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 A B S T R A C T

Given the layered training workflow of deep neural networks, recent advances have shown that, by splitting 
gradients into blocks and rearranging their transmission, distributed deep learning (DDL) workers can overlap 
parts of the communication with computation to hide the overhead of model synchronization. However, not 
all communication can be masked perfectly (e.g., that of the first-layer gradients). A promising solution is 
to transmit quantized gradients instead of raw values to eliminate the communication bottleneck further. 
In this paper, we propose AQGB, Adaptive Quantized Gradient Broadcast, to accelerate the convergence of 
data-parallel distributed training through designing efficient multi-level quantization and flexible quantization 
ratio control. Distinguished from existing fixed-quantization schemes, AQGB can adjust the level of quantization 
respecting the network state and the training progress to maximize the computation-communication overlap 
(CCO), which is quantified by a novel metric ROW (the Ratio of Overlap time to Wait time). Compared with 
no-quantization and 4bit-fixed QSGD quantization, AQGB could accelerate the convergence speed of training 
(regarding the time to converge) by about 3.15× and 1.24×, respectively.
1. Introduction

To guarantee the convergence of training, workers in data-parallel 
distributed deep learning (DDL) generally have to synchronize their 
local results (e.g., gradients) before iterating to the next round of 
training [1–7]. Recent studies have shown that the communication 
triggered for the synchronization of model parameters could dominate 
the entire training, becoming the system bottleneck [8,9]. Such an 
issue is getting more serious as large models are getting popular [2,
3,10]. To deal with this, numerous optimization designs including data 
compression [5], tensor fusion [6], and communication scheduling [4,7], 
are proposed, to reduce the time that training workers are blocked 
by communication, by reducing the traffic volume and/or by overlap-
ping computation with independent communication [4,5,11]. Indeed, 
as orthogonal, these schemes can be employed jointly. For instance, 
using gradient quantization to enhance communication scheduling is a 
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promising solution: as deep neural networks (DNNs) are trained layer-
by-layer, by reordering the tensor transmissions for different layers to 
overlap communication with computation, workers could hide some 
of the communication overheads [4,7]; and for communication that 
cannot be masked, by transmitting quantized-yet-error-controlled gra-
dients rather than their original values, workers can further reduce the 
involved traffic load along with the hanging time, thus accelerating the 
training iteration [12].

However, as a lossy compression technique, gradient quantization 
has the possible cost of reduced model accuracy or increased rounds to 
convergence [5] (see Fig.  2). Moreover, in large-scale shared clusters, 
because various distributed applications are likely to co-locate [13,
14], the available bandwidth a transfer could use is time-varying. 
Accordingly, a perfect quantization scheme should have the ability 
to adapt its level of compression respecting the network dynamics, 
given that compression schemes with better quality might lead to a 
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better model quality or faster convergence [5,15–17]. Unfortunately, 
to the best of our knowledge, none of the existing schemes have 
supported this, as they all adopt fixed and inflexible quantization 
designs [5], resulting in inefficient performance in terms of both the 
computation-communication overlap (CCO) and the utilization of net-
work bandwidth. More specifically, when there is sufficient network 
bandwidth, a strict fixed quantization setting would suffer from low 
bandwidth usage and high quantization loss; on the contrary, when 
the available network bandwidth is low, a mild fixed quantization 
configuration would lead to very long communication times, which 
might hang the dependent training computation.

To fill the gap, in this paper, we propose AQGB (Adaptive Quantized 
Gradient Broadcast),1 a novel approximate gradient synchronization 
scheme for DDL, embodying the idea of dynamically adjusting the 
quantization level of gradients respecting both the training progress 
and network status. Generally, in DDL, it could take up to thousands 
of rounds of iterative training for a model to converge; and during this 
progress, gradients are produced (by the backward-propagation), then 
consumed (by the forward-propagation) in layer-wise, or more refined, 
in block-wise manners [4]. By profiling several rounds of training, it 
is possible to estimate the (soft) deadline for the transmission of each 
gradient, respecting the goal of maximizing the CCO. Based on the 
profiled deadlines and updated network status, AQGB could achieve 
‘‘perfect’’ overlapping and network utilization in a dynamic system.

