 as
well. Therefore, D-CAS is efficient and readily-deployable by
using existing commodity switches.

6.3.3 Flow Arrival Interval

Usually, flows belonging to a coflow do not arrive at the same time;
this may impact the performances of schedulers. Fig. 9 shows
how the performances of D-CAS, Varys*, and Varys, change

8. In this case, all small subcoflows, as well as the subcoflows falling into
the first interval, will be transmitted with the same highest priority, 1.



12

with the flow arrival interval in a coflow. For each coflow, we
assume that its flow arrival times have an exponential distribution
with parameter 1

µf
, where µf is the mean duration between the

first flow and other flows. Recall that coflows arrive in a Poisson
process with parameter λ (see Section 6.1.1), we let µf = α 1

λ ,
α ∈ R≥0 in our tests. We call α as the relative flow arrival
duration, as it stands for how long a flow will appear after its
parent coflow arrivals. Obviously, the larger α is, the longer
duration should a coflow’s flow arrivals will take. The difference
between Varys* and Varys is that Varys performs reschedules
whenever a flow arrives or completes, while Varys* performs only
on coflow arrivals and completions, which is the setting of the
original Varys [6].

Fig. 9 implies two important observations. First, the per-
formances of Varys (both Varys and Varys*) and D-CAS are
decreasing with the increase of flow arrival durations. This is
due to the online nature of the experiments: when coflows have
long flow arrival durations, a large coflow will be regarded as a
smaller coflow and preempt the network before its large children
flow appears. As a result, the effects of coflow-aware schedule
will decrease with the duration growing. Second, D-CAS gets a
performance close to Varys, while much better than that of Varys*.
Varys* underperforms because it is not work-conserving at every
point in time [6]; on the contrary, both D-CAS and our modified
“flow-level” Varys always perform work-conserving schedules.
However, in large-scale data centers, as Section 6.4 will show,
it is impractical for a centralized scheduling system to trigger
reschedules at every flow arrival and completion event like our
simulator performs. Thus, D-CAS will be more effective.

6.4 About Scalability

At last, we analyze the scalability of D-CAS and Varys*/Varys
as Table 3 illustrates. Basically the result also suits for the
comparisons between other decentralized (e.g., Baraat [7]) and
centralized (e.g., Rapier [9]) solutions.

We do not list the modified version of Varys (referred as Varys)
in Table 3 because it only differs from the original one (referred
as Varys*) on schedule frequency—The modified Varys needs a
reschedule upon each flow arrival or departure. In the following,
without specific declarations, the conclusion of Varys is true for
both versions. Recall that, once a rescheduling is needed, the
central Varys master first computes a global rate allocation scheme
for all flows based on the current knowledge of all coflows such as
the number of flows, their sizes, and endpoints, then modifies the
involved senders’ traffic shapers to enforce the scheme. Nowadays,
production data centers have hundreds of thousands of hosts
and millions of concurrent flows and the scale is continuing to
grow [17, 29]. It is hard for Varys to handle the case since its
single master has to compute and assign bandwidth allocations
for all concurrent flows. Even worse, such operations have to be
executed on every coflow (or worse, on every flow, in the case
of modified version) arrival and completion event. As the event
intervals are likely in the magnitudes of tens of microseconds to
tens of milliseconds [29], the control overhead is non-trivial in
real systems. Besides, as a centralized system, Varys also suffers
from the problem of single point of failure. Accordingly, Varys (as
well as other centralized approaches like Rapier [9]) is with poor
scalability.

In contrast, D-CAS adopts decentralized designs. With a
tunable interval, each sender computes new priorities only for

flows from it based its local coflow knowledge and data receivers’
feedbacks. As Section 5.4 has discussed, D-CAS is by design
robust, lightweight, and highly scalable.

7 RELATED WORK

Our work is to optimize data transfers in DCNs. There is a large
body of prior work; we broadly categorize them into four classes.

Routing in DCNs Hedera [31] and MicroTE [32] employ
the partial predictability of data center traffic to optimize flow
routing in a central fashion. Differently, CONGA [33] switches
the flows in the flowlet level to pursue a better load balance. By
using feedback mechanisms to exchange congestion information
between remote switches, CONGA achieves network-wide load
balancing in a distributed manner. As these literatures focus on
how to fully utilize the network resource and do not take semantics
among flows into account, they are not optimal in terms of the
average CCT.

Per-flow Prioritization Many literatures like pFabric [16] and
PDQ [15] focus on scheduling flows to minimize the average flow
completion time (FCT), or to reduce the number of flows that miss
their deadlines. As Section 2.1 shows, these flow level mechanisms
lose some opportunities for minimizing average CCT since they
are coflow-agnostic. However, methods for minimizing average
FCTs and for minimizing average CCTs share the basic idea in
scheduling: One is pursuing the smallest-flow-first principle, the
other is pursuing the smallest-subcoflow-first principle.

