
Future Generation Computer Systems 174 (2026) 107983

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Approximate Gradient Synchronization With Adaptive Quantized Gradient
BroadcastI

Shouxi Luo a,b,c ,∗, Xue Liu a, Ke Li a, Huanlai Xing a , Xu Zhang d
a School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
bManufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province, Southwest Jiaotong
University, Chengdu, 611756, China
c Tangshan Institute, Southwest Jiaotong University, Tangshan, 063000, China
d University of Leeds, Leeds, LS2 9JT, United Kingdom

A R T I C L E I N F O

Keywords:
Distributed deep learning
Communication optimization
Computation-communication overlap
Quantization

 A B S T R A C T

Given the layered training workflow of deep neural networks, recent advances have shown that, by splitting
gradients into blocks and rearranging their transmission, distributed deep learning (DDL) workers can overlap
parts of the communication with computation to hide the overhead of model synchronization. However, not
all communication can be masked perfectly (e.g., that of the first-layer gradients). A promising solution is
to transmit quantized gradients instead of raw values to eliminate the communication bottleneck further.
In this paper, we propose AQGB, Adaptive Quantized Gradient Broadcast, to accelerate the convergence of
data-parallel distributed training through designing efficient multi-level quantization and flexible quantization
ratio control. Distinguished from existing fixed-quantization schemes, AQGB can adjust the level of quantization
respecting the network state and the training progress to maximize the computation-communication overlap
(CCO), which is quantified by a novel metric ROW (the Ratio of Overlap time to Wait time). Compared with
no-quantization and 4bit-fixed QSGD quantization, AQGB could accelerate the convergence speed of training
(regarding the time to converge) by about 3.15× and 1.24×, respectively.
1. Introduction

To guarantee the convergence of training, workers in data-parallel
distributed deep learning (DDL) generally have to synchronize their
local results (e.g., gradients) before iterating to the next round of
training [1–7]. Recent studies have shown that the communication
triggered for the synchronization of model parameters could dominate
the entire training, becoming the system bottleneck [8,9]. Such an
issue is getting more serious as large models are getting popular [2,
3,10]. To deal with this, numerous optimization designs including data
compression [5], tensor fusion [6], and communication scheduling [4,7],
are proposed, to reduce the time that training workers are blocked
by communication, by reducing the traffic volume and/or by overlap-
ping computation with independent communication [4,5,11]. Indeed,
as orthogonal, these schemes can be employed jointly. For instance,
using gradient quantization to enhance communication scheduling is a

I This work was supported in part by NSFC, China under Grant 62002300, in part by NSFSC, China under Grant 2025ZNSFSC0489, in part by the Hebei
Natural Science Foundation, China under Grant F2025525008, and in part by the Fundamental Research Funds for the Central Universities, China under Grant
2682024ZTPY050. A brief description of the preliminary design of this paper was presented in the Poster session of APNet 2022 as a 2-page extended abstract
DOI:10.1145/3542637.3543708.
∗ Corresponding author.
E-mail address: sxluo@swjtu.edu.cn (S. Luo).

promising solution: as deep neural networks (DNNs) are trained layer-
by-layer, by reordering the tensor transmissions for different layers to
overlap communication with computation, workers could hide some
of the communication overheads [4,7]; and for communication that
cannot be masked, by transmitting quantized-yet-error-controlled gra-
dients rather than their original values, workers can further reduce the
involved traffic load along with the hanging time, thus accelerating the
training iteration [12].

However, as a lossy compression technique, gradient quantization
has the possible cost of reduced model accuracy or increased rounds to
convergence [5] (see Fig. 2). Moreover, in large-scale shared clusters,
because various distributed applications are likely to co-locate [13,
14], the available bandwidth a transfer could use is time-varying.
Accordingly, a perfect quantization scheme should have the ability
to adapt its level of compression respecting the network dynamics,
given that compression schemes with better quality might lead to a
https://doi.org/10.1016/j.future.2025.107983
Received 7 February 2025; Received in revised form 11 June 2025; Accepted 18 Ju
vailable online 1 July 2025
167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and
ne 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-4041-3681
https://orcid.org/0000-0002-6345-7265
http://dx.doi.org/10.1145/3542637.3543708
mailto:sxluo@swjtu.edu.cn
https://doi.org/10.1016/j.future.2025.107983
https://doi.org/10.1016/j.future.2025.107983
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107983&domain=pdf

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
better model quality or faster convergence [5,15–17]. Unfortunately,
to the best of our knowledge, none of the existing schemes have
supported this, as they all adopt fixed and inflexible quantization
designs [5], resulting in inefficient performance in terms of both the
computation-communication overlap (CCO) and the utilization of net-
work bandwidth. More specifically, when there is sufficient network
bandwidth, a strict fixed quantization setting would suffer from low
bandwidth usage and high quantization loss; on the contrary, when
the available network bandwidth is low, a mild fixed quantization
configuration would lead to very long communication times, which
might hang the dependent training computation.

To fill the gap, in this paper, we propose AQGB (Adaptive Quantized
Gradient Broadcast),1 a novel approximate gradient synchronization
scheme for DDL, embodying the idea of dynamically adjusting the
quantization level of gradients respecting both the training progress
and network status. Generally, in DDL, it could take up to thousands
of rounds of iterative training for a model to converge; and during this
progress, gradients are produced (by the backward-propagation), then
consumed (by the forward-propagation) in layer-wise, or more refined,
in block-wise manners [4]. By profiling several rounds of training, it
is possible to estimate the (soft) deadline for the transmission of each
gradient, respecting the goal of maximizing the CCO. Based on the
profiled deadlines and updated network status, AQGB could achieve
‘‘perfect’’ overlapping and network utilization in a dynamic system.

Despite being attractive, making the above idea come true is non-
trivial, as the following design challenges must be addressed. First of
all, gradient compression (e.g., quantization) could reduce the traffic
volume; however, as we will show in this paper, it might also reduce the
overlap between computation and communication (i.e., over-killing);
thus, to avoid this problem, we need a suitable metric to evaluate
and act as the optimization goal (i.e., C1). Secondly, to reduce the
wait/blocked time while maximizing the CCO, we need a scheme to
dynamically adjust the level of quantization, respecting the training
progress and network status (i.e., C2). Last but not least, to sup-
port adaptive gradient quantization, we need a novel scheme support-
ing multi-level compression with low encoding/decoding overheads
(i.e., C3).

To address C1, we propose the novel metric of ROW, which could
capture both the wait time of workers and the achieved CCO, and
use it as the optimization goal of AQGB. Then, based on ROW, we
design a progress-aware quantization ratio control algorithm for AQGB,
enabling training workers to adjust their level of quantization respect-
ing the training progress and network state, in a best-effect manner,
thus addressing C2. To support hierarchical gradient quantization and
deal with C3, we further design a flexible and efficient encode/decode
scheme of TFP, based on the truncation of floating-point numbers for
AQGB. It is worth mentioning that, as a generic approximate gradient
synchronization framework, AQGB can also work with other multi-level
quantization schemes beyond TFP; and we leave this as future work.

Extensive performance studies confirm that, for a targeted compres-
sion ratio, the impact of our proposed TFP on the training conver-
gence is quite similar to that of the well-known QSGD quantization
scheme [18], with much simple truncation-based encode/decode de-
signs; and by dynamically adjusting the compression ratio of TFP-coded
gradients respecting the network status and training progress to max-
imize CCO, AQGB could make more efficient use of the network to
accelerate the convergence of the distributed training. For example,
in our tests, compared with no quantization and 4 bit fixed QSGD
gradient quantization, AQGB could accelerate the convergence speed of
training (in terms of the time to converge) by about 3.15× and 1.24×,
respectively.2

1 AQGB is designed to be decoupled from the transport protocols and sits
at the application layer. This allows it to work with any existing reliable
communication protocol, depending on what the underlying network provides.
2
Fig. 1. The workflow of workers training a DNN model with data-parallel SGD
algorithms.

In summary, this paper mainly makes five contributions.

• An analysis of the demands and metric of communication opti-
mization for data-parallel DDL (Section 2);

• ROW (Ratio of the Overlap time to Wait time), a metric capturing
both the wait time of workers and CCO (Section 3);

• AQGB, an approximate-yet-consistent gradient synchronization
framework built upon adaptive quantized gradient broadcast, to
optimize the ROW for DDL (Section 4.2);

• A progress-aware quantization ratio control algorithm that could
adjust the level of quantization respecting the training progress
and network state (Section 4.3); and

• TFP, a flexible and efficient encode/decode scheme based on the
Truncation of Floating-Point numbers, that supports hierarchical
gradient quantization (Section 4.4).

In the rest of the paper, we first introduce the background and
motivations in Section 2, then describe the definition of ROW in Sec-
tion 3. After that, we look into the design details of AQGB in Section 4.
Performance studies and related work are presented in Sections 5 and
6, respectively; and finally, we conclude the paper in Section 7.