Despite being attractive, making the above idea come true is non-
trivial, as the following design challenges must be addressed. First of 
all, gradient compression (e.g., quantization) could reduce the traffic 
volume; however, as we will show in this paper, it might also reduce the 
overlap between computation and communication (i.e., over-killing); 
thus, to avoid this problem, we need a suitable metric to evaluate 
and act as the optimization goal (i.e., C1). Secondly, to reduce the 
wait/blocked time while maximizing the CCO, we need a scheme to 
dynamically adjust the level of quantization, respecting the training 
progress and network status (i.e., C2). Last but not least, to sup-
port adaptive gradient quantization, we need a novel scheme support-
ing multi-level compression with low encoding/decoding overheads 
(i.e., C3).

To address C1, we propose the novel metric of ROW, which could 
capture both the wait time of workers and the achieved CCO, and 
use it as the optimization goal of AQGB. Then, based on ROW, we 
design a progress-aware quantization ratio control algorithm for AQGB, 
enabling training workers to adjust their level of quantization respect-
ing the training progress and network state, in a best-effect manner, 
thus addressing C2. To support hierarchical gradient quantization and 
deal with C3, we further design a flexible and efficient encode/decode 
scheme of TFP, based on the truncation of floating-point numbers for
AQGB. It is worth mentioning that, as a generic approximate gradient 
synchronization framework, AQGB can also work with other multi-level 
quantization schemes beyond TFP; and we leave this as future work.

Extensive performance studies confirm that, for a targeted compres-
sion ratio, the impact of our proposed TFP on the training conver-
gence is quite similar to that of the well-known QSGD quantization 
scheme [18], with much simple truncation-based encode/decode de-
signs; and by dynamically adjusting the compression ratio of TFP-coded 
gradients respecting the network status and training progress to max-
imize CCO, AQGB could make more efficient use of the network to 
accelerate the convergence of the distributed training. For example, 
in our tests, compared with no quantization and 4 bit fixed QSGD 
gradient quantization, AQGB could accelerate the convergence speed of 
training (in terms of the time to converge) by about 3.15× and 1.24×, 
respectively.2

1 AQGB is designed to be decoupled from the transport protocols and sits 
at the application layer. This allows it to work with any existing reliable 
communication protocol, depending on what the underlying network provides.
2 
Fig. 1. The workflow of workers training a DNN model with data-parallel SGD 
algorithms.

In summary, this paper mainly makes five contributions.

• An analysis of the demands and metric of communication opti-
mization for data-parallel DDL (Section 2);

• ROW (Ratio of the Overlap time to Wait time), a metric capturing 
both the wait time of workers and CCO (Section 3);

• AQGB, an approximate-yet-consistent gradient synchronization 
framework built upon adaptive quantized gradient broadcast, to 
optimize the ROW for DDL (Section 4.2);

• A progress-aware quantization ratio control algorithm that could 
adjust the level of quantization respecting the training progress 
and network state (Section 4.3); and

• TFP, a flexible and efficient encode/decode scheme based on the 
Truncation of Floating-Point numbers, that supports hierarchical 
gradient quantization (Section 4.4).

In the rest of the paper, we first introduce the background and 
motivations in Section 2, then describe the definition of ROW in Sec-
tion 3. After that, we look into the design details of AQGB in Section 4. 
Performance studies and related work are presented in Sections 5 and
6, respectively; and finally, we conclude the paper in Section 7.

2. Background and motivation

As the background, we first overview the workflow of data-parallel 
DDL (Section 2.1). Based on this, we then analyze why CCO is the right 
metric for the involved communication optimization, which motivates 
the design of AQGB (Section 2.2). Finally, we discuss the limits of 
existing solutions (Section 2.3).

