
Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

Efficient Cross-Cloud Partial Reduce With CREW
Shouxi Luo, Renyi Wang, Ke Li, Huanlai Xing

Abstract—By allowing 𝑝 out of 𝑛 workers to conduct all reduce
operations among them for a round of synchronization, partial
reduce, a promising partially-asynchronous variant of all reduce,
has shown its power in alleviating the impacts of stragglers for
iterative distributed machine learning (DML). Current partial
reduce solutions are mainly designed for intra-cluster DML, in
which workers are networked with high-bandwidth LAN links.
Yet no prior work has looked into the problem of how to achieve
efficient partial reduce for cross-cloud DML, where inter-worker
connections are with scarcely-available capacities. To fill the
gap, in this paper, we propose CREW, a flexible and efficient
implementation of partial reduce for cross-cloud DML. At the
high level, CREW is built upon the novel design of employing
all active workers along with their internal connection capacities
to execute the involved communication and computation tasks;
and at the low level, CREW employs a suite of algorithms to
distribute the tasks among workers in a load-balanced way,
and deals with possible outages of workers/connections, and
bandwidth contention. Detailed performance studies confirm
that, CREW not only shortens the execution of each partial
reduce operation, outperforming existing communication schemes
such as PS, Ring, TOPOADOPT, and BLINK greatly, but also
significantly accelerates the training of large models, up to 15×
and 9×, respectively, when compared with the all-to-all direct
communication scheme and original partial reduce design.

Index Terms—Partial reduce, flow scheduling, cloud computing

I. INTRODUCTION

In today’s artificial intelligence (AI) powered world, geo-
distributed machine learning (Geo-DML) systems, which pro-
vide the ability to learn models from massive data across the
globe, have become essential infrastructure for the design,
development, and deployment of large-scale AI services [1–3].
For these systems, recent studies show that performing model
synchronizations across wide-area networks (WANs) could
dominate the time cost of the entire training; thus, optimizing
the involved communication becomes the key to improving
the efficiency of Geo-DML training [3].

Similar to the case of intra-datacenter distributed training,
the synchronization of models involved in Geo-DML can be
carried out using the collective operations of all- or partial-
reduce, depending on the training algorithm designs [4].

This work was supported in part by NSFC under Projects 62002300 and
62202392, in part by the Sichuan Science and Technology Program under
Project 2023ZHJY0009, in part by the Fundamental Research Funds for the
Central Universities under Projects 2682024ZTPY050 and 2682022ZTPY089.
A brief description of the preliminary design of this paper was pre-
sented in the Poster session of APNet 2022 as a 2-page extended ab-
stract with the title of “Efficient Partial Reduce Across Clouds” [1] [DOI:
10.1145/3542637.3543707]. (Corresponding author: Huanlai Xing.)

The authors are with the School of Computing and Artificial Intelligence,
Southwest Jiaotong University, Chengdu 611756, China, and also with the
Engineering Research Center of Sustainable Urban Intelligent Transportation,
Ministry of Education, Chengdu 611756, China (e-mail: sxluo@swjtu.edu.cn;
renyiwang@my.swjtu.edu.cn; keli@swjtu.edu.cn; hxx@swjtu.edu.cn).

Partial reduce is a recently proposed variant of all reduce
which supports partially-asynchronous training: by allowing
𝑝 out of 𝑛 workers to conduct all reduce operations among
them for a round of synchronization, it is able to ease the im-
pacts of stragglers with a slowed-yet-controllable convergence
speed, thus promising for data-parallel distributed training in
heterogeneous environments [4]. Several recent works have
studied how to achieve efficient partial reduce in the context
of intra-datacenter distributed training [4–7]. However, none of
them has looked into the problem of applying partial reduce
for Geo-DML. Then, an interesting and important question is:
how could we achieve efficient partial reduce for data-parallel
distributed training in the context of Geo-DML, where workers
are networked with heterogeneous WAN connections?

Basically, based on whether the hosting servers of workers
belong to the same cloud provider or not, modern Geo-DML
applications can be roughly classified into two types, namely
intra-cloud and inter-cloud (or cross-cloud, alternatively) Geo-
DMLs, respectively. In the former case, training workers are
located at multiple geo-distributed datacenters belonging to
the same owner; accordingly, the inter-datacenter WANs are
likely visible or manageable to the cloud owner and follow
specific topologies. Several recent works have reported such
applications [8–11]. And in the latter case, hosting servers
are generally spread over multiple clouds, among which the
WAN is likely to be operated by independent Internet Service
Providers (ISP), out of the control of endpoints. Typical
examples include that: 1) an enterprise has hosted its data and
applications on multiple clouds respecting various purposes,
thus its distributed data processing and machine learning tasks
are conducted across multiple clouds [12]; 2) different compa-
nies or organizations hosted on various clouds cooperatively
train the same model with the technique of cross-silo federated
learning, a specific type of Geo-DML [13].

Following the latter case, in this paper, we focus on the goal
of achieving flexible and efficient partial reduce for cross-
cloud Geo-DML, where the inter-worker overlay network can
be abstracted out as a complete graph (i.e., full-mesh). Despite
this full-mesh structure of the inter-worker topology could
greatly simplify the relationship between workers, designing
an efficient and flexible solution is still quite challenging,
due to the following facts. Firstly, just like the case of intra-
cloud Geo-DML [2, 10], inter-worker connections in cross-
cloud Geo-DML are with scarce and heterogeneous avail-
able capacities. Moreover, because of the possible outage of
WANs [14, 15], some workers or their connections might be
unavailable for a while during the training, making 1) the
execution of ongoing cross-cloud partial reduce failure, and
2) the inter-worker topology incomplete over a period of time.

To address the above challenges, we propose CREW, a
flexible and efficient partial reduce implementation that builds

1

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

upon the design of “weighted sCatter, controlled REduce
computation, and Way-back multicast” to pursue the goal.
Compared with existing solutions, the power of CREW stems
from its novel workflow designs: as the involved computation
of reduce is generally not computationally intensive, instead
of employing only the 𝑝 selected workers, CREW lever-
ages all the 𝑛 available workers to conduct the operations
needed by a partial reduce in a bandwidth-aware way (via
“scatter⇒reduce⇒multicast”; see §III for details), thus can
make efficient usage of all the abundant inter-cloud WAN
connections. Moreover, to deal with the possible outages of
workers and WAN connections during the training, CREW
employs novel algorithms to dynamically compute substitute
execution plans to bypass these unavailable workers or bro-
ken connections. Detailed performance studies confirm that
CREW outperforms existing solutions and is able to deal with
possible link or node outages, properly (workers and nodes are
used interchangeably in this paper).

In summary, we mainly make three contributions:
• CREW, an execution workflow that is able to achieve

efficient partial reduce for cross-cloud distributed training
by making efficient usage of all available workers and
their inter-cloud WAN connections (§III).

• A suite of algorithms that enable CREW to execute
partial reduce tasks in a bandwidth-aware way, robust to
worker/connection outages, and efficient for the schedule
of concurrent triggered flows, during the training (§IV).

• Extensive studies showcase the efficiency and effective-
ness of CREW. It could accelerate the execution of a
single partial reduce operation up to dozens of times
compared to existing communication schemes like PS,
Ring, TOPOADOPT, and BLINK, and achieve up to
12 − 15× and 8 − 9× speedups compared to the all-to-all
direct communication scheme and original partial reduce
design, respectively, for iterative model training (§V).

Aims of CREW. As one type of hyper-parameter, recent
studies have shown that, a smaller value of 𝑝 for partial
reduce enables the training to iterate faster in the existence
of stragglers, with the cost of slowed convergence speed [4].
As the end-to-end training performance (e.g., the total time
the trained model takes to reach a targeted test accuracy)
depends both on the number of training rounds and the
time costs of each iteration, in practice, the best value of
𝑝 varies across workloads and automatic hyper-parameter
tuning is needed [4, 16]. Motivated by these facts, the focus
of this paper is to design a generic and robust execution
scheme (i.e., CREW) that could provide cross-cloud training
workers the ability to achieve partial reduce more efficiently.
Essentially, the power of CREW stems from the design of
letting workers distribute the involved communication and
computations among all active workers in a bandwidth-aware
manner. For small models, the time cost of a partial reduce
operation is dominated by the latency of WAN links thus the
benefits of CREW are limited and trivial in that case; to be
fast, workers can disseminate their local updates to all others
via direct all-to-all communication, or by using the controller
of partial reduce as the parameter server [17, 18]. However,

nowadays, large-scale models are becoming more and more
popular: deep learning models could involve up to hundreds of
billions of parameters [17, 19], yielding bulk transfers for the
synchronization of their model updates over WAN links. As a
result, the wall time needed for model synchronization would
increase and the significance of communication optimization
also increases. CREW is mainly designed for these scenarios.

The rest of this paper is organized as follows. We first
overview the related background and motivation in Section II,
then sketch the design of CREW in Section III. After that,
the detailed algorithm designs and performance studies follow
in Sections IV and V, respectively. Finally, we discuss related
works in Section VI and conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

Before looking into the details of algorithm designs, in
this section, we first overview the backgrounds of cross-
cloud DML (§II-A) and partial reduce (§II-B), which motivate
the design of CREW, then discuss the corresponding design
challenges (§II-C).

A. Cross-Cloud DML

At the early stage of the development of machine learning,
the training data is generally collected into a central train-
ing cluster located in a private or public cloud for model
training. And to accelerate the training, various distributed
training frameworks like Parameter Server (PS) [17, 18, 20],
Adam [21], Ako [22], Horovod [23], Malt [24], DDP [25],
together with abundant parallelism schemes [4, 7, 17, 18, 23,
26, 27], are proposed. In these systems, the training workers
generally have homogeneous capacities and are networked
with high-bandwidth intra-datacenter links; thus, such a type
of training can be named intra-datacenter distributed machine
learning. Regarding that large quantities of data are gener-
ated in a geo-distributed manner and are prohibited from
centralized in many cases, across/inter-datacenter DML has
become inevitable [2, 28]. Compared with intra-datacenter
distributed training, the connections between workers in the
context of inter-datacenter training are WAN links with scarce
and expensive capacities. To deal with this, a new form of
geo-distributed distributed machine learning is proposed. For
example, Cano et al [28] systematically study and present
the results of logistic regression models to demonstrate the
effectiveness of a geo-distributed approach combined with
communication-parsimonious algorithms. Gaia [2] dynami-
cally eliminates insignificant and unnecessary model update
information to efficiently utilize the scarce and heterogeneous
WAN bandwidth, without specializing the ML algorithms.

Indeed, based on whether the involved datacenters are
owned by the same cloud provider or not, geo-distributed
inter-datacenter DML can be roughly classified into two cate-
gories, namely intra-cloud and inter-cloud (or cross-cloud), re-
spectively. Following this, the aforementioned intra-datacenter
DML belongs to the intra-cloud case as well; [8–11] are
examples. And the typical cross-silo federated learning [13]
and multi-cloud machine learning [12] are typical inter-cloud
DML examples. As reported by [29, 30], cross-silo federated

2

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

learning has actual applications across various domains like
smart healthcare, smart retail, credit risk control, and anti-
money laundering. In this paper, we focus on optimizing the
data transmissions involved in cross-cloud DML.

