
Published in IEEE Computer Architecture Letters, 2025. DOI: 10.1109/LCA.2025.3596616 ©IEEE

Checkflow: Low-Overhead Checkpointing for Deep
Learning Training

Hangyu Liu, Shouxi Luo, Ke Li, Huanlai Xing, Bo Peng

Abstract—During the time-consuming training of deep neural
network (DNN) models, the worker has to periodically create
checkpoints for tensors like the model parameters and optimizer
state to support fast failover. However, due to the high overhead of
checkpointing, existing schemes generally create checkpoints at a
very low frequency, making recovery inefficient since the unsaved
training progress would get lost. In this paper, we propose Check-
flow, a low-overhead checkpointing scheme, which enables per-
iteration checkpointing for DNN training with minimal or even
zero cost of training slowdown. The power of Checkflow stems
from the design of 𝑖) decoupling a tensor’s checkpoint operation
into snapshot-then-offload, and 𝑖𝑖) scheduling these operations
appropriately, following the results of the math models. Our
experimental results imply that, when the GPU-CPU connection
has sufficient bandwidth for the training workload, Checkflow
can theoretically overlap all the checkpoint operations for each
round of training with the training computation, with trivial or
no overhead in peak GPU memory occupancy.

Index Terms—Checkpointing; deep learning training; GPU
memory optimization; scheduling.

I. INTRODUCTION

As is known, the training of modern deep neural networks
(DNN) is generally time-consuming, during which various
errors might occur, making the entire job fail [1]. To reduce
wasted GPU hours and lost progress caused by failure, the
training workers have to create checkpoints, i.e., writing
crucial model states like parameter weights and optimizer
state to persistent storage, periodically. Such a mechanism
enables workers to resume a failed training job from its last
saved checkpoint rather than restarting from scratch; thus it
is widely used in practice. Traditional coarse-grained check-
pointing conserves GPU resources but leaves many iterations
unprotected against failures. More aggressive, high-frequency
checkpointing offers maximal resilience but incurs prohibitive
overhead. Indeed, high-frequency checkpointing mechanisms
generally face a dichotomy: they either minimize checkpoint-
ing latency at the cost of high peak GPU memory usage, e.g.,
Checkfreq [1], or conserve GPU memory but incur long stalls,
e.g., stalling the training to create checkpoints [2].

Distinguished from these solutions, in this work, we intro-
duce Checkflow, a novel framework designed to enable fine-
grained, per-iteration checkpointing without causing interfer-
ence to the training. Figure 1 outlines the full checkpointing
process. Checkflow focuses on optimizing the offload step
from GPU to CPU to reduce in-training overhead. Once a
snapshot is offloaded to CPU memory, it can be safely released
from GPU memory. The subsequent transfer from CPU to
disk can be handled asynchronously by the CPU without

This work was supported by NSFSC under Grant 2025ZNSFSC0489.
(Corresponding author: Shouxi Luo.)

The authors are with Southwest Jiaotong University, China.

GPU Mem CPU Mem
Disk

Checkpoint
Offload

Checkpoint
Restore

Checkpoint
Restore

Persist To
Disk

Fig. 1: Overview of a typical checkpointing workflow.

stalling training. The key idea behind Checkflow is to unify
checkpointing with tensor scheduling by modeling checkpoint
parameters as memory-managed tensors and jointly optimizing
their lifecycles within the operator schedule. Not only does
Checkflow successfully hide the checkpointing latency, but it
also introduces negligible memory overhead.

In summary, our contributions are twofold:
• ILP-based checkpointing scheduling: Similar to Check-

freq [1], Checkflow splits each non-activation tensor’s
checkpointing into two operations: snapshot (i.e., dupli-
cate it in the GPU memory) and offload (i.e., transfer
the duplication to persistent storage). Then, by encoding
the scheduling of crucial tensors’ checkpoint creation
(snapshot), preservation, and offloading as integer linear
programming (ILP) to solve, Checkflow can overlap these
checkpoint operations with training, without significantly
increasing the peak GPU memory occupancy.

• Experimental verification: Our case studies of the
training of eight representative DNNs imply that, the
per-iteration checkpointing design of Checkflow is low-
overhead, having negligible impacts on both the overall
training time and peak GPU memory usage.