2.1. Data-parallel distributed deep learning

Nowadays, DNN models are generally trained with the well-known 
algorithm of Stochastic Gradient Descent (SGD) or its variants with 
iterative designs. In each round, a batch of training data samples will 
be selected. As Fig.  1 shows, with these samples, a training algorithm 
first conducts a forward propagation (FP) to obtain the loss values; 
based on which, a backward propagation (BP) is then processed to 
update the values of model parameters. Thanks to the specific structure 
of DNNs, both the forward and backward progress are conducted in 
layer-wise, or even more fine-grained, block-wise manners [4]. In data-
parallel distributed training, the same model is updated by a group 
of workers, each of which only holds a part of the entire training 
data. To guarantee the convergence of distributed training, workers 
would synchronize their locally updated models or gradients periodi-
cally during the training. Obviously, following such a design, a worker 
can start the synchronization of a parameter, once it is generated 
during the backward propagation; and the worker could not conduct 

2 Let 𝑡𝐴 and 𝑡𝐵 be the time workers need to complete a given round of 
training under the scheme of 𝐴 and 𝐵, respectively; then, the speedup of 𝐴
over 𝐵 is defined by 𝑡𝐵 .
𝑡𝐴
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Fig. 2. Gradient quantization could lead to slower convergence. Consider 4-bit quanti-
zation and 8-bit quantization as examples, our proposed TFP would achieve comparable 
performances with QSGD in terms of the impacts on the training loss.

the related forward propagation computation in the next round until 
the synchronized model (or gradient) value is obtained [4].

Abundant recent studies [4–6,19] have shown that when training 
large models over a massive dataset with a large number of workers, 
the time it takes for workers to conduct the synchronization would 
dominate the entire train; thus, optimizing the communication involved 
becomes critical for the performance optimization of large-scale DDL 
training.

2.2. The right metric for communication optimization

In practice, workers in DDL can execute the model synchroniza-
tions with various communication designs, including parameter server, 
ring- or tree- based allreduce, peer-to-peer direct delivery, and ran-
dom gossip [20–23]. To relieve the bottleneck effects of the involved 
communication, a large amount of model or gradient compression 
methods have been proposed. According to [5], they can be classified 
into four types, namely, quantization, sparsification, hybrid, and low-
rank, respectively. At a high level, all these schemes target the goal of 
reducing the impacts of communication bottlenecks in synchronization 
to make DDL more efficient. However, at the low level, as compression-
based solutions, they mainly pursue the direct objective of reducing the 
volume of involved traffic, yielding a gap from the original goal. Such 
a mismatching might lead to a loss of performance.

More specifically, as Fig.  1 shows, DNN models are trained in a 
layer-wise manner; and the effects of communication bottleneck can 
be reduced by pipelining the computation with independent communi-
cation. For example, for DDL, workers can make a layer’s FP and BP 
computation overlap with the communication triggered by a deeper 
layer, using pipeline and layer-aware flow scheduling techniques [4,6]. 
By reducing the traffic volume involved in model synchronization, 
compression techniques are able to cut down the time cost of communi-
cation. However, they might be over-killing—Since the synchronization 
of some layers’ parameters might not be the communication bottle-
neck, hence compressing them to reduce the traffic volume might not 
improve the CCO. Moreover, recent studies have shown theoretically 
and empirically that, in general, for a compression scheme, increasing 
the compression quality (e.g., sending more data to reduce the variance) 
for the synchronization could lead to a better model accuracy or faster 
convergence [5,15–17].

As Fig.  2 shows, we have witnessed such phenomena in experiments 
(where TFP is the quantization scheme we proposed in this paper, 
detailed in Section 4.4). Fig.  2(a) demonstrates the declines of training 
the ResNet50 model upon CIFAR10, under different levels of QSGD-
based gradient quantization settings. Here, the workload is distributed 
among 4 workers with mini-batchsize = 128; on each worker, except 
for the case of 1bit-SGD, the SGD optimizer is used without enabling 
Error-Feedback (EF); the learning rate is set to 0.1 initially and would 
be decayed 10 every 30 epochs. It is obvious that, for the EF-disabled 
3 
training of ResNet50, the higher level of quantization significantly 
leads to a slower convergence speed; and even worse, because of the 
lossy gradient quantization, the model would finally converge to a 
much worse accuracy. In practice, for some models, the side effect 
of lossy gradient quantization can be partially relieved by the design 
of EF. Unfortunately, due to its high extra memory occupy, the EF 
mechanism might be disabled when training very large models [24]. 
Moreover, as recent studies show [25], there are some types of models 
like ResNeXt101, GNMT, Mask RCNN, and BERT, that are very sensitive 
to the noise in gradient quantization and EF designs are unable to fix. 
For instance, as Fig.  2(b) shows, even with EF, the convergence speed of 
training ResNeXt101 upon four workers using the Adam optimizer with 
the learning rate of 1e−4, can be slowed down by the quantization of 
gradients. Here, 2-8bit refers to the setting of randomly compressing 
each gradient value with either 2 bit QSGD or 8 bit QSGD, with the 
equal probability. Thus, existing compression schemes are far from 
optimal due to their misleading low-level optimization goals.