B. Partial Reduce
The synchronization mechanism of all reduce is very pop-

ular in modern DML, which has various implementations
in practice, including the naive direct peer-to-peer broadcast
(i.e., all-to-all), rings (e.g., BaiduRing [31], Horovod [23]),
trees (e.g., Two-tree [32], MultiTree [33], MTREE [34]), and
others (e.g., Butterfly Mixing [35], Recursive Halving and
Doubling [36]). In these all reduce schemes, all workers are
forced to participate in each round of model synchronization,
leading to two performance issues. Firstly, they might yield
non-trivial burst traffic loads; taking the peer-to-peer broadcast
based schemes as an example, 𝑛 workers would trigger as
much as O(𝑛2) messages to conduct a round of all reduce.
Secondly, as all workers are involved in each round, they
are unable to deal with possible stragglers properly, resulting
in significantly-downgraded performance in that case. Fortu-
nately, recent studies show both theoretically and empirically
that, a lot of iterative DML algorithms are able to tolerate
incomplete model synchronization, leading to a novel general-
ization of all reduce, namely partial reduce. By allowing only
a portion rather than all workers to conduct a synchronization,
partial reduce could not only reduce the amount of traffic
but also tolerate possible stragglers, with controllable relaxed
synchronization for distributed training [4–6, 24, 26, 27, 37].

Regarding the level of consistency, current partial reduce
schemes can be roughly classified into three types. 1) Different
parts of the aggregated model on a worker are computed from
(updated by) different sets of training datasets and participating
workers would get distinct (mixed) model versions (e.g.,
Combo [6]). 2) Different parts of the aggregated model on
a worker are computed from (updated by) the same set of
training datasets, but different participating workers still hold
diverse model versions (e.g., Malt [24], Orpheus [5], SelM-
cast [26], EagerSGD [7]). 3) Different parts of the aggregated
model on a worker are computed from (updated by) the same
set of training datasets, and workers participating in the same
partial reduce to obtain the same model after synchronization
(e.g., Prague [27], P-Reduce [4]). Basically, the first two types
of designs achieve weak consistency, with the possible benefits
that involved traffic would be reduced and balanced among
workers, and asynchronous communication is allowed. While
the third one achieves the strongest consistency, to do so, a
group of workers must synchronize their model parameters or
gradients completely and accurately, in a synchronous manner.
Despite that Combo [6] has proven the convergence ability
of convex models under weak-consistent partial reduce, it
is still unknown whether this ability is still kept or not for
the abundant non-convex deep neural network models. In
practice, the quality of a deep model is determined by a lot of
hyper-parameters; thus, trial-and-error approaches are widely
employed in the development of new models [16]. To limit
the possible side effect of partial reduce on the distributed
training, we argue that strong consistency is necessary.

Currently, there are two typical solutions following the
third type of consistency design, namely Prague [27] and P-
Reduce [4], powered by two distinct design decisions. On
one hand, in Prague, workers are split into partial reduce
groups without regard to their training states; hence, once
there is a straggler in a group, all other early completed
workers in the same group would get blocked by it. P-Reduce
overcomes this issue by explicitly (only) selecting workers
that are already ready to join partial reduce operations. On
the other, Prague provides no control on the scale of partial
reduce, while in P-Reduce, there is a tunable parameter for this
purpose (saying 𝑝 for instance). Recent studies have already
shown that, larger partial reduce scales generally yield fewer
rounds of training to converge, at the cost of increased time
cost for each round [4]. For the optimization of the total
run time, the best value of 𝑝 depends on both the training
workloads and network status. Thus, to provide a flexible yet
convergence-guaranteed partial reduce service for inter-cloud
DML tasks, CREW follows the design of P-Reduce [4] and
provides strong consistency for Geo-DML.

C. Design Challenges

To achieve efficient partial reduce for cross-cloud data-
parallel DML, the following challenges must be addressed.

Abundant bandwidth-limited WAN connections. First of all,
in the context of cross-cloud training, the connections between
different workers are generally with limited available band-
width. Nevertheless, the capacities of different connections are
generally independent, and thus the network between workers
can be abstracted out as a full mesh. To achieve fast partial
reduce, the proposed scheme must be able to make use of all
the available connections, despite that each of them is only
with limited available bandwidth.

Task-aware flow scheduling. Secondly, when there is more
than one flow from a worker to the same another one, they
will compete for the available bandwidth following the default
principle of per-flow fairness. However, a lot of prior studies
have shown that such a default fair-sharing bandwidth allo-
cation at the level of per-flow generally leads to performance
far from optimal at the level of task (or entire application),
and task-aware flow scheduling is a promising fix [38]. Thus,
a flow scheduling scheme that could achieve efficient flows
respecting the goal of optimizing the progress of partial reduce
is needed by the solution.

Network outage. Last but not least, due to various reasons [14,
15], the inter-cloud WANs might suffer from network outages,
making a worker unavailable to some or all other workers for
a certain period during the training. Such an issue would lead
to node or link failures during the model synchronization and
is more likely to happen when the scale of training is large.
To be practical, the proposed solution must be able to deal
with these issues properly.

III. CREW OVERVIEW

CREW provides partial reduce semantics to workers by
leveraging all active workers along with their available WAN

3

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

… …

Worker

Dataset

Model Replica

𝑤ଵ 𝑤ସ𝑤𝑤 ……

P

𝑤ଵ

𝑤…Controller

queue for workers ready to synchronize

𝑤ଶ 𝑤ଷ 𝑤 𝑤ାଵ 𝑤

Fig. 1: CREW Architecture.

connections to execute the needed communication and com-
putation operations for each partial reduce task. To conduct
consistent and bandwidth-aware partial reduce, as Figure 1
shows, CREW involves a logical controller, which maintains
a global view of the entire network and could make smart
decisions. Basically, workers establish long-lived connections
with the controller to report the states of their WAN con-
nections and training progress (e.g., being ready for partial
reduce). Based on these, the controller decides which group
of workers to execute a partial reduce along with what the best
execution plan is, and replies. In practice, workers are ready
for synchronization one after another; given a configurable
parameter of 𝑝, like [4], the CREW controller maintains a
queue to record which workers are ready for partial reduce,
and would pop them out (denoted by P) to do so once the
number of workers in the queue reaches 𝑝. Once any workers
report the loss of connections to other workers, the controller
also recomputes the execution scheme to avoid the usage of
these broken connections or unavailable workers, and notifies
the new scheme to involved workers immediately.

As Figure 2 shows, the workflow to execute a partial
reduce mainly involves three phases, namely weighted scat-
ter, controlled reduce computation, and way-back multicast,
respectively. Consider that the training system is made up
of 𝑛 workers, labeled 1, 2, · · · , 𝑛, forming the set of N.
Based on the characteristics of inter-cloud WAN connections,
CREW abstracts the inter-worker WAN as a fully connected
graph 𝐺, in which, the directed connection from worker 𝑖 to
worker 𝑗 is with the available bandwidth of 𝑏𝑖, 𝑗 for partial
reduce; because of the presence of coexisting traffic, 𝑏𝑖, 𝑗 is
probably unequal to 𝑏 𝑗 ,𝑖 . For ease of description, given a
worker 𝑖, we let its 𝑏𝑖,𝑖 be a large value thus it would not
be the bottleneck. To make full use of the processing capacity
of all workers and all the available bandwidth, when each
worker completes its local training, saying 𝑖 for instance, it first
serializes its model parameters 𝑊𝑖 into numbered chunks with
a fixed size, and groups them into 𝑛 non-overlapping blocks
(i.e., 𝑊1

𝑖
, · · · ,𝑊 𝑗

𝑖
, · · · ,𝑊𝑛

𝑖
) for synchronization, respecting the

model splitting schemes given by the controller. Then, the 𝑗-th
block 𝑊

𝑗

𝑖
will be scattered to worker 𝑗 . Note that, the scatter of

𝑊 𝑖
𝑖

will not trigger network transmissions since the destination
and the source are the same. On getting these blocks, the
receiver caches them first and conducts the reduce computation
when getting notifications from the controller.

Following these designs, for each partial reduce task, work-
ers in CREW have two types of roles, namely initiator and
aggregator, respectively. Here, initiator means that this worker
is one of the 𝑝 workers that have initiated/triggered this round
of partial reduce; and aggregator means that this worker
contributes to the reduce computation of this task. Let P denote
the set of 𝑝 workers that initiate this round of partial reduce.
Obviously, by default, for a partial reduce, all workers in its
P would work as both initiators and aggregators at the same
time, while all other workers would only work as aggregators
(Exceptions occur in the case of network outages and refer to
§IV-B for details). When a worker gets the configuration of P
from the controller, it would aggregate the specified 𝑝 blocks
whose sender IDs are exactly corresponding to P (Figure 2b),
or later in case that some blocks are not obtained yet. Then, the
aggregation result would be multicasted back to the 𝑝 workers
in P once the computation is done (Figure 2c).

To release the full power of the above designs, however, the
following problems must be addressed carefully.

1) How to split the model into blocks to maximize the
usage of the available bandwidth?

2) How to deal with possible network outages?
3) How to schedule concurrent transfers for accelerating

the completion of synchronization?
CREW overcomes them with novel algorithms and the

design details follow in the next section. Despite that CREW
relies on a logical controller by design, the job of the controller
is minimal, i.e., 1) computing a default scatter plan based on
the network status for all workers, 2) dynamically calculat-
ing the optimized partial reduce education plan for ready
workers once their number reaches 𝑝, and 3) dynamically
picking replacement workers for failover. In the process, the
controller only needs to exchange small-sized control and
heartbeat messages with workers. Accordingly, the controller
is less likely to become the performance bottleneck. Even if
the control messages are delivered with delays, as we will
explain in Section IV-A, CREW supports non-blocking scatter
designs, thus the impacts of such delays are also non-trivial.
Moreover, if the number of workers is huge, a promising
solution is to execute the synchronization hierarchically rather
than conducting flat model synchronizations. How to use
CREW for such scenarios is an interesting future direction.

IV. CREW ALGORITHMS

Now, we explain the algorithm details of CREW.

A. Bandwidth-aware Block Generation

1) Workload splitting for ready workers: In CREW, each
worker has direct (logical) WAN connections to all others and
it employs all workers to execute the operations involved by
each partial reduce. Consider the case that workers need to
perform partial reduce for a group of workers P. Intuitively,
each worker in P should split its model parameters in the pro-
portion of its up- and down- link bandwidths to others for the
best usage of the corresponding WAN connections’ capacities.
However, if each worker only considers the bandwidth of con-
nections it involves, inconsistent scatters of the model would

4

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

𝑊!

𝑊"

𝑊# 𝑊$

𝑊%

（a）weighted scatter （b）controlled reduce computation （c）way-back multicast

𝑤!
(!) 𝑤!

($)𝑤!
(%) 𝑤!

(&)𝑤!
(')

𝑤!
(!)

𝑤!
(%)

𝑤!
(&)

𝑤!
(')

𝑤!
($)

𝑊!

𝑊"

𝑊# 𝑊$

𝑊%
𝑤!
(')

𝑤%
(')

𝑤$
(')

𝑤&
(')

𝑤!
(')

𝑤$
(')

𝑤&
(')

computing

𝑊!