In the following, we first discuss the limitations of the re-
lated work in Section II, then present the designs of Checkflow
in Section III. After that, we report the evaluation results in
Section IV and finally conclude the article in Section V.

II. RELATED SOLUTIONS AND THEIR LIMITATIONS

As DNNs continue to grow in size and complexity, efficient
checkpointing has become critical to support long-duration
training and ensure fault tolerance [1]. Prior studies have pro-
posed various checkpointing strategies, each offering distinct
trade-offs in stall time, memory overhead, and applicability
across models. We summarize three representative approaches.
• Synchronous checkpointing ensures consistency by

pausing training to write the complete model state to
persistent storage. This method is simple, broadly appli-
cable, and introduces no additional memory overhead,
contributing to its widespread use. However, it incurs
significant stall time during checkpointing, leading to
underutilization of GPU resources.

• Asynchronous checkpointing improves performance by
overlapping checkpoint I/O with computation. For exam-

1

Published in IEEE Computer Architecture Letters, 2025. DOI: 10.1109/LCA.2025.3596616 ©IEEE

ple, Checkfreq [1] employs a two-stage pipelining strat-
egy to effectively hide I/O latency, resulting in minimal
runtime overhead under favorable conditions. However,
it requires sufficient GPU memory to accommodate both
model parameters and checkpoint snapshot simultane-
ously, which may not be feasible for large models.

• Incremental and application-specific techniques, such
as Check-N-Run [3], reduce checkpoint size by log-
ging parameter updates and applying quantization. These
methods significantly reduce storage overhead and I/O
bandwidth for models with sparse parameter updates
(e.g., DLRM). However, they are tightly tailored to spe-
cific architectures and are not easily generalized to dense
models or vision tasks.

In summary, existing schemes suffer from three limitations:
• High memory overhead: Pipelined approaches often re-

quire storing full or partial checkpoints in GPU memory,
increasing peak memory usage and elevating the risk of
out-of-memory (OOM) errors.

• Limited flexibility: Many methods treat the entire model
as a single checkpointing unit, lacking support for dy-
namic fragmentation or adaptive scheduling based on
memory and I/O availability.

• Inefficient scheduling: Checkpoint operations are often
scheduled statically or conservatively, failing to exploit
low-memory or idle GPU periods during training.

III. CHECKFLOW

To address these limitations, we propose Checkflow, a low-
overhead checkpointing scheme for deep learning training. The
design of Checkflow is partially inspired by Checkfreq [1],
for decoupling each checkpoint operation into snapshot-then-
offload, and MODeL [4], for peak memory efficient fine-
grained operator scheduling. Our core innovation lies in es-
tablishing an integrated memory constraint model that treats
checkpoint parameters as specialized tensors subject to full-
lifecycle management. Specifically, Checkflow:
• Encodes checkpointing related actions (i.e., snapshot cre-

ation, preservation, and offload) as first-class constraints
within the optimization space to schedule;

• Guarantees that each target tensor completes snapshot
before being updated while optimizing the global peak
memory usage;

• Achieves efficient pipelining of computation executions
and checkpoint operations.

Leveraging the predictable structure of the training task’s
computation graph, Checkflow formulates the scheduling of
checkpointing related operations as an ILP problem. By inte-
grating checkpoint constraints directly into operator schedul-
ing, Checkflow could find memory-feasible execution plans
that minimize the additional memory footprint of checkpoint-
ing. Currently, Checkflow focuses optimizing the offload of
checkpoint from GPU to CPU. For the asynchronously persis-
tent to disks like SSDs, the CPU has a whole training iteration
time to do so. As our analysis in Section IV-B will show, with
the model and/or batch size increasing, the requirements on
the write throughput of the disk drops rapidly. Even if the

throughput becomes the new bottleneck, selective checkpoint
persist is a promising solution, which is left for future work.

Now, we explain Checkflow’s designs in detail.