Despite some recently proposed schemes like DC2 [19], AQG [26], 
and AC-SGD [27] having the ability to adjust the compression ratio 
dynamically, we argue that they suffer from a similar problem as well 
since they are essentially agnostic to the opportunity of CCO in DDL, 
by design.

In a nutshell, for DDL tasks, directly maximizing the CCO, rather 
than other alternative metrics like the reduced traffic volume, is a better 
optimization goal.

2.3. Limits of existing solutions

We are not the first who directly targets the goal of maximizing 
the CCO. For example, ooo (out-of-order) [28] tries to maximize the 
overlap by reordering the backprop progress; ByteScheduler [4,29] use 
the design of rescheduling the high-level transmission order of low-
level flow/packet priorities. However, since only using scheduling or 
reordering techniques, which would not change the total traffic volume, 
they are with limited abilities and are unable to deal with the case 
where the available bandwidth will change in dynamic. Indeed, by 
compressing the synchronization communication for DDL in a progress-
aware manner, training workers can not only optimize the CCO but 
also be able to keep the same overlap to mask the possible computa-
tion or communication stragglers, by adjusting the compression ratio 
adaptively.

To achieve the above goal, the foundation is to quantify the CCO 
explicitly. Despite several recent works having tried [30,31], as we 
will show in the next section, their proposed metrics fail to capture 
the adaptive compressibility of the involved transfers, leaving room for 
improvement.

3. Quantifying the overlap

Before presenting the detail of our proposed AQGB, in this section, 
we look into the foundational problem of how to formally quantify 
the CCO for DDL. We first discuss the drawbacks of existing schemes, 
𝑇𝑤𝑎𝑖𝑡 [31] and OSF [30] (Section 3.1), then propose our answer, ROW, 
a better metric defined as the Ratio of the Overlap time to Wait time, 
for the problem (Section 3.2).

3.1. Drawbacks of 𝑇𝑤𝑎𝑖𝑡 and OSF

The overlap between the computation and communication can be 
partially quantified by 𝑇𝑤𝑎𝑖𝑡 and OSF.

Recall that, in DDL, a worker could not conduct FP on a layer before 
the synchronization of the corresponding parameters is completed; thus 
a good CCO optimization should greatly reduce the time that each 
work has to wait for the synchronization to complete. Motivated by 
this, the work of [31] uses 𝑇𝑤𝑎𝑖𝑡, the total wait time each worker has 
encountered in a round of training (e.g., ∑ 𝑡𝑤 in Fig.  3(a)) as the 
𝑖 𝑖
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Fig. 3. Examples showcasing the definitions of 𝑇𝑤𝑎𝑖𝑡 [31], OSF [30], and our proposed 
ROW, along with why ROW is better than the other two. Note that, the 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 used by 
OSF is generally larger than the actual communication time, as it also includes the idle 
time slots caused by slow BP. Also, 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is defined as the overlap between 𝑇𝑐𝑜𝑚𝑝 and 
𝑇𝑢𝑝𝑑𝑎𝑡𝑒; while, the 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 in ROW is defined as the overlap between 𝑇𝑐𝑜𝑚𝑝 and 𝑇𝑐𝑜𝑚𝑚, 
which is more accurate.

metric to minimize. However, as an implicit metric, it is unable to 
capture the CCO during the BP computation; thus, like the case of 
current CCO-agnostic compression techniques, a scheme might be over-
killing on reducing the traffic volume when only trying to minimize 
𝑇𝑤𝑎𝑖𝑡 (e.g., Fig.  3(c)).