𝑊"

𝑊# 𝑊$

𝑊%

Fig. 2: The 3-phase workflow of CREW.

occur, which means that the same parameter would be placed
into different blocks by different workers. Thus, CREW has
to provide a splitting scheme in a network-aware way and
ensure that all workers in P adopt the consistent scheme. To
address this, CREW computes the model’s splitting plan upon
a global view of the involved connections’ available bandwidth
at the controller. Without loss of generality, consider that the
model is with the size of 1 unit, and let 𝑥 𝑗 be the size of the
𝑗-th partition 𝑊

𝑗

𝑖
(1 ≤ 𝑗 ≤ 𝑛) for the scatter. Then, we have∑𝑛

𝑖=1 𝑥𝑖 = 1; and the vector of x B (𝑥1, 𝑥2, · · · , 𝑥𝑛) denotes
the weights used by scatter. For bulk transfers triggered by
large-size models, their completion times are dominated by
their volumes and available bandwidth. Accordingly, the time
costs of the weighted scatter and way-back multicast phases
specified in Figure 2, can be formulated by Equations (1a)
and (1b), respectively. Here, 𝑇 𝑖

𝑠𝑐𝑎𝑡𝑡𝑒𝑟 B max 𝑗∈N
𝑥 𝑗

𝑏𝑖, 𝑗
and

𝑇
𝑗

𝑚𝑢𝑡𝑙𝑖𝑐𝑎𝑠𝑡
B

𝑥 𝑗

min𝑖∈P 𝑏 𝑗,𝑖
denote the minimum time that it takes

for the worker 𝑖 to complete its scatter and for the worker 𝑗

to complete its multicast, respectively.

𝑇𝑠𝑐𝑎𝑡𝑡𝑒𝑟 B max
𝑖∈P

𝑇 𝑖
𝑠𝑐𝑎𝑡𝑡𝑒𝑟

B max
𝑖∈P

max
𝑗∈N

𝑥 𝑗

𝑏𝑖, 𝑗
= max

𝑗∈N

𝑥 𝑗

min𝑖∈P 𝑏𝑖, 𝑗
(1a)

𝑇𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 B max
𝑗∈N

𝑇
𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

B max
𝑗∈N

𝑥 𝑗

min𝑖∈P 𝑏 𝑗 ,𝑖

(1b)

Let 𝑇CREW be the communication time under the schedule
of CREW and define 𝑇 = 𝑇𝑠𝑐𝑎𝑡𝑡𝑒𝑟 + 𝑇𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 . Then, we
have 𝑇CREW ≥ 𝑇𝑠𝑐𝑎𝑡𝑡𝑒𝑟 and 𝑇CREW ≥ 𝑇𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 , which further
yield 𝑇CREW ≥ 1

2 (𝑇𝑠𝑐𝑎𝑡𝑡𝑒𝑟 +𝑇𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡) = 𝑇
2 . When the trained

model is large, by splitting the tensors into fine-grained chunks
for pipelined communication, the multicast procedure can be
partially overlapped with the scatter, thus 𝑇CREW ≤ 𝑇 . Putting
the above analysis together, we obtain 𝑇

2 ≤ 𝑇CREW ≤ 𝑇 . Note
that, despite 𝑇CREW ≤ 𝑇 , in cases like 𝑏𝑖, 𝑗 = 𝑏 𝑗 ,𝑖 for all
worker pairs, the optimal vector x for 𝑇 also leads to the
optimal 𝑇CREW. Motivated by this, CREW solves the linear
programming (LP) of (2) to obtain the optimal weight vector

Algorithm 1 Split Model from Scratch

Require: scatter weights: (𝑥1, · · · , 𝑥𝑛); chunk number: 𝑘
Ensure: model splitting scheme: (𝐶1, · · · , 𝐶𝑛)

1: 𝑦 ← 0; 𝑙 ← 0
2: for 𝑖 ← 1, · · · , 𝑛 do
3: 𝑦 ← 𝑦 + 𝑥𝑖
4: 𝑢 ← 𝑦 ∗ 𝑘
5: 𝐶𝑖 ← { 𝑗 ∈ Z : 𝑙 < 𝑗 ≤ 𝑢} ⊲ chunk indexes in block 𝑖

6: 𝑙 ← 𝑢

7: end for

x, and uses it as a guideline for the optimization of 𝑇CREW.

Minimize 𝑇𝑠𝑐𝑎𝑡𝑡𝑒𝑟 + 𝑇𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

s. t.
𝑛∑︁
𝑖=1

𝑥𝑖 = 1,where 𝑥𝑖 ≥ 0
(2)

Suppose that the model parameter has been serialized into
𝑘 chunks, indexed by 1, 2, · · · , 𝑘 , respectively, where 𝑘 ≫ 𝑛;
let 𝐶𝑖 (𝑖 = 1, · · · , 𝑛) be the sets of chunk indexes belonging to
the 𝑖-th block; and let the vector of C B (𝐶1, · · · , 𝐶𝑛) denote
the related model splitting scheme. Then, the produce of how
the CREW controller generates a fresh model splitting scheme
to approximate the weights given by x B (𝑥1, · · · , 𝑥𝑛) is as
Algorithm 1 shows. As

∑𝑛
𝑖=1 𝑥𝑖 = 1, all chunks will finally find

their blocks. Regarding the value of x, it is easy to obtain for a
given partial reduce task by solving the LP with commercial-
off-the-shelf solvers like Gurobi and Mosek.

2) From blocking to non-blocking: According to (2), to
obtain the best execution plan (i.e., scatter plan) for a partial
reduce task, the CREW controller has to know P, the exact set
of workers that participate in this round. In practice, workers
are not likely to complete a round of training at the same
time because of the phenomenon of stragglers [4, 7] For
this limit, the straightforward solution is to let each worker
start the scatter transmission only after it obtains the exact
partial reduce plan from the controller; before that, these WAN
connections can not be used for this task. We call such a design
blocking scatter. Recall that, in CREW, each partial reduce
would employ all available workers and their connections to
execute the involved operations; hence, the receivers of each
transfer involved in a partial reduce task are determined,
even when the P is not generated yet. Accordingly, once a

5

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

Algorithm 2 Adjust Model Splitting (i.e., Rearrangement)

Require: new weights: (𝑥1, · · · , 𝑥𝑛); current (𝐶1, · · · , 𝐶𝑛)
Ensure: updated model splitting scheme: (𝐶1, · · · , 𝐶𝑛)

1: 𝑦 ← 0; 𝑙 ← 0
2: 𝐿 ← [] ⊲ record chunk indexes that should be moved
3: for 𝑖 ← 0, · · · , 𝑛 do
4: 𝑦 ← 𝑦 + 𝑥𝑖
5: 𝑢 ← 𝑦 ∗ 𝑘
6: 𝑑𝑖 ← |𝐶𝑖 | − (𝑢 − 𝑙) ⊲ number of chunks to move out
7: 𝑙 ← 𝑢

8: if 𝑑𝑖 > 0 then ⊲ should move out 𝑑𝑖 chunks
9: Move the 𝑑𝑖 largest indexes from 𝐶𝑖 to 𝐿

10: end if
11: end for
12: for 𝑖 ← 0, · · · , 𝑛 do
13: if 𝑑𝑖 < 0 then ⊲ should move in −𝑑𝑖 chunks
14: Move the −𝑑𝑖 smallest indexes from 𝐿 to 𝐶𝑖

15: end if
16: end for

worker is ready, it can start its scatter transmission as both the
involved data and endpoints are available. We call this a non-
blocking scatter design, which yields possible improvements
upon the blocking scatter, by making more efficient use of all
the available bandwidth of WAN connections.

As the best scatter weights for a partial reduce task could
be determined only after all the involved workers belonging to
the same partial reduce group are determined, CREW uses the
design of pre-configuring workers with a default scatter plan,
such that workers can start non-blocking scatter transmissions
before the best scatter plan is available. In CREW, the
controller computes the default values of x and C by assuming
P = N. When a worker is ready, it immediately starts the
scatter following the default C and reports its readiness to
the CREW controller; once the controller determines the P
for this partial reduce task, it first computes the best scatter
weight x from P, then adjusts the current model splitting
scheme C to generate the new splitting via Algorithm 2, and
finally notifies the P along with the new C to all involved
workers. On obtaining P together with the new C, workers
adjust their scatter processes correspondingly: if a worker has
already received some chunks that are no longer belonging
to it, the worker will discard them. To reduce the number of
chunks that would get discarded, during the scatter, workers
send chunks in increasing order of their indexes; and when the
controller has to move some chunks out of a block, as Line 9
in Algorithm 2 shows, it prefers to move chunks in decreasing
order of their indexes as chunks with the higher indexes are
not transmitted yet.

3) Time complexity: Regarding the time complexity, both
the above algorithms are very efficient. In Algorithm 1, the
chunk indexes allocated to a block are exactly successive
thus constituting a segment. Accordingly, the worst-case time
complexity of Algorithm 1 is 𝑂 (𝑛), since we only need to
maintain the lower and upper bounds for each block. Here 𝑛

is the number of available workers. As for Algorithm 2, the
key is to 1) move each block’s excessive upper segment of

chunk indexes (if any) to 𝐿, then 2) empty 𝐿 by moving these
involved chunk indexes back to proper blocks. It is obvious
that each chunk would be moved at most once during such
a process. Accordingly, the worst-case time complexity of
Algorithm 2 is 𝑂 (𝑘), where 𝑘 is the total number of chunks.
Indeed, by also representing the moved segments of chunk
indexes using ranges, it is possible to improve further the time
complexity of Algorithm 2 to approximate 𝑂 (𝑛). To drive
Algorithms 1 and/or 2, CREW also needs to compute the
scatter weights x by solving LP (2). Currently, commercial-
off-the-shelf solvers like Gurobi are efficient in doing this in
polynomial time. As CREW supports non-blocking scatter,
such a time cost can be masked by the communication.

B. Failover Schemes
During the training, a CREW worker might lose its con-

nection(s) to the controller or other workers, because of the
outage of the network or servers. Such link and node outages
can be detected by the involved participating servers using
schemes like heartbeat and timeout [39]. The failure of a
server node results in the breakdown of all the involved active
connections. We assume that both endpoints of a connection
obtain a consistent view of the possible outage, and present
the design principles that CREW could use for these issues.

On the worker side, if a worker finds itself cannot talk to the
controller anymore, it then switches to the standalone training
mode without triggering new model synchronizations and tries
to recover the connections proactively. In the standalone mode,
the worker tries to complete the partial reduce tasks that it
already gets the corresponding Ps from the controller; but
for other incoming scatter transmissions, it would notify the
senders to reject, as it could not guarantee consistent partial
reduce operations due to the lack of P. For the aforementioned
ongoing partial reduce, if the worker finds its connections to
some other workers are broken, it would not try to fix the
impacted task(s) since the controller is unavailable. Once its
connection to the controller is recovered, the worker switches
back to normal mode.