2. Background and motivation

As the background, we first overview the workflow of data-parallel
DDL (Section 2.1). Based on this, we then analyze why CCO is the right
metric for the involved communication optimization, which motivates
the design of AQGB (Section 2.2). Finally, we discuss the limits of
existing solutions (Section 2.3).

2.1. Data-parallel distributed deep learning

Nowadays, DNN models are generally trained with the well-known
algorithm of Stochastic Gradient Descent (SGD) or its variants with
iterative designs. In each round, a batch of training data samples will
be selected. As Fig. 1 shows, with these samples, a training algorithm
first conducts a forward propagation (FP) to obtain the loss values;
based on which, a backward propagation (BP) is then processed to
update the values of model parameters. Thanks to the specific structure
of DNNs, both the forward and backward progress are conducted in
layer-wise, or even more fine-grained, block-wise manners [4]. In data-
parallel distributed training, the same model is updated by a group
of workers, each of which only holds a part of the entire training
data. To guarantee the convergence of distributed training, workers
would synchronize their locally updated models or gradients periodi-
cally during the training. Obviously, following such a design, a worker
can start the synchronization of a parameter, once it is generated
during the backward propagation; and the worker could not conduct

2 Let 𝑡𝐴 and 𝑡𝐵 be the time workers need to complete a given round of
training under the scheme of 𝐴 and 𝐵, respectively; then, the speedup of 𝐴
over 𝐵 is defined by 𝑡𝐵 .
𝑡𝐴

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 2. Gradient quantization could lead to slower convergence. Consider 4-bit quanti-
zation and 8-bit quantization as examples, our proposed TFP would achieve comparable
performances with QSGD in terms of the impacts on the training loss.

the related forward propagation computation in the next round until
the synchronized model (or gradient) value is obtained [4].

Abundant recent studies [4–6,19] have shown that when training
large models over a massive dataset with a large number of workers,
the time it takes for workers to conduct the synchronization would
dominate the entire train; thus, optimizing the communication involved
becomes critical for the performance optimization of large-scale DDL
training.

2.2. The right metric for communication optimization

In practice, workers in DDL can execute the model synchroniza-
tions with various communication designs, including parameter server,
ring- or tree- based allreduce, peer-to-peer direct delivery, and ran-
dom gossip [20–23]. To relieve the bottleneck effects of the involved
communication, a large amount of model or gradient compression
methods have been proposed. According to [5], they can be classified
into four types, namely, quantization, sparsification, hybrid, and low-
rank, respectively. At a high level, all these schemes target the goal of
reducing the impacts of communication bottlenecks in synchronization
to make DDL more efficient. However, at the low level, as compression-
based solutions, they mainly pursue the direct objective of reducing the
volume of involved traffic, yielding a gap from the original goal. Such
a mismatching might lead to a loss of performance.

More specifically, as Fig. 1 shows, DNN models are trained in a
layer-wise manner; and the effects of communication bottleneck can
be reduced by pipelining the computation with independent communi-
cation. For example, for DDL, workers can make a layer’s FP and BP
computation overlap with the communication triggered by a deeper
layer, using pipeline and layer-aware flow scheduling techniques [4,6].
By reducing the traffic volume involved in model synchronization,
compression techniques are able to cut down the time cost of communi-
cation. However, they might be over-killing—Since the synchronization
of some layers’ parameters might not be the communication bottle-
neck, hence compressing them to reduce the traffic volume might not
improve the CCO. Moreover, recent studies have shown theoretically
and empirically that, in general, for a compression scheme, increasing
the compression quality (e.g., sending more data to reduce the variance)
for the synchronization could lead to a better model accuracy or faster
convergence [5,15–17].

As Fig. 2 shows, we have witnessed such phenomena in experiments
(where TFP is the quantization scheme we proposed in this paper,
detailed in Section 4.4). Fig. 2(a) demonstrates the declines of training
the ResNet50 model upon CIFAR10, under different levels of QSGD-
based gradient quantization settings. Here, the workload is distributed
among 4 workers with mini-batchsize = 128; on each worker, except
for the case of 1bit-SGD, the SGD optimizer is used without enabling
Error-Feedback (EF); the learning rate is set to 0.1 initially and would
be decayed 10 every 30 epochs. It is obvious that, for the EF-disabled
3
training of ResNet50, the higher level of quantization significantly
leads to a slower convergence speed; and even worse, because of the
lossy gradient quantization, the model would finally converge to a
much worse accuracy. In practice, for some models, the side effect
of lossy gradient quantization can be partially relieved by the design
of EF. Unfortunately, due to its high extra memory occupy, the EF
mechanism might be disabled when training very large models [24].
Moreover, as recent studies show [25], there are some types of models
like ResNeXt101, GNMT, Mask RCNN, and BERT, that are very sensitive
to the noise in gradient quantization and EF designs are unable to fix.
For instance, as Fig. 2(b) shows, even with EF, the convergence speed of
training ResNeXt101 upon four workers using the Adam optimizer with
the learning rate of 1e−4, can be slowed down by the quantization of
gradients. Here, 2-8bit refers to the setting of randomly compressing
each gradient value with either 2 bit QSGD or 8 bit QSGD, with the
equal probability. Thus, existing compression schemes are far from
optimal due to their misleading low-level optimization goals.

Despite some recently proposed schemes like DC2 [19], AQG [26],
and AC-SGD [27] having the ability to adjust the compression ratio
dynamically, we argue that they suffer from a similar problem as well
since they are essentially agnostic to the opportunity of CCO in DDL,
by design.

In a nutshell, for DDL tasks, directly maximizing the CCO, rather
than other alternative metrics like the reduced traffic volume, is a better
optimization goal.

2.3. Limits of existing solutions

We are not the first who directly targets the goal of maximizing
the CCO. For example, ooo (out-of-order) [28] tries to maximize the
overlap by reordering the backprop progress; ByteScheduler [4,29] use
the design of rescheduling the high-level transmission order of low-
level flow/packet priorities. However, since only using scheduling or
reordering techniques, which would not change the total traffic volume,
they are with limited abilities and are unable to deal with the case
where the available bandwidth will change in dynamic. Indeed, by
compressing the synchronization communication for DDL in a progress-
aware manner, training workers can not only optimize the CCO but
also be able to keep the same overlap to mask the possible computa-
tion or communication stragglers, by adjusting the compression ratio
adaptively.

To achieve the above goal, the foundation is to quantify the CCO
explicitly. Despite several recent works having tried [30,31], as we
will show in the next section, their proposed metrics fail to capture
the adaptive compressibility of the involved transfers, leaving room for
improvement.

3. Quantifying the overlap

Before presenting the detail of our proposed AQGB, in this section,
we look into the foundational problem of how to formally quantify
the CCO for DDL. We first discuss the drawbacks of existing schemes,
𝑇𝑤𝑎𝑖𝑡 [31] and OSF [30] (Section 3.1), then propose our answer, ROW,
a better metric defined as the Ratio of the Overlap time to Wait time,
for the problem (Section 3.2).

3.1. Drawbacks of 𝑇𝑤𝑎𝑖𝑡 and OSF

The overlap between the computation and communication can be
partially quantified by 𝑇𝑤𝑎𝑖𝑡 and OSF.

Recall that, in DDL, a worker could not conduct FP on a layer before
the synchronization of the corresponding parameters is completed; thus
a good CCO optimization should greatly reduce the time that each
work has to wait for the synchronization to complete. Motivated by
this, the work of [31] uses 𝑇𝑤𝑎𝑖𝑡, the total wait time each worker has
encountered in a round of training (e.g., ∑ 𝑡𝑤 in Fig. 3(a)) as the
𝑖 𝑖

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 3. Examples showcasing the definitions of 𝑇𝑤𝑎𝑖𝑡 [31], OSF [30], and our proposed
ROW, along with why ROW is better than the other two. Note that, the 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 used by
OSF is generally larger than the actual communication time, as it also includes the idle
time slots caused by slow BP. Also, 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is defined as the overlap between 𝑇𝑐𝑜𝑚𝑝 and
𝑇𝑢𝑝𝑑𝑎𝑡𝑒; while, the 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 in ROW is defined as the overlap between 𝑇𝑐𝑜𝑚𝑝 and 𝑇𝑐𝑜𝑚𝑚,
which is more accurate.

metric to minimize. However, as an implicit metric, it is unable to
capture the CCO during the BP computation; thus, like the case of
current CCO-agnostic compression techniques, a scheme might be over-
killing on reducing the traffic volume when only trying to minimize
𝑇𝑤𝑎𝑖𝑡 (e.g., Fig. 3(c)).