Besides 𝑇𝑤𝑎𝑖𝑡, more recently, the work of [30] proposes OSF, i.e.,
Scaling Factor considering Overlap, defined as 𝑇𝑐𝑜𝑚𝑝

𝑇𝑐𝑜𝑚𝑝+𝑇𝑢𝑝𝑑𝑎𝑡𝑒−𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝
, to for-

mulate the scalability of data-parallel DDL tasks, by taking the CCO 
into consideration. As Fig.  3(b) shows, given a round of training, 𝑇𝑐𝑜𝑚𝑝
is the total computation time; 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 is the duration starting from the 
beginning of model synchronization to its end, which is generally larger 
than the actual communication time, as it also includes the idle time 
slots caused by slow BP computation; and 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is computation time 
slots that overlap with 𝑇𝑢𝑝𝑑𝑎𝑡𝑒. Obviously, such a design overlooks the 
fact that parts of the synchronization communication can overlap with 
the next round of FP processing as well, as workers could not start the 
FP until the entire synchronization completes. Thus, OSF falls short. 
Indeed, in such a setting (i.e., no communication overlaps with the 
FP computation), there would be no wait time involved in each FP; 
then, we would have 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 − 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑤𝑎𝑖𝑡 and 
𝑂𝑆𝐹 = 𝑇𝑐𝑜𝑚𝑝 . That is to say, given a training task, maximizing 
𝑇𝑐𝑜𝑚𝑝+𝑇𝑤𝑎𝑖𝑡
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the 𝑂𝑆𝐹  is equivalent to minimizing the 𝑇𝑤𝑎𝑖𝑡. Thus, 𝑂𝑆𝐹  suffers from 
the same problems faced by 𝑇𝑤𝑎𝑖𝑡.

3.2. Our proposed ROW

According to the workflow of DDL shown in Fig.  1, the straightfor-
ward design is to directly use the duration of the overlap time between 
the computation and communication as the quantification of CCO, 
and as the metric to optimize. However, like 𝑇𝑤𝑎𝑖𝑡, such a definition 
would work fine for communication optimization designs that would 
not change the size of traffic volume (e.g., flow scheduling alone). 
Once compression techniques are employed, it is unable to capture the 
possibility that, the wait time before the FP process of the first layer, 
can be reduced by compression techniques as well.

Taking all the above considerations into account, in this paper, 
we propose ROW, the Ratio of Overlap time to Wait time, to quan-
tify the overlap, as Eq. (1) shows. Different from OSF (Fig.  3(b)), 
the 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 used in ROW (Fig.  3(c)) is exactly the total overlap time 
between the 𝑇𝑐𝑜𝑚𝑝 and 𝑇𝑐𝑜𝑚𝑚 (rather than 𝑇𝑢𝑝𝑑𝑎𝑡𝑒). Obviously, by pursu-
ing the objective of maximizing ROW, a communication optimization 
scheme would be enforced to only reduce the bottleneck. As examples 
in Fig.  3 show, ROW is more powerful than 𝑇𝑤𝑎𝑖𝑡 and OSF, as it 
supports compression-based optimizations and captures whether the 
compression is over-killing or not. 

ROW (𝑜𝑓 𝑎 𝑤𝑜𝑟𝑘𝑒𝑟) ∶=
𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑇𝑤𝑎𝑖𝑡

(1)

In practice, both computation and communication stragglers are 
prone to occur during training [32]. Moreover, when adaptive compres-
sion techniques are employed, the traffic volume would not be fixed. 
Thus, for a given distributed training task, workers are likely to have 
various 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝s and 𝑇𝑤𝑎𝑖𝑡s, and their values might change with time. Let 
𝑇 𝑖
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑇 𝑖

𝑤𝑎𝑖𝑡 be the current overlap time and wait time experienced 
by worker 𝑖. We define the ROW of the entire cluster as the ratio of all 
workers’ minimum overlap time to their maximum wait time, as Eq. (2) 
specifies. 

ROW (𝑜𝑓 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑚𝑤𝑜𝑟𝑘𝑒𝑟𝑠) ∶=
min𝑚𝑖=1 𝑇

𝑖
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

max𝑚𝑖=1 𝑇
𝑖
𝑤𝑎𝑖𝑡

(2)