When a worker (e.g., 𝑖) finds that its connection to another
worker (e.g., 𝑗) is (still) lost, it tries to recover, and inquires the
controller for a fixing plan after obtaining a P. If its connection
to the controller is lost as well and it happens to be an initiator
of a running partial reduce, it would directly abandon this task;
and to accelerate the process of failover, it would also notify
all other workers to abandon this task via active connections.
If the connection to the controller is fine and this worker 𝑖

does be an initiator for a running partial reduce task (i.e., it
belongs to a P), on getting its report, the controller would find
a new worker that has live connections to all workers in the
same P to take over the aggregator role of worker 𝑗 . Let 𝑆 be
the set of candidate workers that have available connections
to all workers in P, denote the total block volume that worker
𝑖 is scheduled to reduce by 𝑙𝑖 , and suppose that the 𝑗-th block
is with the size of 𝑥 𝑗 . Then, the CREW controller would
pick the one with the minimum estimated workload computed
by Equation (3), as the replacement. In case the controller
cannot find a replacement, it notifies all the involved workers
to discard this round of partial reduce.

6

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

ℎ(𝑆) B arg min
𝑘∈𝑆

max
𝑖∈P

𝑙𝑖 + 𝑥 𝑗

min (𝑏𝑖,𝑘 , 𝑏𝑘,𝑖)
(3)

On the controller side, when a worker is lost, the controller
would remove it from the queue that records these ready-
yet-unsynchronized workers if it is in, ensuring that this
worker would not be grouped into any incoming partial reduce
task (e.g., P). Besides, the controller would reconstruct the
abstracted network topology 𝐺, and notify all active workers
of the results, such that, workers would avoid using this
“offline” worker in their incoming scatters. On getting a report
of a broken connection, saying that worker 𝑖 reports that
its connection to worker 𝑗 is broken, as described above, if
the reporter worker 𝑖 is an initiator, the controller will reply
with either the replacement of 𝑗 it has found or an abandon
message. Note that, in case the controller has received multiple
reports of broken inter-worker connections, it would react in
the First-Come-First-Serve (FCFS) mode.

Regarding the failover of the CREW controller, since it can
be implemented in a stateless manner, once going down, the
backup CREW controller will take over the job gracefully
by re-obtaining the needed information from workers again.
During this handover, ready workers that have already received
their partial reduce execution plan(s) (e.g., P), would not get
impacted; and for those that have not determined the execution
plan(s), thanks to the non-blocking scatter design of CREW,
workers could conduct the scatter following the default scheme
until they obtain the optimized plan(s) from the new controller.
If worker failure also occurs at the same time, the remaining
workers could discard this round of partial reduce if they
have not received the failover scheme from the new controller
within a given time. Indeed, to make CREW self-healing
and able to recover from all possible uncovered corner cases,
workers would discard a running partial reduce task if it has
not been completed within a given time budget.

C. Flow Scheduling Principles

In CREW, multiple flows belonging to different partial
reduce tasks might use the same inter-cloud connections
at the same link, resulting in bandwidth competition. For
example, when a worker completes a task’s reduce compu-
tation, it would multicast back the result, occupying inter-
cloud connections. Very soon, this worker might complete
its local training in a short time, split its trained model into
blocks, and send one in that connection, too. Even worse,
the execution of the link failover scheme might make the
case more complicated. According to the per-flow max-min
fairness bandwidth allocation that the network provides by
default, these two transfers would share the inter-cloud link
capacities equally. This is not conducive to minimizing the
average completion time of the entire partial reduce tasks.

For such a scheduling problem, as concurrent partial reduce
tasks involve the same size of the model to synchronize and a
partial reduce task is started only when all their members are
ready, just like the schedule of coflow [40], a straightforward
design is to prioritize their transfers in an FCFS (First Come
First Serve) mode at the level of the task. However, we argue

that scheduling transfers with FCFS at the level of flow is
better for CREW. Consider that, two flows 𝑓𝑖 and 𝑓 𝑗 belonging
to the 𝑖-th and 𝑗-th partial reduce tasks, respectively, are going
through the same link/path from worker 𝑠 to worker 𝑑. Let us
assume that, the controller issues the 𝑗-th task before the 𝑖-th
one (i.e., 𝑖 > 𝑗), while at the source sender 𝑓𝑖 is ready to start
before 𝑓 𝑗 . Note that, in CREW, only initiator workers could
scatter and a worker can work as the initiator for only one task
at the same time, while multicasts are triggered by aggregators
and a worker can be the aggregator of multiple tasks at the
same time. Accordingly, there are only three possible cases
for the aforementioned concurrency examples: 𝑓𝑖 belongs to
scatter while 𝑓 𝑗 belongs to multicast (C1); 𝑓 𝑗 belongs to scatter
while 𝑓𝑖 belongs to multicast (C2); or both are multicast flows
(C3). To prioritize flows respecting the order of their partial
reduce tasks, the transmission of 𝑓𝑖 would be preempted, by
𝑓 𝑗 . This would 1) let the worker 𝑠 act as a straggler for task
𝑖 (in the view of worker 𝑑) in the case of C1, or 2) prevent
worker 𝑑 from moving to the next round of training because
the multicast is blocked in the case of C2. As for the case
of C3, 𝑓𝑖 and 𝑓 𝑗 are equally important to worker 𝑑, only
after receiving both 𝑓𝑖 and 𝑓 𝑗 can worker 𝑑 enter into its next
round of training, no matter which type of scheduling CREW
uses. Motivated by these facts, workers in CREW schedule
concurrent transfers with FCFS locally (i.e., flow-level). As
Section V will show, we verify and confirm the benefits of
such a design with simulations.

The above FCFS flow scheduling principle also makes the
performance of CREW insensitive to the delays introduced
by failover schemes. Specifically, the chunks of the scatter
operation for failover would only get sent on a connection after
all other scheduled chunks have been delivered. As a result,
before a link/node failure is detected and the failover plan takes
effect, active workers execute their planned transmission tasks
normally, without wasting bandwidth.

Modern cloud data centers generally provide guaranteed
performance, e.g., with service level agreement (SLA), for
deployed applications by design. Thus, the overload and effect
on and from the workflows of other applications running
on the same clouds (i.e., inter-application interference) can
generally be controlled to some extent, if unavoidable. Even
for the possible congestion on the inter-cloud connections,
CREW relies on existing transport protocols like TCP for the
underlying transmission of each flow [41]. These protocols are
equipped with advanced congestion control designs, enabling
CREW to react to possible network congestion and make us-
age of available remaining bandwidth adaptive. Recent studies
have reported that inter-cloud connections generally have very
stable capacities [41]. Even if the actually obtained bandwidth
does not match with what it is believed to have, as the result
of Section V-H has shown, CREW could still work properly.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CREW
under four different workloads, constructed by using real-
world WAN bandwidth distributions [42] and model training
time distributions [7]. Results imply that,

7

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

1) By leveraging the entire network’s bandwidth, CREW
obtains up to dozens of times of performance improve-
ments compared to PS, Ring, TOPOADOPT, and BLINK
for the execution of a single partial reduce task, and up
to 10 − 15× and 4 − 5× speedups compared to the all-
to-all direct delivery scheme and original partial reduce
design, respectively, for the iterative training of models.

2) According to the experimental results of link bandwidth
allocation, we demonstrate that the flow scheduling
design of FCFS is simple-yet-efficient.

3) Meanwhile, CREW can cope well with network out-
ages; and due to its load balance design, CREW ef-
fectively alleviates performance degradation caused by
increasing communication traffic.

4) Moreover, we also conduct experiments in computation-
intensive and communication-intensive scenarios, the
results indicate that CREW still performs well.

A. Methodology

Baselines and evaluation tools. In tests, we mainly use the
following schemes that could achieve consistent partial reduce
operations for a given group of workers P, as the baselines to
study the performance of CREW:
• PS [17]: the worker having the largest (direct) average

bandwidth to all other workers is selected as the global
PS; if there are multiple candidates, the one with the
smallest average latency to others is preferred.

• Ring [31]: a ring is generated for P greedily—starting
from a random worker in P, then continuing to pick the
new worker in P, which has the largest bandwidth to the
last processed worker, until a ring is found.

• BLINK: following [43], multiple spanning trees are gen-
erated for P, and the workload of partial reduce is
distributed among five of them, by solving a mixed integer
linear programming (MILP) problem;

• ToA (TOPOADOPT): the spanning tree generation and
workload distribution algorithm, based on simulated an-
nealing and proposed by [44], is extended to support the
all reduce requirement of P, straightforwardly.

• A2A (All-to-All direct delivery): each worker in P directly
sends its model parameters to other 𝑝 − 1 workers;

• OPR (Original Partial Reduce): workers in P split the
model parameters into 𝑝 blocks and each worker in P is
responsible for aggregating one of the blocks. Indeed,
such a design can be treated as a distributed version
of the original parameter server based model synchro-
nization [17], in which each worker acts as a sharded
parameter server at the same time.

The difference between OPR and CREW is that the former
only employs 𝑝 workers while the latter splits the model
parameters into 𝑛 blocks and employs 𝑛 workers. To evaluate
these schemes, we have developed a flow-level simulator with
Python 3, which would precisely simulate the aforementioned
synchronization under various execution schemes. We employ
Python-MIP to obtain the linear programming results of Equa-
tion (2), which are used for the network-aware model splitting

(i.e., Bandwidth-aware Block Generation) for both CREW
and OPR. By default, CREW conducts blocking scatter when
executing partial reduce tasks; we also investigate the benefits
of non-blocking scatter design in detail. Since today’s network
design adopts per-flow max-min fairness (i.e., FS) for the
allocation of bandwidth, we first compare the performance of
the three schemes under FS and flow-level FCFS bandwidth
allocation in a case study, and then give a further analysis of
FCFS in the subsequent experiments.1 Finally, the impact of
inaccurate bandwidth estimation is also studied.

Network and workloads. We consider a Geo-DML environ-
ment involving 𝑛 workers. Extensive tests indicate that CREW
could consistently outperform baselines under different system
scales. In the performance study of related works [2, 6, 9, 45,
46], the scale of Geo-DML tasks generally ranges from several
to tens, and to over a hundred. As case studies, following
them, we use 60, roughly their average value, as the default
value of 𝑛, to show results in this section. To simulate the real
network environment, the available bandwidths of inter-cloud
connections (i.e., 𝑏𝑖, 𝑗) are sampled from the inter-datacenter
bandwidth measured from Amazon EC2 [42]. Meanwhile, we
also set up another bandwidth distribution for connections
between workers, which are calculated by 𝑘 ∗ 𝑢, where 𝑘

is an integer in the range of [1, 10] sampled from 𝑁 (5, 1)
and 𝑢 is the minimum bandwidth unit with the value of
25Mbps. The former network setting is labeled with 𝑁1, and
the latter is labeled with 𝑁2. Note that 𝑏𝑖, 𝑗 and 𝑏 𝑗 ,𝑖 between
worker 𝑖 and worker 𝑗 may not be equal. Regarding the
model’s local training computation time, we consider both the
time distributions of training an LSTM model on UCF101
(denoted by 𝑇1), and the time distributions of training a
Transformer model on WMT16 (denoted by 𝑇2), reported
by [7]. To highlight the comparison, we re-scale both dis-
tributions’ sample computation time values to the [0.05, 0.2]s
range. In some instances, we also increase the computation
times by 2 − 6× to study the performance of CREW under
different training workloads. Here, the variation of training
time is used to simulate straggler workers in heterogeneous
environments. As we have two network settings 𝑁1 and 𝑁2,
by using different combinations of 𝑁1, 𝑁2, and 𝑇1 and 𝑇2, we
consider 4 workloads in tests: (𝑁1, 𝑇1), (𝑁1, 𝑇2), (𝑁2, 𝑇1), and
(𝑁2, 𝑇2). Regarding the model size (which is related to the
traffic load in model synchronization), according to [47], we
consider the number of parameters of the model at the millions
level. So, we assume the model has a default size of 180MB.
In communication-intensive scenarios, we would increase the
model size by 2×, 4×, and 8×.