A. Problem Formulation

1) Preliminary: Given a worker’s DNN training task, its
involved computation can be represented as a directed acyclic
graph (DAG), a.k.a., computational graph, or dataflow graph,
𝐺 = (𝑉, 𝐸), where its vertices 𝑉 are computational operators
like convolution, matrix multiplication, activation functions,
and directed edges 𝐸 are multidimensional tensors denoting
their data dependencies [5]. Here, 𝐸 includes all tensors
(activations and model weights); later we define �̂� ⊂ 𝐸

as the set of tensors to be checkpointed. Similar to the
work of [4], we assume that the training device (e.g., GPU)
can execute only one computational operator at any given
time. Accordingly, the execution of all operators 𝑉 can be
discretized into |𝑉 | steps, denoting their execution order.
Currently, Checkflow is tailored to the case where operators’
execution steps are already determined, e.g., by tools like
MODeL [4]. Accordingly, the steps at which activation tensors
would be created and discarded, and the parameter tensors
would be updated, are already known in advance. Here, we
let 𝑇 = {1, · · · , |𝑉 |} be the set of all steps, and use the binary
constant 𝑙𝑒,𝑡 to denote whether tensor 𝑒 is available at step 𝑡.

To be fault-tolerant, Checkflow creates checkpoints for
tensors like the parameter weights and optimizer states, which
are denoted by �̂� . Following the design of Checkfreq [1], for
each 𝑒 ∈ �̂� , Checkflow decouples its checkpoint operation into
two steps: 𝑖) duplicate 𝑒 in the GPU memory via snapshot,
resulting in a tensor namely sn(𝑒), then 𝑖𝑖) offload sn(𝑒) to
the CPU for the following persistent storage. For each tensor
𝑒, Checkflow uses the binary variables 𝐶sn(𝑒) ,𝑡 , 𝑃sn(𝑒) ,𝑡 , and
𝑆sn(𝑒) ,𝑡 to indicate whether 𝑒’s snapshot is created, preserved,
offloaded at step 𝑡, respectively.

Let �̄� = {sn(𝑒) : 𝑒 ∈ �̂�}, then we have
𝐶𝑒,𝑡 , 𝑃𝑒,𝑡 , 𝑆𝑒,𝑡 are binary, ∀𝑡 ∈ 𝑇,∀𝑒 ∈ �̄� (1)

2) Checkpointing Scheduling: For each snapshot tensor 𝑒 ∈
�̄� , only one action is permitted at step 𝑡.

𝐶𝑒,𝑡 + 𝑃𝑒,𝑡 + 𝑆𝑒,𝑡 ≤ 1, ∀𝑡 ∈ 𝑇,∀𝑒 ∈ �̄� (2)
A snapshot tensor 𝑒 can be preserved in the GPU memory
only if it was created or preserved in the previous step.

𝑃𝑒,𝑡 ≤ 𝐶𝑒,𝑡−1 + 𝑃𝑒,𝑡−1, ∀𝑡 ∈ 𝑇 \ {1},∀𝑒 ∈ �̄� (3)
And it must be created and offloaded exactly once.∑︁

𝑡∈𝑇
𝑆𝑒,𝑡 =

∑︁
𝑡∈𝑇

𝐶𝑒,𝑡 = 1, ∀𝑒 ∈ �̄� (4)

At the beginning, no snapshot tensors are held by the GPU.
𝑃𝑒,1 = 0, ∀𝑒 ∈ �̄� (5)

The snapshot of 𝑒 can be performed at step 𝑡, if and only if
this tensor is available in the GPU memory at that time.

𝐶sn(𝑒) ,𝑡 ≤ 𝑙𝑒,𝑡 , ∀𝑡 ∈ 𝑇,∀𝑒 ∈ �̂� (6)
And 𝑒’s offloading can be performed if and only if it was
created or resides in the GPU memory at the previous step.

𝑆𝑒,𝑡 ≤ 𝐶𝑒,𝑡−1 + 𝑃𝑒,𝑡−1, ∀𝑡 ∈ 𝑇 \ {1},∀𝑒 ∈ �̄� (7)

2

Published in IEEE Computer Architecture Letters, 2025. DOI: 10.1109/LCA.2025.3596616 ©IEEE

Finally, to ensure the consistency of checkpoints, creation
must happen before weight update. Letting 𝑢𝑒,𝑡 indicate
whether weight tensor 𝑒 is updated at step 𝑡, we have

𝑡−1∑︁
𝑡 ′=1

𝐶sn(𝑒) ,𝑡 ′ ≥ 𝑢𝑒,𝑡 , ∀𝑡 ∈ 𝑇 \ {1},∀𝑒 ∈ �̂� (8)