Besides 𝑇𝑤𝑎𝑖𝑡, more recently, the work of [30] proposes OSF, i.e.,
Scaling Factor considering Overlap, defined as 𝑇𝑐𝑜𝑚𝑝

𝑇𝑐𝑜𝑚𝑝+𝑇𝑢𝑝𝑑𝑎𝑡𝑒−𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝
, to for-

mulate the scalability of data-parallel DDL tasks, by taking the CCO
into consideration. As Fig. 3(b) shows, given a round of training, 𝑇𝑐𝑜𝑚𝑝
is the total computation time; 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 is the duration starting from the
beginning of model synchronization to its end, which is generally larger
than the actual communication time, as it also includes the idle time
slots caused by slow BP computation; and 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is computation time
slots that overlap with 𝑇𝑢𝑝𝑑𝑎𝑡𝑒. Obviously, such a design overlooks the
fact that parts of the synchronization communication can overlap with
the next round of FP processing as well, as workers could not start the
FP until the entire synchronization completes. Thus, OSF falls short.
Indeed, in such a setting (i.e., no communication overlaps with the
FP computation), there would be no wait time involved in each FP;
then, we would have 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑤𝑎𝑖𝑡 and
𝑂𝑆𝐹 = 𝑇𝑐𝑜𝑚𝑝 . That is to say, given a training task, maximizing
𝑇𝑐𝑜𝑚𝑝+𝑇𝑤𝑎𝑖𝑡

4
the 𝑂𝑆𝐹 is equivalent to minimizing the 𝑇𝑤𝑎𝑖𝑡. Thus, 𝑂𝑆𝐹 suffers from
the same problems faced by 𝑇𝑤𝑎𝑖𝑡.

3.2. Our proposed ROW

According to the workflow of DDL shown in Fig. 1, the straightfor-
ward design is to directly use the duration of the overlap time between
the computation and communication as the quantification of CCO,
and as the metric to optimize. However, like 𝑇𝑤𝑎𝑖𝑡, such a definition
would work fine for communication optimization designs that would
not change the size of traffic volume (e.g., flow scheduling alone).
Once compression techniques are employed, it is unable to capture the
possibility that, the wait time before the FP process of the first layer,
can be reduced by compression techniques as well.

Taking all the above considerations into account, in this paper,
we propose ROW, the Ratio of Overlap time to Wait time, to quan-
tify the overlap, as Eq. (1) shows. Different from OSF (Fig. 3(b)),
the 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 used in ROW (Fig. 3(c)) is exactly the total overlap time
between the 𝑇𝑐𝑜𝑚𝑝 and 𝑇𝑐𝑜𝑚𝑚 (rather than 𝑇𝑢𝑝𝑑𝑎𝑡𝑒). Obviously, by pursu-
ing the objective of maximizing ROW, a communication optimization
scheme would be enforced to only reduce the bottleneck. As examples
in Fig. 3 show, ROW is more powerful than 𝑇𝑤𝑎𝑖𝑡 and OSF, as it
supports compression-based optimizations and captures whether the
compression is over-killing or not.

ROW (𝑜𝑓 𝑎 𝑤𝑜𝑟𝑘𝑒𝑟) ∶=
𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑇𝑤𝑎𝑖𝑡

(1)

In practice, both computation and communication stragglers are
prone to occur during training [32]. Moreover, when adaptive compres-
sion techniques are employed, the traffic volume would not be fixed.
Thus, for a given distributed training task, workers are likely to have
various 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝s and 𝑇𝑤𝑎𝑖𝑡s, and their values might change with time. Let
𝑇 𝑖
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑇 𝑖

𝑤𝑎𝑖𝑡 be the current overlap time and wait time experienced
by worker 𝑖. We define the ROW of the entire cluster as the ratio of all
workers’ minimum overlap time to their maximum wait time, as Eq. (2)
specifies.

ROW (𝑜𝑓 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑚𝑤𝑜𝑟𝑘𝑒𝑟𝑠) ∶=
min𝑚𝑖=1 𝑇

𝑖
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

max𝑚𝑖=1 𝑇
𝑖
𝑤𝑎𝑖𝑡

(2)

4. AQGB

Based on ROW, we propose AQGB, an approximate gradient syn-
chronization scheme built upon Adaptive Quantized Gradient Broad-
cast, for data-parallel DDL. Given dynamic network environments,
AQGB performs adaptive quantization in a best-effort manner, using
a suite of simple yet effective scheduling principles. In short, AQGB
implements its adaptive quantization control at the application layer
and adjusts the level of quantization with respect to the observed
bandwidth, the un-delivered volume, and the remaining time to the
desired completion time dynamically. Such a design enables AQGB
to deal with variability like congestion and heterogeneous computing
power, in distributed training environments appropriately. For exam-
ple, when network congestion occurs, the un-delivered volume would
be larger than expected, making the sender increase its quantization
level; when a worker becomes a straggler and is unable to complete
its delivery before the expected time, it would increase its quantization
level accordingly. While for other workers, they would have sufficient
time to complete the delivery and thus would decrease its quantiza-
tion level. Regarding potential node and link failures, AQGB neither
specifically optimizes for this aspect nor introduces additional vulnera-
bilities. Consequently, existing fault-tolerant training mechanisms such
as checkpoint-based recovery [33] remain fully applicable and can be
seamlessly integrated with our approach.

In the following, we first describe the design insights of AQGB
in Section 4.1, then overview its main design in Section 4.2; after
that, we present the principles AQGB uses to adjust quantization ratios
respecting stragglers (Section 4.3), then present our flexible encode/de-
code scheme that enables AQGB to support multi-level quantization
(Section 4.4), in detail.

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 4. The two-stage gradient broadcasting of AQGB.

4.1. Design insights

As higher compression quality generally leads to faster training
convergence or better model accuracy, an attractive design is exploring
the trade-offs between quantization levels and model accuracy, to
accelerate the total time cost of model training. However, we argue that
it is hard, if not impossible, to explore such trade-offs in our context,
due to two reasons. Firstly, as is known, the development of new
DNNs is time-costly, following a trial-and-error way [34]. In the early
stage of development, the relationship between the quantitation level
and the training accuracy is unknown and unpredictable. Even worse,
there might not exist such trade-offs. Secondly, even if such trade-
offs are observed, as reported by various recent studies [22,34,35], the
convergence behavior of distributed training jobs is heavily determined
by a lot of factors such as the quality of the training datasets, the
hyperparameter settings like the batch size, the training algorithm,
learning rate, etc., jointly. Consequently, the relationship between the
quantization level and the model’s convergence behavior is job specific.
For example, as our tests explained in Section 2.2 show, (𝑖) compared to
ResNet50, ResNeXt101 is more sensitive to the introduced compression
errors; and (𝑖𝑖) for both models, enabling error compensation would
greatly relieve the side effects of quantization.

𝑄𝑟𝑎𝑡𝑖𝑜 ∶=
Data size after quantization

Original data size (3)

As specified in Eq (3), in this paper, we define the quantization
ratio as the ratio of the data size after quantization to the original
data size. That is to say, a higher quantization ratio value indicates a
milder level of quantization. To provide a generic communication op-
timization design that benefits various distributed training jobs, AQGB
performs adaptive quantization in a best-effort manner: it guarantees
that the selected quantization level would never be smaller than a user-
specified value and tries to decrease the quantization level as much
as possible, providing that the waiting time of computation caused by
communication would not be enlarged.

4.2. Solution overview

Currently, AQGB is specialized in optimizing the model synchro-
nization for peer-to-peer DDL with adaptive quantization designs. In
AQGB, a worker would immediately broadcast its quantized gradients
to all other workers, using supported reliable transport mechanisms
like MPI_Bcast, TCP, and reliable multicast transport protocol(s); then,
by aggregating the received gradients (including these generated by
itself) and applying the results to its local model, each worker obtains
the newly globally updated model and moves to the next round of
training [12]. At a high level, by profiling the patterns of how gradients
are generated and consumed locally, workers in AQGB could estimate
the best completion times (i.e., soft deadlines) for the broadcast of its
local gradients. Then, at the low level, during the broadcasting, based
on both the un-delivered gradients and the expected soft deadline, each
worker dynamically changes the level of quantization to react to the
presence of stragglers and bandwidth dynamics.

To simplify the control of quantization while maximizing the entire
DDL task’s ROW, AQGB splits a worker’s execution of gradient broad-
casting into two stages, as Fig. 4 shows. Since the order of how BP
5
generates new gradients are the reverse of how FP consumes them,
during both stages, gradients are transmitted in the last come first
served order.

In the first stage, AQGB ensures that all gradient values would be
quantized (i.e., compressed) and then transmitted. As the new gradients
of a neural network model are generated in a layer-wise manner (see
Fig. 4 for example), to minimize the possible wait time and to maximize
the overlap time at the same time, workers in AQGB try to complete
the delivery of all the generated gradient values just before the next
block of gradient becomes available (for blocks other than the last), or
as soon as possible (for the last block), by adapting their quantization
levels. If some gradients have not achieved this, workers would treat all
un-delivered gradients and the newly generated gradients as a whole,
and try to meet the newly (soft) deadline with adaptive quantization
again.