Metrics. In practice, the efficiency of distributed training is
jointly determined by two factors: 1) the number of training
rounds needed to meet the stopping conditions like reaching
a target accuracy, or a predefined number of training rounds,
and 2) the average time of conducting a round of training.
Generally, in the context of partial reduce enabled heteroge-

1Note that, even for OPR, because of the asymmetric bandwidth of an inter-
worker connection, FCFS would take effects: the new broadcast transfer from
a worker might compete for a connection with slow ongoing scatter transfer.

8

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. Time Cost of Partial Reduce (s)

0

500

1000

1500

2000

2500

Nu
m

be
r o

f S
yn

c
 to

 C
on

ve
rg

e
MobileNet (IID)

P=3
P=5

(a) MobileNet (IID)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. Time Cost of Partial Reduce (s)

0

500

1000

1500

2000

2500

Nu
m

be
r o

f S
yn

c
 to

 C
on

ve
rg

e

MobileNet (Non-IID)
P=3
P=5

(b) MobileNet (Non-IID)

Fig. 3: When 8 workers jointly train MobileNet using partial
reduce, no matter whether the distribution of the MNIST
dataset is IID or non-IID, all workers take similar rounds of
synchronization to reach the targeted accuracy of 0.95.

neous DML, workers dynamically form partial reduce groups
in a random manner. Reducing the time cost of each round
of partial reduce model synchronization under the same con-
sistent hyper-parameter settings (including using the same 𝑃

value) [4, 16], would not change the statistical characterization
of how workers form partial reduce groups, and thus does
not touch the convergence behaviors of the training (e.g., the
number of training rounds to reach the target accuracy). As an
empirical study, we have employed our resource-limited server
to emulate the case that 8 workers use partial reduce based
model synchronization to train the model of MobileNet [48]
over the dataset of MNIST. To highlight the impacts of
the efficiency of partial reduce on the convergence behavior
of workers, we artificially set the completion time of each
partial reduce task to 𝑡 seconds, which is randomly selected
from the range of [0.8𝑥, 1.2𝑥] with equal probability. Here,
𝑥 denotes the average time cost of partial reduce operations
and ranges from 0.5 to 4.0 in tests. Regarding the distributions
of the training samples, besides Independent and Identically
Distributed (IID), we also test the scenario that the training
dataset on workers is non-IID to emulate the case of federated
learning [49]. To reduce the impacts of noises introduced by
the randomness of the distributed training, for the same 𝑥 and
𝑝, we re-run the training 10 times to calculate their average
values. As the results in Figure 3 show, for both IID and
non-IID data, all workers require consistent rounds of partial
reduce operations to reach the same target model accuracy of
0.95. Given that CREW aims at accelerating the execution
of partial reduce tasks rather than reducing the number of
training rounds to converge, we evaluate its performance using
direct metrics from the perspective of communication. Thus,
for all comparative schemes in tests, besides the time cost of
executing a round of partial reduce, we also assess them by
the number of training rounds each worker could complete in
a fixed period of time (i.e., with the default value of 50s in our
tests)—a large value means a faster synchronization. For each
parameter setting, we conduct at least 10 trials and describe
their distributions or compute the average values.

B. Completion of Partial Reduce

As Figure 4 shows, across all workloads, compared with
all the baselines, CREW achieves the best performance in
terms of the time of completing a partial reduce task. Indeed,

PS Ring ToA BLINK A2A OPR CREW
0

50

100

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N1 T1; p = 5
Both CREW and OPR use FCFS and N-A scheduling.

(a) Workload: (𝑁1, 𝑇1), 𝑝 = 5
PS Ring ToA BLINK A2A OPR CREW

0

50

100

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N1 T2; p = 5
Both CREW and OPR use FCFS and N-A scheduling.

(b) Workload: (𝑁1, 𝑇2), 𝑝 = 5

PS Ring ToA BLINK A2A OPR CREW
0

20

40

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N2 T1; p = 5
Both CREW and OPR use FCFS and N-A scheduling.

(c) Workload: (𝑁2, 𝑇1), 𝑝 = 5
PS Ring ToA BLINK A2A OPR CREW

0

20

40

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N2 T2; p = 5
Both CREW and OPR use FCFS and N-A scheduling.

(d) Workload: (𝑁2, 𝑇2), 𝑝 = 5

PS Ring ToA BLINK A2A OPR CREW
0

50

100

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N1 T1; p = 10
Both CREW and OPR use FCFS and N-A scheduling.

(e) Workload: (𝑁1, 𝑇1), 𝑝 = 10
PS Ring ToA BLINK A2A OPR CREW

0

50

100

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N1 T2; p = 10
Both CREW and OPR use FCFS and N-A scheduling.

(f) Workload: (𝑁1, 𝑇2), 𝑝 = 10

PS Ring ToA BLINK A2A OPR CREW
0

20

40

60

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N2 T1; p = 10
Both CREW and OPR use FCFS and N-A scheduling.

(g) Workload: (𝑁2, 𝑇1), 𝑝 = 10
PS Ring ToA BLINK A2A OPR CREW

0

20

40

60

Co
m

pl
et

io
n

Ti
m

e
of

On
e

Pa
rti

al
 R

ed
uc

e
(s

) # N2 T2; p = 10
Both CREW and OPR use FCFS and N-A scheduling.

(h) Workload: (𝑁2, 𝑇2), 𝑝 = 10

Fig. 4: Compared with PS, Ring, ToA, BLINK, and A2A,
both OPR and CREW need much less time (up to dozens)
to complete a round of partial reduce operation. Moreover,
beyond OPR, CREW accelerates the execution further, by
making use of all active workers along with their connections.

even OPR, i.e., the variant of CREW that only distributes the
workload of a partial reduce task to its participants, can greatly
outperform other baselines including BLINK and TOPOAD-
OPT. Here, both OPR and CREW schedule concurrent flows
following the FCFS policy and distribute the workloads among
workers in a network-aware (N-A) manner. Such results imply
that, despite solutions built upon spanning tree packing (e.g.,
BLINK [43] and TOPOADOPT [44]) can make more efficient
usage of the abundant network connections than solutions
relying on a single PS or Ring in theory, their performances
highly depend on the abilities of the proposed algorithms—
the results of BLINK and TopoAdopt are far from optimal and
there is a large room for improvement. Actually, due to their
complex algorithm designs, both BLINK and TOPOADOPT
are time costly. In contrast, CREW is fast and achieves the
best completion time—it is specialized to conduct optimized
partial reduce operations over fully-connected workers and the
most complicated part is to solve a simple LP.

C. Training Iterations

Next, we investigate the number of training iterations work-
ers would obtain for a period of 50s, under various partial
reduce implementation schemes. As the above results have
shown, OPR outperforms PS, Ring, BLINK, and TOPOAD-

9

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

10

20

Tr
ai

n
Ro

un
ds

N1 T1; p = 5
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(a) Workload: (𝑁1, 𝑇1), 𝑝 = 5

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

10

20

Tr
ai

n
Ro

un
ds

N1 T2; p = 5
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(b) Workload: (𝑁1, 𝑇2), 𝑝 = 5

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

20

40

Tr
ai

n
Ro

un
ds

N2 T1; p = 5
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(c) Workload: (𝑁2, 𝑇1), 𝑝 = 5

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

20

40
Tr

ai
n

Ro
un

ds

N2 T2; p = 5
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(d) Workload: (𝑁2, 𝑇2), 𝑝 = 5

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

10

20

Tr
ai

n
Ro

un
ds

N1 T1; p = 10
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(e) Workload: (𝑁1, 𝑇1), 𝑝 = 10

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

10

20

Tr
ai

n
Ro

un
ds

N1 T2; p = 10
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(f) Workload: (𝑁1, 𝑇2), 𝑝 = 10

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

20

40

Tr
ai

n
Ro

un
ds

N2 T1; p = 10
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(g) Workload: (𝑁2, 𝑇1), 𝑝 = 10

FS/
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

E-D
FS

E-D
FCFS

N-A
FS

N-A
FCFS

0

20

40

Tr
ai

n
Ro

un
ds

N2 T2; p = 10
N-A : network-aware E-D : evenly-divided

CREW
OPR
A2A

(h) Workload: (𝑁2, 𝑇2), 𝑝 = 10

Fig. 5: CREW vs A2A vs OPR under 4 workloads when 𝑝 = 5
and 10, respectively. Note that, CREW uses 𝑛 workers for each
partial reduce while OPR uses 𝑝 workers. Results confirm
that, the novel designs of CREW enable it to outperform all
the other two baseline schemes significantly.

OPT; thus, we use A2A and OPR as the baselines here. To
compare with network-aware model splitting and FCFS flow
scheduling, we also modify OPR and CREW to just evenly
split the model parameters into 𝑝 and 𝑛 blocks, and schedule
concurrent flows with FS. As a result, for each of them, we
have 4 variants: (E-D, FS), (N-A, FS), (E-D, FCFS), (N-A,
FS). But for A2A, there is no difference between FS and FCFS
scheduling since it would not encounter flow contentions. As
shown in Figure 5, where 𝑝 is set to 5 and 10 for the first
four figures and the last four figures, respectively, CREW
can always significantly speed up the model synchronization
process regardless of workload, and complete more model
training rounds during the same time. Compared with A2A
and OPR, when 𝑝 is 5, CREW achieves up to 12 − 15× and
8 − 9× speedup, respectively. And when 𝑝 is 10, CREW can
be at most 12 − 15× and 4 − 5× faster than the other two
communication schemes. This is mainly due to that CREW
divides the model into 𝑛 parts and leverages the entire network
to help the transmission of model parameters during model
synchronization. We can see that the gap between CREW and

� � �� ��
�

��

��

��

�	
��
��
��
��
�

P

 b l o c k i n g
 n o n - b l o c k i n g

N 1 T 1

(a) Workload: (𝑁1, 𝑇1)

� � �� ��
�

��

��

��

�	
��
��
��
��
�

P

 b l o c k i n g
 n o n - b l o c k i n g

N 1 T 2

(b) Workload: (𝑁1, 𝑇2)

� � �� ��
�

��

��

��

��

��

��

�	
��
��
��
��
�

P

 b l o c k i n g
 n o n - b l o c k i n g

N 2 T 1

(c) Workload: (𝑁2, 𝑇1)

� � �� ��
�

��

��

��

��

��

��

�	
��
��
��
��
�

P

 b l o c k i n g
 n o n - b l o c k i n g

N 2 T 2

(d) Workload: (𝑁2, 𝑇2)

Fig. 6: Compared with blocking scatter, the design of non-
blocking scatter always brings performance improvements (up
to 1.2× speedup) to CREW in tests.