3) Limited Bandwidth: Recall that the execution order of
the computational operators has been scheduled. We further
use 𝜏𝑡 to indicate the actual execution time of the operator
running in step 𝑡. Let 𝐵𝑆 be the bandwidth of the high-speed
links like PCIe from the GPU memory to the CPU memory
for offloading, and 𝜂(𝑒) be the size of tensor 𝑒. Then, the total
volume of tensors moved in each step is limited by the product
of the link’s capacity and the time duration, i.e.,∑︁

𝑒∈�̄�
𝑆𝑒,𝑡 · 𝜂(𝑒) ≤ 𝐵𝑆 · 𝜏𝑡 , ∀𝑡 ∈ 𝑇 (9)

Whether checkpointing can be fully pipelined with training
depends on the interplay between the workload compute
time, checkpoint size, and available GPU-CPU bandwidth.
Specifically, Eq. (9) implies that GPUs with higher compute
power require higher GPU-CPU bandwidth for pipelining.

4) Peak GPU Memory Minimization: To minimize the peak
GPU memory usage, we introduce the variable peak_mem
and enforce the following constraint:

𝑝𝑒𝑎𝑘 𝑚𝑒𝑚 ≥
∑︁
𝑒∈�̄�

𝛼𝑒,𝑡 · 𝜂(𝑒) +
∑︁
𝑒∈𝐸

𝑙𝑒,𝑡 · 𝜂(𝑒), ∀𝑡 ∈ 𝑇 (10)

where
𝛼𝑒,𝑡 ≥ max(𝐶𝑒,𝑡 , 𝑃𝑒,𝑡 , 𝑆𝑒,𝑡), ∀𝑡 ∈ 𝑇,∀𝑒 ∈ �̄� (11)

Here, 𝛼𝑒,𝑡 indicates whether a snapshot tensor 𝑒 occupies the
GPU memory at step 𝑡 or not. Regarding the optimization goal,
Checkflow aims to minimize the 𝑝𝑒𝑎𝑘 𝑚𝑒𝑚 as follows.

Minimize 𝑝𝑒𝑎𝑘 𝑚𝑒𝑚 (12)

B. Scheduler Designs

Algorithm 1 takes as input the computation graph 𝐺, mem-
ory limit 𝑀 , the set of weight tensor snapshots 𝑆, and chunk
size limit per_size for splitting checkpoints, and outputs a
schedule satisfying all memory and scheduling constraints, or
reports infeasibility if no valid solution exists.

Checkflow formulates the joint scheduling of training and
checkpointing as an ILP problem, integrating memory us-
age, execution order, and data movement constraints (see
Algorithm 1). By solving this ILP with Gurobi, Checkflow
generates a schedule that overlaps checkpointing operations
with training computations whenever possible, minimizing
peak GPU memory usage while effectively hiding the time
cost of checkpointing.

In practice, the ILP model may not always yield a fea-
sible solution due to stringent constraints—such as those
in Eq. (9)—that cause scheduling conflicts. To handle this,
Checkflow employs an iterative refinement strategy as out-
lined in Algorithm 1. When infeasibility arises from data
movement constraints (e.g., limited bandwidth or overlapping
communication windows), Checkflow attempts to split large
checkpoints into smaller fragments constrained by a predefined
maximum size. These fragments can then be offloaded at

Algorithm 1 Checkpointing Optimization with Checkflow

1: function CHECKFLOW(𝐺, 𝑀 , 𝑝𝑒𝑟 𝑠𝑖𝑧𝑒, S)
2: 𝐺′ ← COPY(𝐺)
3: for 𝑆𝑖 ∈ S do
4: 𝐺′.add(𝑆𝑖)
5: end for
6: while true do
7: (𝑡, 𝑠, 𝑚𝑒𝑚) ← ILPSCHED(𝐺′, 𝑀)
8: if 𝑡 = 0 then return (TRUE, 𝑠, 𝑚𝑒𝑚)
9: else if 𝑡 = 1 then

10: SPLITCHECKPOINTS(𝐺′, 𝑝𝑒𝑟 𝑠𝑖𝑧𝑒)
11: else return (FALSE, 𝑛𝑖𝑙, 𝑛𝑖𝑙)
12: end if
13: end while
14: end function
15: function ILPSCHED(𝐺′, 𝑀)
16: 𝑚 ←build a ILP model following §III-A
17: solve 𝑚 to obtain its schedule 𝑠 and 𝑝𝑒𝑎𝑘 𝑚𝑒𝑚 𝑝𝑚