Once all gradients are quantized and delivered, the input data
needed by FP are ready for all workers. However, during the FP,
updated model values are consumed layer by layer; for some layers,
there might still be available idle time before they are used. To make
efficient usage of the available bandwidth, workers then switch to the
second stage, in which, they try to transmit more data to reduce the
quantization errors introduced in the first stage, such that the CCO
in the FP could be maximized. Hereafter, for ease of description, we
call such data remaining data. To control the transmission of remaining
data, for the remaining quantized data of layer 𝑖, a worker would treat
the estimated usage time (i.e., the start time of its next round of the
FP process) as a deadline to decide the quantization ratio dynamically.
However, during the training, because of stragglers, workers might
have various estimated FP start times for each layer. To increase CCO,
workers would synchronize their estimated FP start times; and for
each layer, a worker would use the latest version of the maximum
corresponding FP start time to compute the quantization level for the
second stage of gradient broadcasting.

4.3. Adaptive quantization ratio control

Consider that 𝑚 workers 𝑤1,… , 𝑤𝑚 are training a neural network
involving 𝑛 layers; a worker (e.g., 𝑤1) starts its BP at time 𝑡𝐵𝑃0 , obtains
the (𝑛 + 1 − 𝑖)th layer’s locally trained gradients with the size of
𝑔𝑛+1−𝑖 at time 𝑡𝐵𝑃𝑖 , and launches its next round of FP at time 𝑡𝐹𝐵

1 .
Hereafter, we also use 𝑔𝑖 to refer to the corresponding gradient data
block. Then, the data of 𝑔𝑖 would be quantized and then transmitted
with these two stages of broadcasting, which are denoted by 𝑔𝐹𝑖 and
𝑔𝑆𝑖 , respectively. Formally, for a given worker, it starts the first stage
of gradient broadcasting when its last layer’s gradient block 𝑔𝑛 becomes
available, then stops the broadcasting once it has delivered all its
own 𝑔𝐹𝑖 s, the quantized values of 𝑔𝑖s, to all receivers. After that, the
worker starts the second stage of gradient broadcasting, then stops the
broadcasting either when all the needed data has been delivered, or
when there is no need to transmit them anymore since the worker
already starts the FP process on the last layer.

To guarantee that all workers receive exactly the same set of gra-
dients to conduct consistent synchronizations, reliable broadcasting is
used for the delivery of gradient blocks in both stages; and a worker
would start 𝑔𝑖’s FP process, only after getting all the gradient data.

4.3.1. First stage
As described in Section 4.2, to avoid the delivery of the cur-

rent block becoming the communication bottleneck, the worker wants
(1) the delivery of 𝑔𝑖 to be complete before 𝑔𝑖−1 becomes available,
and (2) the delivery of the final block 𝑔1, along with all undelivered
gradients, to complete as soon as possible. Let 𝑢(𝑡) be the original size
of the worker’s generated-yet-undelivered at time 𝑡, and 𝑖(𝑡) be the
index of the gradient block that will appear next, respectively. Then,
to achieve the above goal, the worker’s broadcast rate should not be
lower than 𝑟 = 𝑢(𝑡)∕(𝑡𝐵𝑃 −𝑡). However, the actual broadcast rate this
𝑛+1−𝑖(𝑡)

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 5. Examples showcasing how the first- and second- stage gradient broadcasting
of AQGB works.

worker has achieved is 𝑏(𝑡); we use it as the estimation of the available
bandwidth in the near future. To eliminate this mismatch, the expected
compression ratio, that AQGB should approximate, with quantization,
can be estimated as 𝑞1 = 𝑏(𝑡)∕𝑟 = 𝑏(𝑡)(𝑡𝐵𝑃𝑛+1−𝑖(𝑡)−𝑡)∕𝑢(𝑡). Suppose that the
upper bound of the quantization ratio allowed by the quantization
designs/techniques and training tasks is 𝑞, which is a tunable parame-
ter. Then, the actual quantization ratio used would be max(𝑞, 𝑞1). And
once the last block of gradients becomes available, to accelerate the
completion of the first stage of broadcasting, the worker would try to
deliver all un-transmitted gradients with the compression level of 𝑞.
Following this, the 𝑇𝑤𝑎𝑖𝑡 would be finally reduced.

Fig. 5(a) shows a simple example, where 𝑛 = 𝑚 = 4. The model
involves four layered gradient blocks, whose sizes are 𝑔4, 𝑔3, 𝑔2, and
𝑔1, respectively. In the current round of training, the worker 𝑤1 would
generate them at time 𝑡𝐵𝑃1 , 𝑡𝐵𝑃2 , 𝑡𝐵𝑃3 , and 𝑡𝐵𝑃4 . Then, at time 𝑡 = 𝑡𝐵𝑃1 , the
size of 𝑤1’s generated-yet-undelivered gradient data is 𝑢(𝑡) = 𝑔4, whose
expected delivery completion time is 𝑡𝐵𝑃2 . To complete the broadcast of
these gradients before 𝑡𝐵𝑃2 , 𝑤1 would try to compress its gradients with
the quantization ratio of 𝑞1 = (𝑡𝐵𝑃2 −𝑡)𝑏(𝑡)∕𝑢(𝑡), and the actual quantization
ratio is max(𝑞, 𝑞1). During delivery, 𝑤1 would update 𝑡, 𝑏(𝑡), and 𝑢(𝑡) to
refresh 𝑞1 accordingly. Once the new gradient blocks like 𝑔3, 𝑔2, and
𝑔1 are generated, both the newly generated block sizes and the next
expected deadlines (e.g., 𝑡𝐵𝑃3 and 𝑡𝐵𝑃4) would be taken into account.

4.3.2. Second stage
Regarding the second stage of broadcasting, the remaining data of

each layer is delivered in the order how they would get used; indeed,
not the delivery of all layers from a worker would go through such
a phase, depending on whether there is still idle time left before the
estimated start time of the corresponding FP process. To make more
efficient usage of the network under the existence of straggler, each
worker in AQGB periodically broadcasts its locally-estimated start time
of each layer’s FP to other workers; and based on the received and its
own estimated start time, each worker would complete the deadline,
i.e., 𝑡𝐹𝑃

𝑖 , for the delivery of the 𝑔𝑖’s remaining data. On each worker,
as the source of the broadcasting, let 𝑗(𝑡) be the index of the gradient
block whose second stage of broadcasting the sender would prefer to
6
Fig. 6. An example that showcases the usage of AQGB’s truncation-based multi-level
quantization on FP32.

complete next, and 𝑢(𝑔𝑆𝑗(𝑡)) be the remaining volume to be quantized and
broadcasted. Then, similar to the case in the first stage of broadcasting,
to meet the estimated deadline of 𝑡𝐹𝑃

𝑗(𝑡) under the estimated available
broadcast bandwidth of 𝑏(𝑡), the expected quantization ratio of the
remaining data of 𝑔𝑗(𝑡) is 𝑏(𝑡)(𝑡𝐹𝑃

𝑗(𝑡)−𝑡)∕𝑢(𝑔𝑆𝑗(𝑡)).
As an example, Fig. 5(b) shows in detail how 𝑤1 performs the

second-stage quantization controls for four gradient blocks. For the 𝑖th
block, 𝑔𝐹𝑖 denotes its gradient values already delivered in the first stage,
and 𝑔𝑆𝑖 indicates its remaining gradients that should be delivered in the
second stage. To prevent the FP computation from being blocked by the
broadcast communication, 𝑤1 would try to complete the delivery of 𝑔𝑆1 ,
𝑔𝑆2 , 𝑔𝑆3 , and 𝑔𝑆4 before 𝑡𝐹𝑃

1 , 𝑡𝐹𝑃
2 , 𝑡𝐹𝑃

2 , and 𝑡𝐹𝑃
2 , using the quantization ra-

tio of 𝑚𝑎𝑥(𝑞, 𝑞2), where 𝑞2 is 𝑏(𝑡)(𝑡𝐹𝑃
1 −𝑡)∕𝑢(𝑔𝑆1), 𝑏(𝑡)(𝑡𝐹𝑃

2 −𝑡)∕𝑢(𝑔𝑆2), 𝑏(𝑡)(𝑡𝐹𝑃
3 −𝑡)∕𝑢(𝑔𝑆3),

and 𝑏(𝑡)(𝑡𝐹𝑃
4 −𝑡)∕𝑢(𝑔𝑆4), respectively.

4.4. Efficient multi-level quantization with TFP

In consideration that gradients in deep learning are generally
floating-point numbers like FP16, FP32, and FP64, AQGB designs, TFP
(Truncation of Floating Point number), a simple yet efficient multi-
level quantization scheme based on the floating-point numbers’ specific
layouts—i.e., to quantify a gradient into 𝑘 bits, TFP directly truncates
the bit array of the floating-point representations other than the first 𝑘
bits. Note that, when the targeted level of quantization is small e.g., 4
or 2, before applying truncation AQGB would first convert the gradient
into FP16, or FP8, to reduce the introduced errors.