OPR is getting smaller as 𝑝 goes up. This is because, with the
increase of 𝑝, OPR can split the model parameters into more
blocks and employ more workers for model synchronization.
Once the value of 𝑝 increases to 𝑛, the results of OPR
would be completely equivalent to that of CREW. In CREW,
network-aware model splitting and flow-level FCFS design
can always efficiently increase the train rounds compared to
evenly-divided and FS. When both apply network-aware model
splitting and flow-level FCFS in CREW, it is about 1.5 − 2×
faster than default evenly-divided and FS.

D. Benefits of Non-blocking Scatter

As mentioned in §IV-A2, the non-blocking scatter design
can further improve the bandwidth utilization of CREW.
Now, we verify this with experiments. As shown in Figure 6,
regardless of the workload, the non-blocking scatter design
always brings some performance improvements, completing
more training rounds in a fixed period of time, and achieving
up to 1.2× speedup compared to blocking scatter. However, in
a few scenarios, the performance gain is slight, which is related
to the network configuration, straggler distribution, and the
value of 𝑝. Since the performance of the non-blocking scatter
design is highly dependent on the workload and network
environments, by default, CREW uses the blocking scatter
implementation in other experiments.

E. Impact of Flow Scheduling Scheme

In §IV-C, we have discussed the possible scenarios of
concurrent flows in a link, and we indicate that because
of the importance of each task self, the flow that occurs

10

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

4 6 8 10 12
P

15

20

25

Tr
ai

n
Ro

un
ds

N1 T1
FL
TL
C1
C2
FS

(a) Workload: (𝑁1, 𝑇1)

4 6 8 10 12
P

15

20

25

Tr
ai

n
Ro

un
ds

N1 T2
FL
TL
C1
C2
FS

(b) Workload: (𝑁1, 𝑇2)

4 6 8 10 12
P

35

40

45

50

Tr
ai

n
Ro

un
ds

N2 T1
FL
TL
C1
C2
FS

(c) Workload: (𝑁2, 𝑇1)

4 6 8 10 12
P

35

40

45

50

Tr
ai

n
Ro

un
ds

N2 T2
FL
TL
C1
C2
FS

(d) Workload: (𝑁2, 𝑇2)

Fig. 7: The performance of CREW when different flow
scheduling schemes are used and the network-aware model
splitting design is enabled. Results confirm that, for the flow
scheduling problem CREW involves, flow-level FCFS (FL) is
good enough, outperforming FS, task-level FCFS (TL), and
the traffic type based prioritized scheme of C1 and C2.

first in a link should not be preempted by the flow that
occurs later, otherwise, it may cause stragglers in C1 case
or prevent receiving workers from turning to the next training
round in C2 case (i.e., task-level FCFS, or TL for short).
And we argue that the flow-level FCFS principle (or FL for
short) for bandwidth allocation can achieve the optimization
of training QoS. To verify this idea, we carry out experiments
to simulate the scenarios of C1 and C2, respectively. In C1,
we just simulate a flow belonging to multicast preempts a flow
belonging to scatter, which is opposite in C2. Besides, we also
compare the task-level FCFS design where the bandwidth is
preferentially allocated to the flow with a smaller 𝑝𝑖𝑑 value,
where 𝑝𝑖𝑑 is the index (with an increasing value) given by the
controller, identifying which partial reduce task this transfer
(flow) belongs to, which means that flows generated by earlier
partial reduce tasks obtain bandwidth preferentially.

Here, we present the comparison results under 5 flow
scheduling schemes and evaluate them by the number of
training rounds completed at the same time. As shown in
Figure 7, the performance of CREW degrades significantly
when bandwidth preemption occurs, especially when a flow
belonging to multicast preempts the bandwidth of a flow
belonging to scatter (i.e., C1). For simplicity, let’s express this
as a multicast flow preempts a scatter flow. This situation gets
so bad because the receiving worker (i.e., destination worker
𝑑 in §IV-C) must collect all 𝑝 scatter flows from the workers
in P and can it operate reduce computation (i.e., aggregation)
for a block of model parameters. If one of the scatter flows is
delayed to delivery, then the 𝑝 workers in P would get stuck
waiting for the aggregation result of the block corresponding
to that scatter flow. Instead, in C2, when a multicast flow is
preempted by a scatter flow, it only prevents the receiving
worker from getting the aggregation result, the other 𝑝 − 1
workers in P can still get the aggregation result on time, having

0 2 4 6 8 10 12 14 16 18 20
Fault Links

15

20

25

Tr
ai

n
Ro

un
ds

N1 T1
p=4
p=5
p=10
p=12

(a) Workload: (𝑁1, 𝑇1)

0 2 4 6 8 10 12 14 16 18 20
Fault Links

15

20

25

Tr
ai

n
Ro

un
ds

N1 T2
p=4
p=5
p=10
p=12

(b) Workload: (𝑁1, 𝑇2)

0 2 4 6 8 10 12 14 16 18 20
Fault Links

35
40
45
50

Tr
ai

n
Ro

un
ds

N2 T1
p=4
p=5
p=10
p=12

(c) Workload: (𝑁2, 𝑇1)

0 2 4 6 8 10 12 14 16 18 20
Fault Links

35

40

45

50

Tr
ai

n
Ro

un
ds

N2 T2
p=4
p=5
p=10
p=12

(d) Workload: (𝑁2, 𝑇2)

Fig. 8: The performance of CREW under different degrees of
network faults while the network-aware model splitting design
is always enabled. Results show that CREW is able to deal
with possible network outages properly and CREW’s scheme
of bandwidth-aware load balancing scheme can largely reduce
the impacts of network outages.

relatively less effect on performance. Regardless, preemption
always slows down model synchronization in various degrees.
Meanwhile, we observe that the performance of the task-level
FCFS and preemption of C1 is very close. This is because, in
C1, the multicast flow that preempts the scatter flow usually
has a smaller 𝑝𝑖𝑑, making its effect approximately equivalent
to task-level FCFS. Besides, according to the comparison
between flow-level FCFS and FS, we can infer that concurrent
flows in a link should also not share the bandwidth of the
link, as this is not conducive to minimizing the average
completion time. Comparing the results of flow-level FCFS
and task-level FCFS, it is found that flow-level FCFS is more
practical. Moreover, in all transfer scheduling scenarios, with
the increase of 𝑝, the number of training rounds that workers
can complete decreases. This is because the larger 𝑝 is, the
effectiveness of partial reduce to tolerate stragglers will be
weakened, and the training speed would slow down, which is
consistent with prior work [4].

F. Impact of Network Outage

Since connection failures are common in WAN scenarios,
we have designed failover schemes to cope with possible
network faults in §IV-B. To prove the effectiveness of our
scheme, we have evaluated the performance of CREW under
different degrees of network faults. By changing the number of
faulty links, we can simulate the different degrees of network
faults. As shown in Figure 8, at the beginning of the link
failure, the performance of CREW decreases significantly, but
with the deepening of the network fault degree (more faulty
links appear), the performance of CREW decreases very little.
This is mainly because we realize the data re-transmission
of faulty links based on a load balancing fashion, avoiding
using those links that are sending or will send heavy traffic.
Even if there are more faulty links, the traffic that needs to be

11

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

1 2 3 4 5 6
Scale Factor of the

Training Computation Time

40

50

Tr
ai

n
Ro

un
ds

N1
p=4
p=5
p=10
p=12

(a) Network Setting: 𝑁1

1 2 3 4 5 6
Scale Factor of the

Training Computation Time

60

80

100

Tr
ai

n
Ro

un
ds

N2
p=4
p=5
p=10
p=12

(b) Network Setting: 𝑁2

Fig. 9: The performance of CREW under different de-
grees of training computation times. Results indicate that,
for computation-intensive DML, the room for communication
optimization is limited and the performance of CREW is
related to internal characteristics of the workload.

2 4 6 8
Scale Factor of Model Size

20

40

Tr
ai

n
Ro

un
ds

N1 T1
p = 4
p = 5
p = 10
p = 12

(a) Workload: (𝑁1, 𝑇1)

2 4 6 8
Scale Factor of Model Size

25

50

75

100

Tr
ai

n
Ro

un
ds

N2 T1
p = 4
p = 5
p = 10
p = 12

(b) Workload: (𝑁2, 𝑇1)

Fig. 10: The performance of CREW under different model
sizes. Results imply that, thanks to its novel designs, CREW
could reduce the bottleneck impacts of model synchronization
for communication-intensive DML significantly.

re-transmitted would be evenly distributed among free links
across the entire network, with little performance degradation.
We also find that CREW is more susceptible to network faults
when 𝑝 is getting larger, because the larger the 𝑝 is, the more
workers will be involved in model synchronization, increasing
the re-transmission traffic.

G. Impact of DML Task Type

To test the performance of CREW under computation-
intensive machine learning models, we prolonged the time
distribution of 𝑇2 numerically by 2×, 3×, 4×, 5×, and 6×,
respectively. In these tests, the training is terminated once
the simulation time reaches 100s. As shown in Figure 9,
for both 𝑝 = 10 and 𝑝 = 12, the train rounds decrease
almost linearly with the increase of training time under the
bandwidth distribution of 𝑁1; for both 𝑝 = 4 and 𝑝 = 5,
their declines becomes slightly moderate. This is reasonable:
with the increase in computation time, the bottleneck of the
distributed training shifts from communication to computation;
the time cost of training computation would dominate the
entire training thus the room for communication optimization
that CREW could make use of, is limited in these cases.
Compared with the results on 𝑁1, CREW shows a slightly
better tolerance on slow down when network distribution
follows 𝑁2. And again, different from the results on 𝑁1, the
alleviation on 𝑁2 is more obvious with a large 𝑝. Such results
imply that the speedups that CREW could achieve are also
determined by the internal characteristics of the workload.

To test the performance of CREW under communication-
intensive machine learning models, we now increase the

0.0 0.1 0.2 0.3 0.4 0.5
Noise in Estimated Bandwidth

30

32

34

36

Tr
ai

n
Ro

un
ds

N2 T2 (Evenly-Divided)

p=4
p=5

p=10
p=12

(a) Workload: (𝑁2, 𝑇2)

0.0 0.1 0.2 0.3 0.4 0.5
Noise in Estimated Bandwidth

35

40

45

50

Tr
ai

n
Ro

un
ds

N2 T2 (Network-Aware)

p=4
p=5

p=10
p=12

(b) Workload: (𝑁2, 𝑇2)

Fig. 11: With the level of noise in the estimated bandwidth
increasing, the completion of partial reduce tasks under the
schedule of CREW (N-A) is slowed down slowly. In contrast,
CREW (E-D) is agnostic to the network bandwidth, yielding
a promising solution for unstable network environments.

default model size by 2×, 4×, and 8×, respectively, and test it
with four workloads. Like the study of computation-intensive
workloads, we also terminate the training once the simulation
time reaches 100s. As shown in Figure 10, compared with
computation-intensive scenarios where CREW yields little
gain, the outperforming of CREW in communication-intensive
scenarios is pretty obvious (the results of (𝑁1, 𝑇2), and (𝑁2, 𝑇2)
are quite similar thus omitted). The number of train rounds
does not decrease linearly with the increase in the model size.
CREW effectively alleviates performance degradation under
all workloads, which verifies that the design of CREW can
effectively utilize the bandwidth in the network to accelerate
model synchronization.