Coflow Scheduling The problem of coflow scheduling is quite
similar to the concurrent open shop problem [11, 24, 25], which
is proven to be strongly NP-hard [11]. This connection has been
reported by Yuan Zhong et al. [6, 10] recently and they developed
a 64/3-approximation heuristics based on LP-relaxations. Here, we
analyzed their connections on minimizing the average completion
times. Based on this, we borrow schedule algorithm designs
from [11], and further develop D-CAS (How D-CAS works was
first sketched in an earlier paper [34].).

Orchestra [5], Varys [6], and Rapier [9] are three centralized
coflow schedulers. Due to their centralized property, they have
scalability problem to be deployed in large scale data centers. On
the other hand, due to the control delays in centralized system, they
are less useful for small coflows which complete their transfers
in a few RTTs [6, 7] (Rapier simply treats small coflows as
background traffic without performing coflow-aware schedules.).
As far as we know, Baraat [7] is the only decentralized coflow-
aware scheduling system in DCNs. However, it suffers from
the head-of-line blocking problem and may result in a worse
performance than the per-flow fair sharing mechanism.

Other approaches Basically, above approaches focus on accel-
erating existing transfers whose endpoints are fixed and predeter-
mined by the applications. We also note that, there are numbers of
proposals optimizing data transfers from other dimensions. For ex-
ample, Sinbad [13] and KMN [35] seek to reduce cross-rack traffic
and congested links by choosing endpoints for replica placement,
or by co-locating tasks with their input data. Aggregator [36] tries
to reduce the sizes as well as amounts of transfers by aggregating
them on the fly. These solutions are orthogonal to flow scheduling
approaches and seem to be useful for data-intensive applications
such as Big Data analytics [37].



13

TABLE 3
Comparison of scalability

Required knowledge Schedule/control overhead Schedule frequency Reliability
D-CAS (decentralized) Real-time, local - (each sender manages its own flows) Every δ (tunable) -
Varys* (centralized) Real-time, global High (sync. computed rates to all senders) On coflow arrival/departure Single point of failure

8 CONCLUSION AND FURTHER WORK

This article showed that minimizing the average CCT for a set
of coflows is bounded by the results of minimizing the total job
complete time of concurrent open shop. Based on this, it bor-
rowed the 2-approximation from the schedule of concurrent open
shop for offline coflow scheduling and further design a practical
decentralized online coflow scheduling system, D-CAS. Numer-
ical simulation results demonstrated that D-CAS is efficient and
readily-deployable. It achieved a performance close to the state-
of-the-art centralized scheduling method, Varys, and significantly
outperformed the state-of-the-art decentralized scheduling system,
Baraat. Currently, D-CAS focuses on optimizing the average
CCTs for independent coflows. In our further work, we plan
to extend D-CAS to handle coflow dependencies and support
fairness-aware coflow scheduling.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers and editors for their
helpful feedback. This work was supported in part by the 973
Program under Grant No. 2013CB329103, the 863 Program under
Grant No. 2015AA015702 and 2015AA016102, the National
Natural Science Foundation of China under Grant No. 61271171,
61271165, and 61571098, and the Ministry of Education - China
Mobile Research Fund under Grant No. MCM20130131. H. Yu is
the corresponding author.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed
data-parallel programs from sequential building blocks,” SIGOPS Oper.
Syst. Rev., vol. 41, no. 3, pp. 59–72, Mar. 2007.

[3] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand, “CIEL: A Universal Execution Engine for
Distributed Data-flow Computing,” in NSDI, 2011, pp. 113–126.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012, pp. 15–28.

[5] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing
data transfers in computer clusters with orchestra.” in SIGCOMM, 2011,
pp. 98–109.

[6] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow Scheduling
with Varys,” in SIGCOMM, Aug. 2014, pp. 443–454.

[7] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
Task-aware Scheduling for Data Center Networks,” in SIGCOMM, 2014,
pp. 431–442.

[8] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. 11th ACM HotNets, 2012, pp. 31–36.

[9] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li,
and S. Wang, “RAPIER: Integrating Routing and Scheduling for Coflow-
aware Data Center Networks,” in INFOCOM, April 2015, pp. 424–432.

[10] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted comple-
tion time of coflows in datacenter networks,” in Proc. 27th ACM SPAA,
2015, pp. 294–303.

[11] M. Mastrolilli and M. Q. et al., “Minimizing the sum of weighted
completion times in a concurrent open shop,” Operations Research
Letters, vol. 38, no. 5, pp. 390 – 395, 2010.