4. AQGB

Based on ROW, we propose AQGB, an approximate gradient syn-
chronization scheme built upon Adaptive Quantized Gradient Broad-
cast, for data-parallel DDL.  Given dynamic network environments,
AQGB performs adaptive quantization in a best-effort manner, using 
a suite of simple yet effective scheduling principles. In short, AQGB
implements its adaptive quantization control at the application layer 
and adjusts the level of quantization with respect to the observed 
bandwidth, the un-delivered volume, and the remaining time to the 
desired completion time dynamically. Such a design enables AQGB
to deal with variability like congestion and heterogeneous computing 
power, in distributed training environments appropriately. For exam-
ple, when network congestion occurs, the un-delivered volume would 
be larger than expected, making the sender increase its quantization 
level; when a worker becomes a straggler and is unable to complete 
its delivery before the expected time, it would increase its quantization 
level accordingly. While for other workers, they would have sufficient 
time to complete the delivery and thus would decrease its quantiza-
tion level. Regarding potential node and link failures, AQGB neither 
specifically optimizes for this aspect nor introduces additional vulnera-
bilities. Consequently, existing fault-tolerant training mechanisms such 
as checkpoint-based recovery [33] remain fully applicable and can be 
seamlessly integrated with our approach.

In the following, we first describe the design insights of AQGB
in Section 4.1, then overview its main design in Section 4.2; after 
that, we present the principles AQGB uses to adjust quantization ratios 
respecting stragglers (Section 4.3), then present our flexible encode/de-
code scheme that enables AQGB to support multi-level quantization 
(Section 4.4), in detail.
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Fig. 4. The two-stage gradient broadcasting of AQGB.

4.1. Design insights

As higher compression quality generally leads to faster training 
convergence or better model accuracy, an attractive design is exploring 
the trade-offs between quantization levels and model accuracy, to 
accelerate the total time cost of model training. However, we argue that 
it is hard, if not impossible, to explore such trade-offs in our context, 
due to two reasons. Firstly, as is known, the development of new 
DNNs is time-costly, following a trial-and-error way [34]. In the early 
stage of development, the relationship between the quantitation level 
and the training accuracy is unknown and unpredictable. Even worse, 
there might not exist such trade-offs. Secondly, even if such trade-
offs are observed, as reported by various recent studies [22,34,35], the 
convergence behavior of distributed training jobs is heavily determined 
by a lot of factors such as the quality of the training datasets, the 
hyperparameter settings like the batch size, the training algorithm, 
learning rate, etc., jointly. Consequently, the relationship between the 
quantization level and the model’s convergence behavior is job specific. 
For example, as our tests explained in Section 2.2 show, (𝑖) compared to 
ResNet50, ResNeXt101 is more sensitive to the introduced compression 
errors; and (𝑖𝑖) for both models, enabling error compensation would 
greatly relieve the side effects of quantization. 

𝑄𝑟𝑎𝑡𝑖𝑜 ∶=
Data size after quantization

Original data size (3)

As specified in Eq (3), in this paper, we define the quantization 
ratio as the ratio of the data size after quantization to the original 
data size. That is to say, a higher quantization ratio value indicates a 
milder level of quantization. To provide a generic communication op-
timization design that benefits various distributed training jobs, AQGB
performs adaptive quantization in a best-effort manner: it guarantees 
that the selected quantization level would never be smaller than a user-
specified value and tries to decrease the quantization level as much 
as possible, providing that the waiting time of computation caused by 
communication would not be enlarged.

4.2. Solution overview

Currently, AQGB is specialized in optimizing the model synchro-
nization for peer-to-peer DDL with adaptive quantization designs. In
AQGB, a worker would immediately broadcast its quantized gradients 
to all other workers, using supported reliable transport mechanisms 
like MPI_Bcast, TCP, and reliable multicast transport protocol(s); then, 
by aggregating the received gradients (including these generated by 
itself) and applying the results to its local model, each worker obtains 
the newly globally updated model and moves to the next round of 
training [12]. At a high level, by profiling the patterns of how gradients 
are generated and consumed locally, workers in AQGB could estimate 
the best completion times (i.e., soft deadlines) for the broadcast of its 
local gradients. Then, at the low level, during the broadcasting, based 
on both the un-delivered gradients and the expected soft deadline, each 
worker dynamically changes the level of quantization to react to the 
presence of stragglers and bandwidth dynamics.

To simplify the control of quantization while maximizing the entire 
DDL task’s ROW, AQGB splits a worker’s execution of gradient broad-
casting into two stages, as Fig.  4 shows. Since the order of how BP 
5 
generates new gradients are the reverse of how FP consumes them, 
during both stages, gradients are transmitted in the last come first 
served order.