Take the case of quantizing an FP32 gradient into its 12-bit repre-
sentation as an example. According to the IEEE 754 standard [36], the
layout of an FP32 number can be divided into three parts: (1) 1 bit
for the sign; (2) 8 bits for the exponent; and (3) 23 bits for the
mantissa, as Fig. 6 and Eq. (4) shows. Motivated by this observation and
distinguished from existing static quantization schemes, TFP reduces
the mantissa bits to achieve quantization on demand, yielding efficient
multi-level quantization with the compression ratio of 𝑘∕32, where 𝑘 (≥
2) is the width of bits that should be kept. Obviously, smaller 𝑘 values
yield higher quantization errors.
𝑁(𝑆,𝐸,𝑀) ∶= (−1)S × 2E−127 × 1.M (4)

During the broadcast, quantized gradients are encapsulated as the
payload of UDP. To make both encoding and decoding easy to manage,
for a given array or stream of gradients made up of 𝑠 FP32 values,
AQGB workers would split them into partitions: by default, each parti-
tion would embody 𝑝 gradient values, yielding the original size of 32𝑝
bit; but for the last one, it would only hold the remaining 𝑠%𝑝 gradients.
More specifically, in the first stage of gradient broadcasting, to meet the
compression ratio of 𝑞1, for each F32 gradient in a partition, the AQGB
worker would directly send its first 𝐿𝐹 = ⌈32max(𝑞1, 𝑞)⌉ bits, where 𝑞 is
with the default value of 0.125; thus, the amount of data to broadcast is
roughly reduced from 1 to max(𝑞1, 𝑞). For each gradient value, there are
32−𝐿𝐹 remaining bits that the worker could deliver in the second stage
of broadcasting. In case the expected compression ratio is 𝑞2, the worker
would directly send the first ⌈𝑞2(32 − 𝐿𝐹)⌉ bits among the remaining.
Let 𝑙 be UDP’s limit on the total size of all partitions in a packet. Then,
for both stages of broadcasting, workers just greedily pack as many as
possible successive partitions to generate a packet, under the constraint
of 𝑙.

Note that many prior quantization schemes employ random rounding
to achieve unbiasedness; indeed, TFP supports this as well. Given a

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 7. An illustration of how TFP supports unbiased stochastic quantization using
random rounding.

floating-point number 𝑥, let 𝑇 (𝑥, 𝑘) be its truncated value by only
keeping the first 𝑘 bits, and 𝑇 (𝑥, 𝑘) be the truncated value (by only
keeping the first 𝑘 bits again) of the result of adding an ‘‘1’’ to the
𝑘th bit of 𝑇 (𝑥, 𝑘). Then, the 𝑘-bit quantized value of 𝑥 using TFP with
random rounding enabled is computed via Eq. (5). Here, 𝑟𝑎𝑛𝑑() would
return a random float uniformly in the range of [0, 1) when called. As
the example in Fig. 7 shows, for a FP32 number 𝑥 = 3.6, we have
𝑇 (3.6, 12) = 3.5 and 𝑇 (3.6, 12) = 3.75; then, TFP(3.6, 12) would be 3.5
with the probability of 1 − 3.6−3.5

3.75−3.5 = 0.6, or 3.75 otherwise.

TFP(𝑥, 𝑘) ∶=
⎧

⎪

⎨

⎪

⎩

𝑇 (𝑥, 𝑘), if 𝑟𝑎𝑛𝑑() ≤ 1 − 𝑥−𝑇 (𝑥,𝑘)
𝑇 (𝑥,𝑘)−𝑇 (𝑥,𝑘)

𝑇 (𝑥, 𝑘), otherwise
(5)

In practice, if 𝑘 is large, the impact of truncation is limited and
can easily be masked by techniques like error feedback. To simplify
the involved computation, the random rounding of TFP can be disabled.
However, when 𝑘 is quite small, random rounding would be helpful. In
that case, to reduce the introduced quantization errors, TFP would first
convert the original 𝑥 to a more compact float format like FP16, FP8,
or even FP4 [37] and then conduct truncation-based quantization.

5. Performance evaluation

To evaluate the performance of AQGB, besides conducting small-
scale real training with PyTorch, following recent studies [38–40], we
also develop a discrete-event simulator based on the design of ns3
but in Python 3, which could simulate the behavior of a cluster run-
ning well-known DDL workloads under various model synchronization
schemes including AQGB.

As we have shown in Fig. 2, for a targeted compression ratio
e.g., 4 bit, 8 bit, the side effects of our proposed TFP and QSGD on
the training convergence speed are very close. Then, we use these
observed characteristics profiled from real distributed training to drive
the simulation of more complex distributed training. Extensive results
indicate that:

• In contrast to 𝑇𝑤𝑎𝑖𝑡, ROW is better since it captures the possible
CCO, rather than only the time that workers are blocked by
gradient communication.

• AQGB could adjust its level of quantization to cope with dynamic
networks, thus making higher usage of the available bandwidth.

• By pursuing the goal of ROW with adaptive gradient quanti-
zation, AQGB could make efficient usage of the network as if
gradients are not quantized while making the bottleneck 𝑇𝑤𝑎𝑖𝑡
time very close to that achieved by fixed-yet-low-bit (e.g., 4 bit)
quantization.

5.1. Methodology

5.1.1. Metrics, tools, and baselines
As pointed out by various recent studies [23,34,35], given a dis-

tributed model training job, how the trained model converges is jointly
determined by abundant factors, ranging from the training dataset to
the model structure, to the hardware environment, and to the hyper-
parameter settings. Accordingly, to study and highlight the benefits of
our proposed schemes in detail, like recent works [23,35], we develop a
7
Table 1
ResNet50 settings.
 Block ID Layer Block size FP time BP time
 1 conv1–conv4_1 3 m 41.9% 50.5%
 2 conv4_2–conv4_6 5.6 m 15.5% 14.2%
 3 conv5_1–conv5_1 6 m 16.5% 12.9%
 4 conv5_2–fc1000 11 m 26.1% 22.4%
 FP:BP training time ratio is about 0.365:0.635

simulator and mainly employ system-relevant metrics for performance
evaluation. More specifically, our simulator could simulate how a group
of workers synchronize their locally trained model gradients to drive
the DDL upon reliable broadcast.3 Besides the proposed adaptive quan-
tization AQGB, the simulator also supports other gradient quantization
designs. As AQGB is the first work that supports adaptive gradient
quantization based on the training progress and network state, to high-
light its behaviors in tests, we mainly use the cases with no quantization
(i.e., labeled as 32 bit), and 4 bit QSGD-based quantization (i.e., labeled
as 4 bit) as baselines. Regarding the metrics, besides our proposed
ROW, we also consider 𝑇𝑤𝑎𝑖𝑡 (normalized by the average computation
time per round of local training), the average utilization of network
bandwidth, and the number of DDL training rounds in a given time
duration 𝑇 , with the default value of 200 s, in our tests.

5.1.2. Cluster and workloads
We consider that 𝑚 workers are training the well-known ResNet50

model [41] with data-parallel designs. These training workers are
assumed to be networked with a top-of-rack switch and with 2.5 Gbps
links. By default, 𝑚 = 16. During the training, each worker transmits
the gradient blocks generated during backpropagation to other 𝑚 − 1
workers by broadcasting. For possible CCO optimization, the model is
divided into 4 blocks respecting its structure and number of parameters,
as Table 1 specifies. Our basic principle here is to balance the number
of parameters in each block, respecting their layer-wise structure. There
are also other ways for splitting. As how a model could be split highly
depends on its structure, for the optimization of the splitting scheme for
different types of models, we leave this as a future direction. For the
detailed computation times involved in each block, we use the cycle-
accurate CNN accelerator simulator of SCALE-SIM [40] to synthesize
the time cost of each step.

In consideration that, during the training, the time needed by a
worker to conduct a round of training is not exactly the same because of
system noise, we randomly scale the time values generated by SCALE-
SIM [40] to synthesize their time costs. In tests, we consider two
scale principles respecting different scenarios: (1) Uniform. Workers
are with very similar performance; The time a worker needs to com-
plete a local iteration of BP+FP, follows the uniform distribution of
𝑈 [0.9, 1.1] × 1.5 s, with an average value of 1.5 s. This is the default
setting in tests. (2) With stragglers. Workers might suffer from a
remarkably larger training time, with a low probability. For this type,
we consider that the computation time of a local iteration follows the
distribution tested on a standard Google Cloud GPU instance using the
dataset of ImageNet, reported by [32]. To be comparable with the case
of uniform, the expected value of the generated computation times
keeps 1.5 s, as Fig. 8 shows.

5.2. Results

5.2.1. React to the change of bandwidth
To check the ability of AQGB on reacting to the change of band-

width, we proactively reconfigure the available link bandwidth that
it would use and record the compression ratio AQGB estimated via

3 Concurrent transfers share link capacities with max–min fairness.

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 8. A synthesized runtime distribution of training workers based on that reported
by [32].