H. Impact of Inaccurate Bandwidth Estimation

Last but not least, given that in some cases, the available
bandwidth of WAN connections might not be perfectly esti-
mated or controlled, we now study the impacts of noise in es-
timated inter-worker connection capacities on the performance
of CREW. To do so, we suppose that the actual capacity of
a directed link is 𝑏 and the estimated value that CREW uses
to make decisions is 𝑏(1 + 𝑥). Here, 𝑥 is a random variable
following the uniform distribution of [−𝜆, 𝜆], and the value of
𝜆 is increased from 0.1 to 0.5. Despite the completion speed
of partially reduce tasks and the impacts of noise partially
depending on the type of workload, consistent phenomenons
are observed. As the case of workload (𝑁2, 𝑇2) in Figure 11
shows, the performance of CREW (E-D) is not impacted by
the noise, since it distributes the workload to workers agnostic
to the network bandwidth; in contrast, with the level of noise
increasing, the completion of partial reduce tasks under the
schedule of CREW (N-A) is slowed down slowly; and as
expected, it might be even worse than that of CREW(E-D) for
some workloads when the noise is significant (not shown here).
Thus, for very unstable network environments, we argue that
distributing the workload uniformly is a promising solution.

VI. RELATED WORK

In Section II, we have briefly overviewed the development
of Geo-DML and analyzed other partial reduce schemes in
detail. Now, we have a broader discussion on other straggler-
resilient techniques and communication optimization designs.

12

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

A. Straggler-Resilient Techniques

Recent works have shown that straggler workers are hard
or even impossible to avoid in real-world distributed training,
due to the ubiquitous heterogeneities stemming from various
aspects like multifarious computation capacities, imbalanced
training workloads, and unpredictable resource contention in
shared environments [4, 7, 45, 50]. The work of DLion [45]
showcases that, for the effects of heterogeneous computation
capacities, by dynamically adjusting the batch size settings for
workers accordingly, it might be possible to trim their com-
pletion times for a round of local training, yielding benefits to
data parallelism [45]. However, in some cases, the training
dataset samples themselves (e.g., videos, sentences) might
have various sizes or lengths, making the training workloads
imbalanced and unstable [7]; also, the computation capacities
of workers might be unstable because of resource contention
(e.g., in shared cloud environments) [7].

To be straggler-resilient, besides partial reduce, there are
several alternative designs [18, 51]. For example, based on
the parameter server framework [17], the work of [52] treats
these straggler workers as backup and computes the new
global model parameters only based on the results of the first
𝑘 completed workers, where the value of 𝑘 can be tuned
dynamically. Differently, schemes based on Asynchronous
Parallel (ASP) [53] address the issue by removing the barrier
between each round of local training. However, as the global
model on the parameter server might be aggregated from
arbitrarily stale models that introduce non-trivial noises/errors
to the training, ASP might make the distributed training non-
convergent [51]. To overcome this issue, the scheme of Stale
(-aware) Synchronous Parallel has been proposed, which lets
fast training workers wait for slow workers, provided the
gap between their training rounds exceeds the pre-defined or
dynamic-tuned threshold [18, 51]. Similar to SSP, to bound the
effects of stale updates in the context of cross-device federated
learning, given that there are a large number of heterogeneous
and unstable participating workers, instead of blocking the
faster workers, solutions like FedSA [54] exclude results that
are too stale. Distinguished from the above schemes and
following [4], CREW tames the effects of stragglers by only
conducting model synchronization for ready workers without
relying on centralized parameter servers.

B. Communication Optimization Strategies

Roughly, the principles of alleviating the bottleneck effects
of communication for DML can be classified into three or-
thogonal types: 1) reducing the traffic volume or communica-
tion frequency, 2) masking the communication with training
computation using parallelization/pipelining, and 3) making
efficient usage of all available network capacities.

Currently, gradient quantization, sparsification (e.g., Top-
k, random-k), and low-rank decomposition (or sufficient fac-
tors) [5, 55] are popular schemes that could significantly
reduce traffic volumes. As lossy compression schemes, they
generally work with error-feedback (EF) remediation designs.
Indeed, some existing partial reduce designs like [5, 6, 22]
can cut down the traffic load as well. Moreover, from another

view, at a high level, by using partial reduce or EF-enabled
sparsification, the model gradients or parameters are finally
synchronized in lower frequencies. Besides these schemes, in-
network cache/aggregation is another promising solution to
reduce the traffic volume, for both intra-datacenter distributed
training and federated learning [20, 56]. As the second type
of solution, given that deep neural networks are generally
trained layer-by-layer, a genetic design for the optimization
of communication is to mask the transmission with compu-
tation via pipeline. For example, workers can 1) split their
gradient/parameter tensors into partitions, such that parts of the
communication can overlap with computation, and at the same
time, 2) rearrange the involved transmissions respecting the
orders in which these partitions would be used in the forward
process so that the overlapping can be further improved [57].
Different from the above schemes, the third type of solution
aims at making efficient use of heterogeneous inter-worker
connections by 1) executing collective operations (e.g., AllRe-
duce) in a bandwidth- and topology- aware manner (e.g., via
multiple spanning trees [43, 44]), or 2) adjusting the inter-
worker network topology or/and link capacities respecting
their traffic patterns, if supported [58].

At the high level, from the view of the aggregator role of
each worker, CREW can be treated as sharing a similar idea of
finding multiple spanning trees for AllReduce operations. Nev-
ertheless, compared with BLINK [43] and TOPOADOPT [44],
CREW is more effective and powerful with an elegant design
that supports both non-blocking transmission and fast failover.
Besides, enhancing the performance of CREW with other
orthogonal techniques like lossy data compression [55] and
communication-computation overlapping [22], is promising
and interesting. We left them as future directions.

VII. CONCLUSION

In this paper, we presented CREW, an efficient partial
reduce implementation design for cross-cloud Geo-DML train-
ing. By balancing the involved communication and reduce
operations among all available workers respecting the state
of inter-cloud connections, and conducting FCFS-alike flow
scheduling, CREW could make effective usage of the avail-
able inter-cloud network to achieve efficient partial reduce.

REFERENCES

[1] R. Wang, S. Luo, K. Li, and H. Xing, “Efficient partial
reduce across clouds,” in Proceedings of the 6th Asia-
Pacific Workshop on Networking (APNet), Jul 2022, pp.
99–100.

[2] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R.
Ganger, P. B. Gibbons, and O. Mutlu, “Gaia: Geo-
distributed machine learning approaching lan speeds,”
in Proceedings of the 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2017, pp. 629–647.

[3] P. Zhou, Q. Lin, D. Loghin, B. C. Ooi, Y. Wu, and
H. Yu, “Communication-efficient decentralized machine
learning over heterogeneous networks,” in Proceedings

13

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

of the IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 2021, pp. 384–395.

[4] X. Miao, X. Nie, Y. Shao, Z. Yang, J. Jiang, L. Ma,
and B. Cui, “Heterogeneity-aware distributed machine
learning training via partial reduce,” in Proceedings of
the International Conference on Management of Data
(SIGMOD), 2021, pp. 2262–2270.

[5] P. Xie, J. K. Kim, Q. Ho, Y. Yu, and E. Xing, “Or-
pheus: Efficient distributed machine learning via system
and algorithm co-design,” in Proceedings of the ACM
Symposium on Cloud Computing, 2018, pp. 1–13.

[6] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated
learning: A segmented gossip approach,” in Proceedings
of the 1st International Workshop on Federated Learning
for User Privacy and Data Confidentiality, 2019.
[Online]. Available: http://arxiv.org/abs/1908.07782

[7] S. Li, T. Ben-Nun, S. D. Girolamo, D. Alistarh, and
T. Hoefler, “Taming unbalanced training workloads in
deep learning with partial collective operations,” in Pro-
ceedings of the 25th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP),
2020, pp. 45–61.

[8] L. Liu, H. Yu, G. Sun, L. Luo, Q. Jin, and S. Luo, “Job
scheduling for distributed machine learning in optical
wan,” Future Generation Computer Systems, vol. 112,
pp. 549–560, 2020.

[9] L. Luo, Y. Zhang, Q. Jin, H. Yu, G. Sun, and S. Luo,
“Fast synchronization of model updates for collaborative
learning in micro-clouds,” in Proceedings of the IEEE
23rd HPCC; 7th DSS; 19th SmartCity; 7th DependSys,
2021, pp. 831–836.

[10] P. Zhou, Q. Lin, D. Loghin, B. C. Ooi, Y. Wu, and
H. Yu, “Communication-efficient decentralized machine
learning over heterogeneous networks,” in Proceedings
of the IEEE 37th International Conference on Data
Engineering (ICDE), 2021, pp. 384–395.

[11] L. Liu, H. Yu, and G. Sun, “Reconfigurable aggregation
tree for distributed machine learning in optical wan,”
in Proceedings of the 3rd International Conference on
Applied Machine Learning (ICAML), 2021, pp. 206–210.

[12] M. Potheri, “Multi-cloud machine learning with data
from on-premises and training with google cloud ver-
tex platform,” https://blogs.vmware.com/apps/2021/11/
multicloud gcp vertex part1.html (Accessed date: Jul 13
2022), Nov 2021.

[13] A. Das, T. Castiglia, S. Wang, and S. Patterson, “Cross-
silo federated learning for multi-tier networks with verti-
cal and horizontal data partitioning,” ACM Transactions
on Intelligent Systems and Technology, vol. 13, no. 6, pp.
1–27, Sep 2022.

[14] G. Aceto, A. Botta, P. Marchetta, V. Persico, and
A. Pescapé, “A comprehensive survey on internet out-
ages,” Journal of Network and Computer Applications,
vol. 113, pp. 36–63, 2018.

[15] V. Giotsas, C. Dietzel, G. Smaragdakis, A. Feldmann,
A. Berger, and E. Aben, “Detecting peering infrastruc-
ture outages in the wild,” in Proceedings of the ACM
SIGCOMM Conference, 2017, pp. 446–459.

[16] L. Mai, G. Li, M. Wagenländer, K. Fertakis, A.-O.
Brabete, and P. Pietzuch, “Kungfu: Making training in
distributed machine learning adaptive,” in Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020, pp. 937–954.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su, “Scaling distributed machine learning with the
parameter server,” in Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implemen-
tation (OSDI), 2014, pp. 583–598.

[18] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B.
Gibbons, G. A. Gibson, G. Ganger, and E. P. Xing, “More
effective distributed ml via a stale synchronous parallel
parameter server,” in Advances in Neural Information
Processing Systems, C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Weinberger, Eds., vol. 26, 2013.

[19] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen,
Y. Huang, Y. Wang, Y. Xu, D. Zhuo, E. P. Xing, J. E.
Gonzalez, and I. Stoica, “Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learning,”
in Proceedings of the 16th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI), Jul.
2022, pp. 559–578.

[20] S. Luo, P. Fan, H. Xing, L. Luo, and H. Yu, “Eliminat-
ing communication bottlenecks in cross-device federated
learning with in-network processing at the edge,” in
Proceedings of the IEEE International Conference on
Communications (ICC), 2022, pp. 4601–4606.