In the first stage, AQGB ensures that all gradient values would be 
quantized (i.e., compressed) and then transmitted. As the new gradients 
of a neural network model are generated in a layer-wise manner (see 
Fig.  4 for example), to minimize the possible wait time and to maximize 
the overlap time at the same time, workers in AQGB try to complete 
the delivery of all the generated gradient values just before the next 
block of gradient becomes available (for blocks other than the last), or 
as soon as possible (for the last block), by adapting their quantization 
levels. If some gradients have not achieved this, workers would treat all 
un-delivered gradients and the newly generated gradients as a whole, 
and try to meet the newly (soft) deadline with adaptive quantization 
again.

Once all gradients are quantized and delivered, the input data 
needed by FP are ready for all workers. However, during the FP, 
updated model values are consumed layer by layer; for some layers, 
there might still be available idle time before they are used. To make 
efficient usage of the available bandwidth, workers then switch to the 
second stage, in which, they try to transmit more data to reduce the 
quantization errors introduced in the first stage, such that the CCO 
in the FP could be maximized. Hereafter, for ease of description, we 
call such data remaining data. To control the transmission of remaining 
data, for the remaining quantized data of layer 𝑖, a worker would treat 
the estimated usage time (i.e., the start time of its next round of the 
FP process) as a deadline to decide the quantization ratio dynamically. 
However, during the training, because of stragglers, workers might 
have various estimated FP start times for each layer. To increase CCO, 
workers would synchronize their estimated FP start times; and for 
each layer, a worker would use the latest version of the maximum 
corresponding FP start time to compute the quantization level for the 
second stage of gradient broadcasting.

4.3. Adaptive quantization ratio control

Consider that 𝑚 workers 𝑤1,… , 𝑤𝑚 are training a neural network 
involving 𝑛 layers; a worker (e.g., 𝑤1) starts its BP at time 𝑡𝐵𝑃0 , obtains 
the (𝑛 + 1 − 𝑖)th layer’s locally trained gradients with the size of 
𝑔𝑛+1−𝑖 at time 𝑡𝐵𝑃𝑖 , and launches its next round of FP at time 𝑡𝐹𝐵

1 . 
Hereafter, we also use 𝑔𝑖 to refer to the corresponding gradient data 
block. Then, the data of 𝑔𝑖 would be quantized and then transmitted 
with these two stages of broadcasting, which are denoted by 𝑔𝐹𝑖  and 
𝑔𝑆𝑖 , respectively. Formally, for a given worker, it starts the first stage 
of gradient broadcasting when its last layer’s gradient block 𝑔𝑛 becomes 
available, then stops the broadcasting once it has delivered all its 
own 𝑔𝐹𝑖 s, the quantized values of 𝑔𝑖s, to all receivers. After that, the 
worker starts the second stage of gradient broadcasting, then stops the 
broadcasting either when all the needed data has been delivered, or 
when there is no need to transmit them anymore since the worker 
already starts the FP process on the last layer.

To guarantee that all workers receive exactly the same set of gra-
dients to conduct consistent synchronizations, reliable broadcasting is 
used for the delivery of gradient blocks in both stages; and a worker 
would start 𝑔𝑖’s FP process, only after getting all the gradient data.

4.3.1. First stage
As described in Section 4.2, to avoid the delivery of the cur-

rent block becoming the communication bottleneck, the worker wants 
(1) the delivery of 𝑔𝑖 to be complete before 𝑔𝑖−1 becomes available, 
and (2) the delivery of the final block 𝑔1, along with all undelivered 
gradients, to complete as soon as possible. Let 𝑢(𝑡) be the original size 
of the worker’s generated-yet-undelivered at time 𝑡, and 𝑖(𝑡) be the 
index of the gradient block that will appear next, respectively. Then, 
to achieve the above goal, the worker’s broadcast rate should not be 
lower than 𝑟 = 𝑢(𝑡)∕(𝑡𝐵𝑃 −𝑡). However, the actual broadcast rate this 
𝑛+1−𝑖(𝑡)
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Fig. 5. Examples showcasing how the first- and second- stage gradient broadcasting 
of AQGB works.