Fig. 9. An example shows that AQGB could adjust the level of quantization respecting
the change of available bandwidth.

Fig. 10. With adaptive quantization, AQGB reduces 𝑇𝑤𝑎𝑖𝑡 while making efficient usage
of bandwidth. Distinguished from the metric of 𝑇𝑤𝑎𝑖𝑡, which only reflects the time
that training workers are blocked by communication, ROW could capture the overlap
between computation and communication, thus preventing AQGB from making over-
killed quantization.

max(𝑏(𝑡)(𝑡𝐵𝑃𝑛+1−𝑖(𝑡)−𝑡)∕𝑢(𝑡), 0.375). Fig. 9 shows an instance we observed when
8 workers are training ResNet50. Despite that the absolute values are
related to the instance, we do consistently observe that AQGB is able to
adjust the quantization ratio (i.e., 𝑄𝑟𝑎𝑡𝑖𝑜 defined by Eq. (3) and shown
in Fig. 9) respecting the network status.

5.2.2. Acceleration of the training iteration
Now, we check the advantage of the proposed ROW and AQGB.

Fig. 10(a) shows that compared to the scheme of no-quantization
(i.e., 32 bit), AQGB enables workers to obtain more training rounds
in the same specified time. Consistent with the results of Fig. 12, when
8
Fig. 11. Training convergence speed and model accuracy for DDL tasks that use 8
simulated workers to train the model of ResNet50 over the CIFAR-10 dataset, with
no-quantization, fixed-quantization, and AQGB, where the EF is not enabled.

Table 2
ResNet50 upon CIFAR-10.
 Quantization
scheme

Top-1
accuracy

Convergence
rate

Acceleration
(CCO)

Actual
speedup

 None (i.e., FP32) 85.36% 1(Baseline) 1(Baseline) 1(Baseline)
 4 bit QSGD 82.94% 0.76× 3.33× 2.54×
 AQGB 84.69% 0.97× 3.26× 3.15×

AQGB limits the quantization level to be no less than 4 bit, workers
could iterate the training very fast, close to the case when fixed 4bit-
QSGD quantization is employed. For example, in the case shown in
Fig. 10, without quantization, workers would iterate 39 rounds within
200 s; while with AQGB, workers iterate 127 rounds, close to the 130
rounds workers achieve under 4 bit quantization. Despite iterating the
most rounds, as Fig. 10(b) shows, 4bit-QSGD quantization achieves the
worst network bandwidth utilization, less than half of that achieved
by AQGB. In contrast, both AQGB and the no-quantization scheme
achieve much higher utilizations of about 77% and 90%, with a gap of
about 13%. Higher network utilization means fewer data are dropped,
yielding better quantization quality thus bringing possible benefits to
the model accuracy or training convergence [16].

Consistent with the results in Fig. 10(a), as Fig. 10(c) shows, the
𝑇𝑤𝑎𝑖𝑡 achieved by AQGB is close to that of 4bit-based quantization,
significantly outperforming the case when no quantization is employed.
Besides, we also plot their ROW values as Fig. 10(d) shows. Obviously,
compared to 𝑇𝑤𝑎𝑖𝑡, ROW is a better metric: besides reflecting the time
that training workers are blocked by gradient communication (as 𝑇𝑤𝑎𝑖𝑡
does), it also captures the overlap between computation and com-
munication. Thus, using ROW as the optimization goal, quantization
schemes like AQGB would control the level of compression properly
without over-killing.

5.2.3. Optimized convergence speed and final accuracy
Fig. 11 illustrates the model performance in a simulated DDL sce-

nario. As Fig. 11(a) shows, with AQGB, the convergence rate of dis-
tributed training is slightly lower than the case of no-quantization
but much higher than the case of 4 bit quantization (in terms of the
number of training rounds to converge), while Fig. 11(b) shows that the
accuracy achieved by AQGB-enabled training is almost comparable to
the case of no quantization; and as shown in Table 2, the gap between
the two cases is only 0.67%. By combining the observed improvements
in terms of convergence rate and CCO optimized by AQGB, we further
estimate the actual speedup ratio AQGB could achieve on distributed
training: compared to no-quantization, AQGB could reduce the training
time by about 3.15×, while keeping the decrease of the top-1 accu-
racy about 0.67%. Even compared to 4bit-QSGD quantization, AQGB
achieves an improvement of 3.15×, which is significantly higher than
the 2.54× achieved by 4 bit fixed quantization, yielding about 24%
improvement in the acceleration ratio and a 2.75% increase in model

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 12. Impacts of link bandwidth.

accuracy. It can be seen that AQGB is all-around superior compared
to traditional fixed quantization schemes. Taking advantage of the
awareness of the dynamics of network bandwidth, AQGB achieves
higher-quality gradient transmission with almost no reduction in the
number of iterations per time. In summary, given that AQGB has a
faster convergence rate as well as a smaller risk of accuracy loss, when
developing new models, at the early stages of the training where fast
convergence is desired, it is promising to use AQGB instead of a fixed
gradient quantization (e.g., QSGD).

5.2.4. Impacts of bandwidth
Next, we study the influence of available bandwidth by increasing

the link capacities from 2 Gbps to 10 Gbps and rerun the tests. As Fig.
12(b) shows, with the increase in bandwidth, the observed bandwidth
utilization decrease for all schemes, including the scheme without
quantization. As expected, such a result implies that the bottleneck ef-
fects of communication are alleviated; therefore, due to the reduction of
𝑇𝑤𝑎𝑖𝑡 as Fig. 12(c) shows, workers could conduct more training rounds
as confirmed by Fig. 12(a). Results also imply that, for both AQGB and
the 4 bit quantization scheme, the improvements of the training round
are trivial. This is because, with quantization, they already relieve the
bottleneck efforts of gradient communication. However, as Figs. 12(b)
and 12(d) show, unlike using the fixed 4 bit quantization, the adaptive
design of AQGB enables it to make effective use of the available
bandwidth, leading to higher network utilization and ROW. Moreover,
from Fig. 12(d), we also observe that, for AQGB, once communication
is not the bottleneck, the value of ROW also decreases with growing
bandwidth. This is reasonable since the overlap between computation
and communication (i.e., the numerator in the definition of ROW) is
decreased.

5.2.5. Impacts of stragglers
To further investigate the influence of the straggler in the training,

we assume that the time cost a worker needs to complete a round of
local training following the distribution shown in Fig. 8, belonging to
the range of [1.33, 2.67] s, with the expected value of 1.5 s. In case
a worker spends noticeably more than 1.5 s (e.g., 2.0 s) to complete
a round of training, we treat it as a straggler in this round. The
appearance of such stragglers enforces other normal workers to wait
for their completion for the transmission of gradients in each round of
synchronization. As Fig. 13(a) shows, due to the presence of straggler,
the improved number of training rounds for both 4 bit quantization
and AQGB are only about 125.6% and 118.0%, respectively, when
compared to no-quantization. Such achieved improvements in training
9
Fig. 13. Performances when the time cost of local training follows the distribution of
Fig. 8.

rounds are much less than those obtained in the uniform case without
stragglers (i.e., Fig. 10(a)). As for the network utilization (Fig. 13(b)),
the results are similar to the uniform scenario. And because of strag-
glers, the room for the optimizations of both 𝑇𝑤𝑎𝑖𝑡 and ROW is limited,
Compared to benchmarks, performance drops by almost an order of
magnitude (Figs. 13(c) and 13(d)). Nevertheless, compared to no-
quantization and 4bit-quantization, AQGB could make more efficient
use of the underlying network by maximizing the CCO.

5.2.6. Impacts of block splitting
To investigate the impacts of the block-splitting scheme, we control

the number of split blocks from 3 to 6 and rerun the tests. As we have
mentioned, in the case of 4 blocks, the model is divided following the
scheme specified by Table 1. Based on this, we merge the 3rd and
4th blocks to generate the case of 3-block-splitting, and split the 4th
block (e.g., conv5_2-fc1000, Table 1) to the two parts of conv5_2, and
conv5_3-fc1000, to generate the case of 5-block-splitting. As for the
case of 6-block-splitting, it is generated by continuing to regroup the
first 2 blocks (i.e., conv1-conv4_6) into 3 new blocks, conv1-conv3_4,
conv4_1-conv4_3, and conv4_4-conv4_6. Fig. 14 shows both the training
rounds and average ROW values AQGB achieved in a period of 200 s.
Here, no-split refers to the (lower) case where the entire model is not
split; and ideal refers to the (upper) ideal-yet-unachievable situation in
which perfect CCO is obtained (i.e., 𝑇𝑤𝑎𝑖𝑡 = 0, all communication is
masked). Thus, the gap between no-split and ideal shows the room for
the optimization of the iteration speed of the training. As indicated
by the results, despite splitting the model into more blocks could
increase the training iterations a little, it distinctly improves the CCO,
as the value of ROW continues to grow. Thus, for communication
optimization, workers prefer a fine-grained split of the model. However,
in practice, how a model could be split also highly depends on its struc-
ture, and small blocks generally introduce additional communication
overhead. Thus, future studies are needed to explore generic principles
and guidelines for the optimization of block splitting.