18: if 𝑝𝑚 is optimal then return (0, 𝑠, 𝑝𝑚)
19: else if Eq. (9) is violated then return (1, null, null)
20: else return (2, null, null)
21: end if
22: end function
23: function SPLITCHECKPOINTS(𝐺′, 𝑝𝑒𝑟 𝑠𝑖𝑧𝑒)
24: for each checkpoint 𝑆𝑖 in 𝐺′ do
25: if 𝑆𝑖 .𝑠𝑖𝑧𝑒 > 𝑝𝑒𝑟 𝑠𝑖𝑧𝑒 then
26: divide 𝑆𝑖 into ⌈𝑆𝑖 .𝑠𝑖𝑧𝑒/𝑝𝑒𝑟 𝑠𝑖𝑧𝑒⌉ parts
27: replace 𝑆𝑖 with divided parts in 𝐺′

28: end if
29: end for
30: end function

different time steps, enabling more flexible scheduling that
satisfies movement constraints.

If initial splitting still fails to meet bandwidth constraints,
Checkflow further refines the split granularity until each
offload fits within its compute window. Since checkpoint
transfer times are generally much shorter than training com-
putation times and the bandwidth is typically provisioned to
be sufficiently large, a feasible split can always be found. If
infeasibility results from exceeding the global memory limit,
Checkflow incrementally relaxes the memory budget and re-
solves until a feasible solution is obtained.

IV. PERFORMANCE EVALUATION

A. Methodology

We evaluate Checkflow on a diverse set of DNNs to
demonstrate its effectiveness and generality. Our evaluation
includes eight widely adopted architectures, AlexNet, BERT,
MNASNet, ResNet, ResNet3D, Transformer, VGG, and ViT,
with configurations same to these used in [4]. These mod-
els cover a wide range of application domains, including
image classification, natural language processing, and video
understanding. They also span both compact and large-scale
architectures. All experiments are conducted using a single
NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Silver

3

Published in IEEE Computer Architecture Letters, 2025. DOI: 10.1109/LCA.2025.3596616 ©IEEE

4214R CPU. Checkflow is implemented in Python 3.11 and
leverages Gurobi 11.0.1 to solve the ILP formulation.

We assume that the CPU-GPU PCIe bandwidth (𝐵𝑆) is
63GB/s. Because of the limited 24GB memory of RTX 3090
GPU, we are unable to train models like BERT with batch size
(bs) larger than 32. To perform consistent performance evalu-
ation for all models, following the settings used in MODeL [4],
we use bs = 1 and bs = 32 as representative settings.
Here, bs = 1 reflects memory-constrained or latency-sensitive
scenarios, while bs = 32 serves as a unified larger batch
configuration for comparative analysis. Indeed, larger batch
size settings (e.g., bs = 128, 256) lead to longer per-iteration
computation time, which would widen the time window for
overlapping and thus make per-iteration checkpointing easier
to realize. For each setting, the execution order of all training
operators is determined by MODeL [4]. Then, Checkflow
generates a checkpointing scheduling, aiming to reduce peak
memory usage while hiding the runtime cost of checkpointing
operations. By default, Checkfreq [1] is used as the baseline.

B. Results
Generally, we find that Checkflow is able to overlap all

checkpointing operations with the training in our tests. Re-
garding the peak GPU memory occupancy, as Figure 2a
illustrates, compared to Checkfreq [1], Checkflow reduces
the peak GPU memory by between 1% and 42% (12.8% on
average for bs = 32). This is mainly due to its ability to
overlap checkpoint memory with training memory. Models
with larger checkpoints, such as BERT and Transformer,
show relatively greater reductions (over 35% at bs = 32),
while models like MNASNet and ResNet benefit less due to
their smaller checkpoint sizes relative to their peak memory
usage. These results demonstrate that Checkflow effectively
reduces peak memory by hiding checkpoint overhead through
optimized scheduling. In addition to reducing peak memory
occupy, Figure 2b shows that Checkflow effectively conceals
the memory overhead introduced by checkpointing through
scheduling. When bs = 1, most models achieve no additional
peak memory usage, with BERT, MNASNet, and ViT attaining
this effect completely. A similar trend is observed for bs = 32,
where five out of eight models also show no additional peak
memory usage, and the remaining models still reduce over
90% of checkpoint-induced peak memory overhead.