[21] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project adam: Building an efficient and scalable deep
learning training system,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2014, pp. 571–582.

[22] P. Watcharapichat, V. L. Morales, R. C. Fernandez,
and P. Pietzuch, “Ako: Decentralised deep learning with
partial gradient exchange,” in Proceedings of the 7th
ACM Symposium on Cloud Computing, 2016, pp. 84–97.

[23] A. Sergeev and M. D. Balso, “Horovod: fast and easy
distributed deep learning in tensorflow,” CoRR, vol.
abs/1802.05799, 2018.

[24] H. Li, A. Kadav, E. Kruus, and C. Ungureanu, “Malt:
Distributed data-parallelism for existing ml applications,”
in Proceedings of the 10th European Conference on
Computer Systems (EuroSys), 2015, pp. 1–16.

[25] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis,
T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania,
and S. Chintala, “Pytorch distributed: Experiences on
accelerating data parallel training,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, pp. 3005–3018, 2020.

[26] S. Luo, P. Fan, K. Li, H. Xing, L. Luo, and H. Yu, “Fast
parameter synchronization for distributed learning with
selective multicast,” in IEEE International Conference
on Communications (ICC), 2022, pp. 4775–4780.

[27] Q. Luo, J. He, Y. Zhuo, and X. Qian, “Prague: High-
performance heterogeneity-aware asynchronous decen-
tralized training,” in Proceedings of the 25th Interna-
tional Conference on Architectural Support for Pro-

14

http://arxiv.org/abs/1908.07782
https://blogs.vmware.com/apps/2021/11/multicloud_gcp_vertex_part1.html
https://blogs.vmware.com/apps/2021/11/multicloud_gcp_vertex_part1.html

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

gramming Languages and Operating Systems (ASPLOS),
2020, pp. 401–416.

[28] I. Cano, D. Mahajan, G. M. Fumarola, A. Krishnamurthy,
M. Weimer, and C. Curino, “Towards geo-distributed ma-
chine learning,” IEEE Data(base) Engineering Bulletin,
vol. 40, pp. 41–59, Dec 2015.

[29] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated ma-
chine learning: Concept and applications,” ACM Trans-
actions on Intelligent Systems and Technology, vol. 10,
no. 2, pp. 1–19, jan 2019.

[30] “Fedai ecosystem,” https://www.fedai.org/cases/ (Ac-
cessed date: Jun 6 2024).

[31] A. Gibiansky and G. Diamos, “Baidu allreduce,”
https://github.com/baidu-research/baidu-allreduce
(Accessed date: Jul 13 2022), Feb 2017.

[32] P. Sanders, J. Speck, and J. L. Träff, “Two-tree algorithms
for full bandwidth broadcast, reduction and scan,” Paral-
lel Computing, vol. 35, no. 12, pp. 581–594, Dec 2009.

[33] J. Huang, P. Majumder, S. Kim, A. Muzahid, K. H. Yum,
and E. J. Kim, “Communication algorithm-architecture
co-design for distributed deep learning,” in Proceedings
of the ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), 2021, pp. 181–194.

[34] S. Luo, R. Wang, and H. Xing, “Efficient inter-datacenter
allreduce with multiple trees,” IEEE Transactions on
Network Science and Engineering, vol. 11, no. 5, pp.
4793–4806, 2024.

[35] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly:
A cost-efficient topology for high-radix networks,” in
Proceedings of the 34th Annual International Symposium
on Computer Architecture (ISCA), 2007, pp. 126–137.

[36] R. Rabenseifner, “Optimization of collective reduction
operations,” in Proceedings of the Computational Science
- ICCS 2004. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 1–9.

[37] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous
decentralized parallel stochastic gradient descent,” in
Proceedings of the 35th International Conference on
Machine Learning (ICML), ser. Proceedings of Machine
Learning Research, J. Dy and A. Krause, Eds., vol. 80,
10–15 Jul 2018, pp. 3043–3052.

[38] S. Luo, P. Fan, H. Xing, and H. Yu, “Meeting coflow
deadlines in data center networks with policy-based
selective completion,” IEEE/ACM Transactions on Net-
working, vol. 31, no. 1, pp. 178–191, 2023.

[39] M. K. Aguilera, W. Chen, and S. Toueg, “Using the heart-
beat failure detector for quiescent reliable communication
and consensus in partitionable networks,” Theoretical
Computer Science, vol. 220, no. 1, pp. 3–30, jun 1999.

[40] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron,
“Decentralized task-aware scheduling for data center
networks,” in Proceedings of the ACM SIGCOMM Con-
ference, 2014, pp. 431–442.

[41] P. Jain, S. Kumar, S. Wooders, S. G. Patil, J. E. Gonzalez,
and I. Stoica, “Skyplane: Optimizing transfer cost and
throughput using Cloud-Aware overlays,” in Proceedings
of the 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). Boston, MA:

USENIX Association, Apr. 2023, pp. 1375–1389.
[42] F. Lai, M. Chowdhury, and H. Madhyastha, “To relay or

not to relay for Inter-Cloud transfers?” in Proceedings
of the 10th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), Jul. 2018.

[43] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur,
J. Thelin, and I. Stoica, “Blink: Fast and generic col-
lectives for distributed ml,” in Proceedings of Machine
Learning and Systems, I. Dhillon, D. Papailiopoulos, and
V. Sze, Eds., vol. 2, 2020, pp. 172–186.

[44] L. Luo, S. Yang, W. Feng, H. Yu, G. Sun, and B. Lei,
“Optimizing communication topology for collaborative
learning across datacenters,” in Emerging Networking
Architecture and Technologies, W. Quan, Ed. Singapore:
Springer Nature Singapore, 2023, pp. 184–197.

[45] R. Hong and A. Chandra, “Dlion: Decentralized
distributed deep learning in micro-clouds,” in Pro-
ceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing
(HPDC), 2021, pp. 227–238.

[46] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and
Y. Liu, “BatchCrypt: Efficient homomorphic encryption
for Cross-Silo federated learning,” in Proceedings of the
USENIX Annual Technical Conference (USENIX ATC),
Jul. 2020, pp. 493–506.

[47] H. Pan, Z. Li, J. Dong, Z. Cao, T. Lan, D. Zhang,
G. Tyson, and G. Xie, “Dissecting the communication la-
tency in distributed deep sparse learning,” in Proceedings
of the ACM Internet Measurement Conference (IMC),
2020, pp. 528–534.

[48] “Mobilenet v3,” https://pytorch.org/vision/stable/models/
mobilenetv3.html (Accessed date: Jun 6 2024).

[49] H. Hsu, H. Qi, and M. Brown, “Measuring the
effects of non-identical data distribution for federated
visual classification,” in Neurips Workshop on Federated
Learning, 2019. [Online]. Available: https://arxiv.org/
abs/1909.06335

[50] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He,
Y. Li, L. Zhang, W. Lin, and Y. Ding, “MLaaS in the
wild: Workload analysis and scheduling in Large-Scale
heterogeneous GPU clusters,” in Proceedings of the 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Apr. 2022, pp. 945–960.

[51] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic
stale synchronous parallel distributed training for deep
learning,” in Proceedings of the IEEE 39th International
Conference on Distributed Computing Systems (ICDCS),
2019, pp. 1507–1517.

[52] C. Xu, G. Neglia, and N. Sebastianelli, “Dynamic backup
workers for parallel machine learning,” Computer Net-
works, vol. 188, p. 107846, 2021.

[53] T. Ben-Nun and T. Hoefler, “Demystifying parallel and
distributed deep learning: An in-depth concurrency anal-
ysis,” ACM Computing Surveys, vol. 52, no. 4, aug 2019.

[54] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang,
“Fedsa: A semi-asynchronous federated learning mech-
anism in heterogeneous edge computing,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 12,

15

https://www.fedai.org/cases/
https://github.com/baidu-research/baidu-allreduce
https://pytorch.org/vision/stable/models/mobilenetv3.html
https://pytorch.org/vision/stable/models/mobilenetv3.html
https://arxiv.org/abs/1909.06335
https://arxiv.org/abs/1909.06335

Published in IEEE Transactions on Parallel and Distributed Systems (Volume: 35, Issue: 11, November 2024)

pp. 3654–3672, 2021.
[55] H. Xu, C.-Y. Ho, A. M. Abdelmoniem, A. Dutta, E. H.

Bergou, K. Karatsenidis, M. Canini, and P. Kalnis,
“Grace: A compressed communication framework for
distributed machine learning,” in Proceedings of the
IEEE 41st International Conference on Distributed Com-
puting Systems (ICDCS), 2021, pp. 561–572.

[56] S. Luo, X. Yu, K. Li, and H. Xing, “Releasing the power
of in-network aggregation with aggregator-aware routing
optimization,” IEEE/ACM Transactions on Networking,
pp. 1–15, 2024.

[57] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,
and C. Guo, “A generic communication scheduler for dis-
tributed dnn training acceleration,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP), 2019, pp. 16–29.

[58] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia,
D. Mudigere, Y. Zhang, and A. Kewitsch, “TopoOpt: Co-
optimizing network topology and parallelization strategy
for distributed training jobs,” in Proceedings of the 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Apr. 2023, pp. 739–767.

Shouxi Luo (Member, IEEE) received the bache-
lor’s degree in communication engineering and the
Ph.D. degree in communication and information
systems from the University of Electronic Science
and Technology of China, China, in 2011 and 2016,
respectively. He is currently an Associate Professor
with Southwest Jiaotong University. His research
interests include data center networks, software-
defined networking, and networked systems.

Renyi Wang received the master’s degree in com-
puter science and technology from Southwest Jiao-
tong University, China, in 2023. His research inter-
ests include distributed deep learning and networked
systems.

Ke Li received the Ph.D. degree in communication
and information systems from the University of
Electronic Science and Technology of China, China,
in 2012. She is currently a Lecturer with Southwest
Jiaotong University. Her research interests include
machine learning, distributed systems, and the Inter-
net of Things.

Huanlai Xing (Member, IEEE) received the B. Eng.
degree in communications engineering from South-
west Jiaotong University, China, in 2006, the
M. Eng. degree in electromagnetic fields and wave-
length technology from the Beijing University of
Posts and Telecommunications, China, in 2009, and
the Ph.D. degree in computer science from the
University of Nottingham, U.K., in 2013. Currently,
he is an Associate Professor with Southwest Jiaotong
University. His research interests include mobile
edge computing, evolutionary computation, etc.

16

	Introduction
	Background and Motivation
	Cross-Cloud DML
	Partial Reduce
	Design Challenges

	CREW Overview
	CREW Algorithms
	Bandwidth-aware Block Generation
	Workload splitting for ready workers
	From blocking to non-blocking
	Time complexity

	Failover Schemes
	Flow Scheduling Principles

	Performance Evaluation
	Methodology
	Completion of Partial Reduce
	Training Iterations
	Benefits of Non-blocking Scatter
	Impact of Flow Scheduling Scheme
	Impact of Network Outage
	Impact of DML Task Type
	Impact of Inaccurate Bandwidth Estimation

	Related Work
	Straggler-Resilient Techniques
	Communication Optimization Strategies

	Conclusion
	Biographies
	Shouxi Luo
	Renyi Wang
	Ke Li
	Huanlai Xing