6. Related work

The key idea of our proposed scheme is to maximize the CCO for
DDL in dynamic environments with adaptive lossy gradient quantiza-
tion. For both overlapping the communication with computation and
lossy gradient compression, there are a great many various propos-
als [5,6]. In the following, we briefly discuss some recent advances
related to AQGB.

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
Fig. 14. Impacts of the number of split blocks on the performance of AQGB. Results
imply that, despite splitting the model into more blocks only increasing the training
iterations a little, it distinctly improves the CCO, as the value of ROW continues to
grow.

6.1. Overlapping communication with computation

Different from ooo [28] that reorders the executions of back-
prop progress, iPart [11] overlaps the gradient communication with
backward computation and parameter communication with forward
computation for parameter server based DDL, by partitioning the
involved communication and computation in suitable partition sizes.
AccTFM [42] employs similar but more sophisticated designs for the
distributed training of specialized Transformer-based DNNs, in which,
both sparsification and quantization methods are also embodied to re-
duce the involved traffic volume. Also aiming at the goal of optimizing
the CCO, Prophet [31] directly use the wait time as the metric and tries
to minimize it by reordering the delivery of gradients in block-wise
manners [31]. Distinguished from them, in this paper, we propose the
metric of ROW to explicitly measure the CCO for DDL, which is a better
metric for the optimization objective as we have discussed in Section 2.

6.2. Lossy gradient quantization

As a lossy compression technique, quantizing float32 gradients into
fewer bits could reduce the traffic volume, with the possible cost of
slowed convergence speed or reduced model accuracy. For example,
researchers have shown recently that, in theory, worse compression
quality leads to slower convergence [16]. However, in practice, the
convergence of a model on a given dataset is determined by a lot of
hyper-parameters jointly, such as the batch size, training algorithm,
and learning rate [34]. Thus, there does not exist a clear and fixed
relationship between a DDL task’s convergence speed and the compres-
sion quality, or more specifically, the quantization level, it has taken
advantage of [43]. Besides determining the level of quantization in
advance [5], some recent proposals have proposed adaptive designs
that could adjust the quantization settings respecting the gradients
updates and other dynamic factors during training [26,27]. However,
none of them have taken the dynamic available bandwidth into account
and AQGB overcomes this type of drawback. Besides quantization,
sparsification (e.g., Top-k, random-k) is another type of lossy compres-
sion scheme widely employed to reduce the traffic load of gradient
synchronization for DDL [5,19]. Some recent proposals also show that
these two types of designs can work together for communication opti-
mization [44]. Currently, AQGB only supports adaptive quantization;
extending it to support adaptive joint-sparsification-and-quantization
communication optimization yields attractive future directions.

7. Conclusion and future work

In this paper, we revisit the idea of using gradient quantization
techniques to tame the communication bottlenecks involved in DDL.
Different from prior solutions, our proposed solution, AQGB, embodies
two novel designs. Firstly, instead of employing fixed quantization
designs, it dynamically adapts the level of quantization respecting the
10
training and transmission progress, bringing benefits to the conver-
gence and quality of the training [5,15–17]. And secondly, rather than
just reducing the time training workers take for the completion of a
round of model synchronization, it purses the explicit goal of maxi-
mizing their ROW (the Ratio of Overlap time to Wait time), fully re-
leasing the power of overlapping communication with computation for
DDL [4]. Detailed trace-based performance studies confirm that AQGB
can optimize the utilization of both the computation and network
resources, thus improving the DDL system performance significantly.

Regarding the practical deployment, AQGB can be implemented as a
part of the communication library [45], and using the existing reliable
transport mechanisms like MPI_Bcast and reliable multicast transport
protocol(s) [46] for quantized gradient broadcast. Although the compu-
tations involved are not particularly complicated, a full-fledged imple-
mentation of AQGB still requires substantial future engineering effort.
Besides, as a generic approximate gradient synchronization framework
that could adjust the level of quantization concerning the training
progress and network state, AQGB supports any other quantization
ratio control and multi-level quantization schemes besides the ones
specified in Sections 4.3 and 4.4. Accordingly, it is possible to make
joint usage of AQGB and other quantization schemes like QSGD [18],
DAdaQuant [47], DQ-SGD [48], and others [26,27]. However, non-
trivial modifications on both AQGB and these schemes are needed to
achieve the goal, as they were not originally designed for that purpose,
having not supported adaptive multi-level quantization yet. We leave
these for future work.

CRediT authorship contribution statement

Shouxi Luo: Writing – review & editing, Writing – original draft,
Supervision, Resources, Project administration, Methodology, Funding
acquisition, Conceptualization. Xue Liu: Writing – original draft, Vi-
sualization, Validation, Software, Methodology, Formal analysis, Data
curation. Ke Li: Writing – review & editing. Huanlai Xing: Writing –
review & editing. Xu Zhang: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] X. Liu, S. Luo, K. Li, H. Xing, Approximate gradient synchronization with AQGB,
in: Proceedings of the 6th APNet, ACM, 2022, pp. 101–102.

[2] M. Li, D.G. Andersen, J.W. Park, A.J. Smola, A. Ahmed, V. Josifovski, J. Long,
E.J. Shekita, B.-Y. Su, Scaling distributed machine learning with the parameter
server, in: Proceedings of the 11th OSDI, USENIX Association, USA, 2014, pp.
583–598.

[3] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang, Y. Xu,
D. Zhuo, E.P. Xing, J.E. Gonzalez, I. Stoica, Alpa: Automating inter- and intra-
operator parallelism for distributed deep learning, in: Proceedings of the 16th
OSDI, 2022, pp. 559–578.

[4] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo, A generic com-
munication scheduler for distributed DNN training acceleration, in: Proceedings
of the 27th SOSP, ACM, 2019, pp. 16–29.

[5] H. Xu, C.-Y. Ho, A.M. Abdelmoniem, A. Dutta, E.H. Bergou, K. Karatsenidis,
M. Canini, P. Kalnis, GRACE: A compressed communication framework for
distributed machine learning, in: Proceedings of the 41st ICDCS, 2021, pp.
561–572.

[6] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, B. Li, A quantitative survey of
communication optimizations in distributed deep learning, IEEE Netw. 35 (3)
(2021) 230–237.

http://refhub.elsevier.com/S0167-739X(25)00278-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb6

S. Luo et al. Future Generation Computer Systems 174 (2026) 107983
[7] S.H. Hashemi, S. Abdu Jyothi, R. Campbell, Tictac: Accelerating distributed
deep learning with communication scheduling, in: Proceedings of the 2nd SysML
Conference, Vol. 1, 2019, pp. 418–430.

[8] M. Li, R.B. Basat, S. Vargaftik, C. Lao, K. Xu, M. Mitzenmacher, M. Yu, THC:
Accelerating distributed deep learning using tensor homomorphic compression,
in: Proceedings of the 21st NSDI, USENIX Association, Santa Clara, CA, 2024,
pp. 1191–1211.

[9] S. Luo, X. Yu, K. Li, H. Xing, Releasing the power of in-network aggregation with
aggregator-aware routing optimization, IEEE/ACM Trans. Netw. 32 (5) (2024)
4488–4502.

[10] J. WANG, Y. Lu, B. Yuan, B. Chen, P. Liang, C.D. Sa, C. Re, C. Zhang, Cocktailsgd:
Fine-tuning foundation models over 500Mbps networks, in: Proceedings of the
40th ICML, PMLR, 2023.

[11] S. Wang, A. Pi, X. Zhou, J. Wang, C.-Z. Xu, Overlapping communication with
computation in parameter server for scalable DL training, IEEE Trans. Parallel
Distrib. Syst. 32 (9) (2021) 2144–2159.

[12] J. Wu, W. Huang, J. Huang, T. Zhang, Error compensated quantized SGD and its
applications to large-scale distributed optimization, in: Proceedings of the 35th
ICML, Vol. 80, PMLR, 2018, pp. 5325–5333.

[13] C. Yu, H. Tang, C. Renggli, S. Kassing, A. Singla, D. Alistarh, C. Zhang, J. Liu,
Distributed learning over unreliable networks, in: Proceedings of the 36th ICML,
Vol. 97, PMLR, 2019, pp. 7202–7212.

[14] P. Zhou, X. He, S. Luo, H. Yu, G. Sun, JPAS: Job-progress-aware flow scheduling
for deep learning clusters, J. Netw. Comput. Appl. 158 (2020) 102590.

[15] J. Xia, G. Zeng, J. Zhang, W. Wang, W. Bai, J. Jiang, K. Chen, Rethinking
transport layer design for distributed machine learning, in: Proceedings of the
3rd APNet, ACM, 2019, pp. 22–28.