To further analyze the impacts of 𝐵𝑆 and bs on the fea-
sibility of totally overlapping checkpointing with training, we
vary the values of 𝐵𝑆 and bs to reconduct tests. We observe
consistent results, but only report the representative results of
AlexNet and BERT in Table I due to the limitation of space.
As is shown, while BERT (bs = 32) remains feasible even at
20 GB/s due to its longer compute time per iteration, AlexNet
is feasible at 63 GB/s but becomes infeasible at 40 GB/s and
below when bs = 32. However, increasing AlexNet’s batch
size to 1024 restores feasibility across all bandwidth settings.
This confirms our approach is more suitable for large models
or large batch size, which provide wider scheduling windows
for checkpointing.

Now, we further theoretically analyze the requirements on
the write throughput of disk to support per-iteration checkpoint

TABLE I: Feasibility of Checkflow across various scenarios.

Model batch size 63 GB/s 40 GB/s 20 GB/s

AlexNet 32 ✓ ✗ ✗
AlexNet 1024 ✓ ✓ ✓
BERT 32 ✓ ✓ ✓

AlexNet
BERT
MNASNet

ResNet

ResNet3D

Transformer
VGG ViT

0

20

40

Re
du

ce
d

Pe
ak

 M
em

or
y

(%
)

Batch size 1 Batch size 32

(a) Reduced peak GPU memory

AlexNet
BERT
MNASNet

ResNet

ResNet3D

Transformer
VGG ViT

0

25

50

75

100

Ck
pt

 M
em

or
y

Re
du

ct
io

n
(%

)

Batch size 1 Batch size 32

(b) Reduced memory overhead
Fig. 2: Experimental results.

persist. We observe that it only becomes a limiting factor when
a small model is trained with a small batch size, e.g., AlexNet
(bs = 1) requires a write throughput larger than 37 GB/s in
theory. As the model and/or batch size increase, the required
throughput drops rapidly and would be smaller than 5 GB/s.

Lastly, although Checkflow relies on solving ILP models
using Gurobi, it can obtain the scheduling plan within tens of
seconds. As Checkflow works at the compilation stage, this
solving time does not affect the actual training.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose Checkflow, a low-overhead per-
iteration checkpointing solution for DNN training. By taking
advantage of decomputing and scheduling, Checkflow is able
to achieve substantial peak-memory savings and incurs negli-
gible preprocessing overhead, enabling efficient, fine-grained
checkpointing without impacting training throughput.

Limitations and future work. While the current version of
Checkflow is tailored to the case where the training job only
involves a single GPU, its core designs are compatible with
mixed-precision training and can be extended to multi-GPU
or multi-node scenarios by formulating inter-device collective
communication as specific schedulable operations. However,
extending it to support tensor and model parallelism would
introduce more complex dependencies and heterogeneous
communication patterns, which pose both system-level and
algorithmic challenges. In addition, to make Checkflow prac-
tical, full integration with training frameworks like PyTorch is
also needed to validate Checkflow’s practicality and address
possible interference with training operators. We leave all these
as important directions for future work.

REFERENCES

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “CheckFreq: Frequent,
fine-grained dnn checkpointing,” in FAST, 2021, pp. 203–216.

[2] E. Rojas et al., “A study of checkpointing in large scale training of deep
neural networks,” arXiv preprint arXiv:2012.00825, 2021.

[3] A. Eisenman et al., “Check-N-Run: a checkpointing system for training
deep learning recommendation models,” in NSDI, 2022, pp. 929–943.

[4] B. Steiner et al., “Model: memory optimizations for deep learning,” in
ICML, 2023, pp. 32 618–32 632.

[5] L. Zheng et al., “Alpa: Automating inter- and Intra-Operator parallelism
for distributed deep learning,” in OSDI, Jul. 2022, pp. 559–578.

4

	Introduction
	Related Solutions and Their Limitations
	Checkflow
	Problem Formulation
	Preliminary
	Checkpointing Scheduling
	Limited Bandwidth
	Peak GPU Memory Minimization

	Scheduler Designs

	Performance Evaluation
	Methodology
	Results

	Conclusion and Future Work
	References