[12] M. Chowdhury, “Flow-level simulator for coflow scheduling used in
varys,” https://github.com/coflow/coflowsim.

[13] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint flexibil-
ity in data-intensive clusters,” in SIGCOMM, 2013, pp. 231–242.

[14] D. Nace and M. Pioro, “Max-min fairness and its applications to
routing and load-balancing in communication networks: a tutorial,” IEEE
Communications Surveys Tutorials, vol. 10, no. 4, pp. 5–17, Fourth 2008.

[15] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in SIGCOMM, Aug. 2012, pp. 127–138.

[16] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
SIGCOMM, Aug. 2013, pp. 435–446.

[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in SIGCOMM, Aug. 2009, pp. 51–62.

[18] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: Sharing the network in cloud computing,” in
SIGCOMM, 2012, pp. 187–198.

[19] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in
SIGCOMM, 2010, pp. 63–74.

[20] M. Alizadeh and A. Javanmard et al., “Analysis of DCTCP: Stability,
Convergence, and Fairness,” in SIGMETRICS, 2011, pp. 73–84.

[21] L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McKeown, and S. Katti,
“High speed networks need proactive congestion control,” in Proc. 14th
ACM HotNets, 2015, pp. 14:1–14:7.

[22] H. Ballani and P. Costa et al., “Towards Predictable Datacenter Net-
works,” in SIGCOMM, Aug. 2011, pp. 242–253.

[23] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008, pp. 63–74.

[24] T. A. Roemer, “A note on the complexity of the concurrent open shop
problem,” J. of Scheduling, vol. 9, no. 4, pp. 389–396, Aug. 2006.

[25] A. Kumar, R. Manokaran, M. Tulsiani, and N. K. Vishnoi, “On LP-based
Approximability for Strict CSPs,” in Proc. 22nd ACM-SIAM SODA,
2011, pp. 1560–1573.

[26] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environments,”
in OSDI, 2008, pp. 29–42.

[27] E. Sammer, Hadoop Operations, 1st ed. O’Reilly Media, Inc., 2012.
[28] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark:

Lightning-Fast Big Data Analytics, 1st ed. O’Reilly Media, Inc., 2015.
[29] A. Roy and H. Zeng et al., “Inside the Social Network’s (Datacenter)

Network,” in SIGCOMM, 2015, pp. 123–137.
[30] M. Chowdhury, Z. Liu, and I. Stoica, “HUG: Multi-resource fairness for

correlated and elastic demands,” in NSDI, 2016.
[31] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks,” in NSDI,
2010, pp. 281–296.

[32] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proc. 7th CoNEXT, 2011, pp.
8:1–8:12.

[33] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,” in
SIGCOMM, 2014, pp. 503–514.

[34] S. Luo, H. Yu, Y. Zhao, B. Wu, S. Wang, and L. Li, “Minimizing
Average Coflow Completion Time with Decentralized Scheduling,” in
IEEE International Conference on Communications (ICC), June 2015,
pp. 307–312.

[35] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, “The power of choice in data-aware cluster scheduling,” in
OSDI, Oct. 2014, pp. 301–316.

[36] H. Ke, P. Li, S. Guo, and I. Stojmenovic, “Aggregation on the fly:
reducing traffic for big data in the cloud,” IEEE Network, vol. 29, no. 5,
pp. 17–23, September 2015.

[37] D. Zeng, L. Gu, and C. Guo, Cloud Networking for Big Data. Springer
International Publishing, 2015.

https://github.com/coflow/coflowsim

	Introduction
	Background and Motivation
	Why Coflow-aware Scheduling
	Why Decentralized Scheduling
	Why Preemptive Scheduling

	A Theoretical Analysis of the Average CCT Minimization
	Network Model
	Problem Statement
	A Low-bound Analysis
	Hardness

	Scheduling Algorithm Design
	The 2-approximation Solution
	From the 2-Approximation Approach to SOA-II
	Simplify the Scheduling with Two Relaxations

	How Far is SOA-II From the Optimal?

	Towards Practical Scheduler
	Key Definitions
	Core Design Overview
	Implementing Decentralized SOA-II
	Handling Small Coflows
	Avoiding Perpetual Starvation

	D-CAS Details
	Sender
	Receiver
	About (), (), and getDesiredPriority()

	Complexity and Overheads

	Simulation
	Methodology
	Setup
	Metrics

	Detailed Results on Various Inputs
	The Performance of D-CAS
	Impact of Network Load
	Impact of Cluster/Network Scale
	Impact of Coflow Type

	Performances under Real-world Settings
	Errors in getLocalRemSize()
	Limited Priority Number
	Flow Arrival Interval

	About Scalability

	Related Work
	Conclusion and Further Work
	References