[16] A. Koloskova*, T. Lin*, S.U. Stich, M. Jaggi, Decentralized deep learning with
arbitrary communication compression, in: Proceedings of ICLR, 2020.

[17] S.U. Stich, On communication compression for distributed optimization on
heterogeneous data, 2020, CoRR abs/2009.02388.

[18] D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic, QSGD: Communication-
efficient SGD via randomized quantization and encoding, in: Proceedings of the
31st Annual Conference on Neural Information Processing Systems, NIPS, Curran,
2017, pp. 1710–1721.

[19] A.M. Abdelmoniem, M. Canini, DC2: Delay-aware compression control for
distributed machine learning, in: Proceedings of INFOCOM, 2021, pp. 1–10.

[20] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, J.S. Reller-
meyer, A survey on distributed machine learning, ACM Comput. Surv. 53 (2)
(2020).

[21] A. Mathkar, V.S. Borkar, Distributed reinforcement learning via gossip, IEEE
Trans. Autom. Control 62 (3) (2017) 1465–1470.

[22] S. Luo, P. Fan, K. Li, H. Xing, L. Luo, H. Yu, Efficient parameter synchronization
for peer-to-peer distributed learning with selective multicast, IEEE Trans. Serv.
Comput. 18 (1) (2025) 156–168.

[23] S. Luo, R. Wang, H. Xing, Efficient inter-datacenter AllReduce with multiple
trees, IEEE Trans. Netw. Sci. Eng. 11 (5) (2024) 4793–4806.

[24] J. Xin, M. Canini, P. Richtárik, S. Horváth, Global-QSGD: Practical floatless
quantization for distributed learning with theoretical guarantees, 2023, arXiv:
2305.18627 [cs, stat].

[25] Challenges of quantization in machine learning (ML), 2023, https://iq.opengenus.
org/challenges-of-quantization//. (Online Accessed 31 July 2023).

[26] Y. Mao, Z. Zhao, G. Yan, Y. Liu, T. Lan, L. Song, W. Ding, Communication-
efficient federated learning with adaptive quantization, ACM Trans. Intell. Syst.
Technol. 13 (4) (2022).

[27] G. Yan, T. Li, S.-L. Huang, T. Lan, L. Song, AC-SGD: Adaptively compressed SGD
for communication-efficient distributed learning, IEEE J. Sel. Areas Commun. 40
(9) (2022) 2678–2693.

[28] H. Oh, J. Lee, H. Kim, J. Seo, Out-of-order backprop: An effective scheduling
technique for deep learning, in: Proceedings of the 17th EuroSys, ACM, 2022,
pp. 435–452.
11
[29] S. Wang, D. Li, J. Geng, Geryon: Accelerating distributed CNN training
by network-level flow scheduling, in: Proceedings of INFOCOM, 2020, pp.
1678–1687.

[30] T. Liu, T. Miao, Q. Wu, Z. Li, G. He, J. Wu, S. Zhang, X. Yang, G. Tyson, G. Xie,
Modeling and optimizing the scaling performance in distributed deep learning
training, in: Proceedings of the ACM Web Conference, WWW, ACM, 2022, pp.
1764–1773.

[31] Z. Zhang, Q. Qi, R. Shang, L. Chen, F. Xu, Prophet: Speeding up distributed DNN
training with predictable communication scheduling, in: Proceedings of the 50th
ICPP, ACM, New York, NY, USA, 2021.

[32] S. Li, T. Ben-Nun, S.D. Girolamo, D. Alistarh, T. Hoefler, Taming unbalanced
training workloads in deep learning with partial collective operations, in:
Proceedings of the 25th PPoPP, ACM, New York, NY, USA, 2020, pp. 45–61.

[33] A. Eisenman, K.K. Matam, S. Ingram, D. Mudigere, R. Krishnamoorthi, K. Nair, M.
Smelyanskiy, M. Annavaram, Check-n-run: a checkpointing system for training
deep learning recommendation models, in: Proceedings of the 19th NSDI, Renton,
WA, 2022, pp. 929–943.

[34] L. Mai, G. Li, M. Wagenländer, K. Fertakis, A.-O. Brabete, P. Pietzuch, Kungfu:
Making training in distributed machine learning adaptive, in: Proceedings of the
14th OSDI, USENIX Association, 2020, pp. 937–954.

[35] S. Luo, R. Wang, K. Li, H. Xing, Efficient cross-cloud partial reduce with CREW,
IEEE Trans. Parallel Distrib. Syst. 35 (11) (2024) 2224–2238.

[36] IEEE standard for floating-point arithmetic, in: IEEE Std 754-2019 (Revision of
IEEE 754-2008), 2019, pp. 1–84.

[37] X. Sun, N. Wang, C.-y. Chen, J.-m. Ni, A. Agrawal, X. Cui, S. Venkataramani, K.
El Maghraoui, V. Srinivasan, K. Gopalakrishnan, Ultra-low precision 4-bit training
of deep neural networks, in: Proceedings of the 34th NIPS, 2020.

[38] S. Luo, P. Fan, H. Xing, H. Yu, Meeting coflow deadlines in data center networks
with policy-based selective completion, IEEE/ACM Trans. Netw. 31 (1) (2023)
178–191.

[39] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman, A. Vahdat,
B. Klenk, E. Ebrahimi, Sip-ML: high-bandwidth optical network interconnects for
machine learning training, in: Proceedings of the ACM SIGCOMM Conference,
2021, pp. 657–675.

[40] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, T. Krishna, SCALE-sim: Systolic
CNN accelerator simulator, 2019, arXiv:1811.02883.

[41] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of CVPR, 2016, pp. 770–778.

[42] Z. Zeng, C. Liu, Z. Tang, K. Li, K. Li, Acctfm: An effective intra-layer model
parallelization strategy for training large-scale transformer-based models, IEEE
Trans. Parallel Distrib. Syst. 33 (12) (2022) 4326–4338.

[43] A. Dutta, E.H. Bergou, A.M. Abdelmoniem, C.-Y. Ho, A.N. Sahu, M. Canini,
P. Kalnis, On the discrepancy between the theoretical analysis and practical
implementations of compressed communication for distributed deep learning,
Proc. AAAI 34 (04) (2020) 3817–3824.

[44] D. Basu, D. Data, C. Karakus, S.N. Diggavi, Qsparse-local-SGD: Distributed SGD
with quantization, sparsification, and local computations, IEEE J. Sel. Areas Inf.
Theory 1 (1) (2020) 217–226.

[45] A. Weingram, Y. Li, H. Qi, D. Ng, L. Dai, X. Lu, xCCL: A survey of industry-led
collective communication libraries for deep learning, J. Comput. Sci. Tech. 38
(1) (2023) 166–195.

[46] S. Luo, H. Yu, K. Li, H. Xing, Efficient file dissemination in data center networks
with priority-based adaptive multicast, IEEE J. Sel. Areas Commun. 38 (6) (2020)
1161–1175.

[47] R. Hönig, Y. Zhao, R. Mullins, DAdaquant: Doubly-adaptive quantization for
communication-efficient federated learning, in: Proceedings of the 39th ICML,
Vol. 162, 2022, pp. 8852–8866.

[48] G. Yan, S.-L. Huang, T. Lan, L. Song, DQ-SGD: Dynamic quantization in SGD for
communication-efficient distributed learning, in: Proceedings of the 18th MASS,
IEEE, 2021, pp. 136–144.

http://refhub.elsevier.com/S0167-739X(25)00278-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb16
http://arxiv.org/abs/2009.02388
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb21
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb21
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb21
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb23
http://arxiv.org/abs/2305.18627
http://arxiv.org/abs/2305.18627
http://arxiv.org/abs/2305.18627
https://iq.opengenus.org/challenges-of-quantization//
https://iq.opengenus.org/challenges-of-quantization//
https://iq.opengenus.org/challenges-of-quantization//
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb39
http://arxiv.org/abs/1811.02883
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb44
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb44
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb44
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb44
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb44
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb45
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb45
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb45
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb45
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb45
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00278-X/sb48

	Approximate Gradient Synchronization With Adaptive Quantized Gradient Broadcast
	Introduction
	Background and Motivation
	Data-Parallel Distributed Deep Learning
	The Right Metric for Communication Optimization
	Limits of Existing Solutions

	Quantifying the Overlap
	Drawbacks of Twait and OSF
	Our Proposed ROW

	AQGB
	Design Insights
	Solution Overview
	Adaptive Quantization Ratio Control
	First Stage
	Second Stage

	Efficient Multi-level Quantization with TFP

	Performance Evaluation
	Methodology
	Metrics, tools, and baselines
	Cluster and workloads

	Results
	React to the change of bandwidth
	Acceleration of the training iteration
	Optimized convergence speed and final accuracy
	Impacts of bandwidth
	Impacts of stragglers
	Impacts of block splitting

	Related Work
	Overlapping Communication with Computation
	Lossy Gradient Quantization

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