worker has achieved is 𝑏(𝑡); we use it as the estimation of the available 
bandwidth in the near future. To eliminate this mismatch, the expected 
compression ratio, that AQGB should approximate, with quantization, 
can be estimated as 𝑞1 = 𝑏(𝑡)∕𝑟 = 𝑏(𝑡)(𝑡𝐵𝑃𝑛+1−𝑖(𝑡)−𝑡)∕𝑢(𝑡). Suppose that the 
upper bound of the quantization ratio allowed by the quantization 
designs/techniques and training tasks is 𝑞, which is a tunable parame-
ter. Then, the actual quantization ratio used would be max(𝑞, 𝑞1). And 
once the last block of gradients becomes available, to accelerate the 
completion of the first stage of broadcasting, the worker would try to 
deliver all un-transmitted gradients with the compression level of 𝑞. 
Following this, the 𝑇𝑤𝑎𝑖𝑡 would be finally reduced.

Fig.  5(a) shows a simple example, where 𝑛 = 𝑚 = 4. The model 
involves four layered gradient blocks, whose sizes are 𝑔4, 𝑔3, 𝑔2, and 
𝑔1, respectively. In the current round of training, the worker 𝑤1 would 
generate them at time 𝑡𝐵𝑃1 , 𝑡𝐵𝑃2 , 𝑡𝐵𝑃3 , and 𝑡𝐵𝑃4 . Then, at time 𝑡 = 𝑡𝐵𝑃1 , the 
size of 𝑤1’s generated-yet-undelivered gradient data is 𝑢(𝑡) = 𝑔4, whose 
expected delivery completion time is 𝑡𝐵𝑃2 . To complete the broadcast of 
these gradients before 𝑡𝐵𝑃2 , 𝑤1 would try to compress its gradients with 
the quantization ratio of 𝑞1 = (𝑡𝐵𝑃2 −𝑡)𝑏(𝑡)∕𝑢(𝑡), and the actual quantization 
ratio is max(𝑞, 𝑞1). During delivery, 𝑤1 would update 𝑡, 𝑏(𝑡), and 𝑢(𝑡) to 
refresh 𝑞1 accordingly. Once the new gradient blocks like 𝑔3, 𝑔2, and 
𝑔1 are generated, both the newly generated block sizes and the next 
expected deadlines (e.g., 𝑡𝐵𝑃3  and 𝑡𝐵𝑃4 ) would be taken into account.

4.3.2. Second stage
Regarding the second stage of broadcasting, the remaining data of 

each layer is delivered in the order how they would get used; indeed, 
not the delivery of all layers from a worker would go through such 
a phase, depending on whether there is still idle time left before the 
estimated start time of the corresponding FP process. To make more 
efficient usage of the network under the existence of straggler, each 
worker in AQGB periodically broadcasts its locally-estimated start time 
of each layer’s FP to other workers; and based on the received and its 
own estimated start time, each worker would complete the deadline, 
i.e., 𝑡𝐹𝑃

𝑖 , for the delivery of the 𝑔𝑖’s remaining data. On each worker, 
as the source of the broadcasting, let 𝑗(𝑡) be the index of the gradient 
block whose second stage of broadcasting the sender would prefer to 
6 
Fig. 6. An example that showcases the usage of AQGB’s truncation-based multi-level 
quantization on FP32.

complete next, and 𝑢(𝑔𝑆𝑗(𝑡)) be the remaining volume to be quantized and 
broadcasted. Then, similar to the case in the first stage of broadcasting, 
to meet the estimated deadline of 𝑡𝐹𝑃

𝑗(𝑡) under the estimated available 
broadcast bandwidth of 𝑏(𝑡), the expected quantization ratio of the 
remaining data of 𝑔𝑗(𝑡) is 𝑏(𝑡)(𝑡𝐹𝑃

𝑗(𝑡)−𝑡)∕𝑢(𝑔𝑆𝑗(𝑡)).
As an example, Fig.  5(b) shows in detail how 𝑤1 performs the 

second-stage quantization controls for four gradient blocks. For the 𝑖th 
block, 𝑔𝐹𝑖  denotes its gradient values already delivered in the first stage, 
and 𝑔𝑆𝑖  indicates its remaining gradients that should be delivered in the 
second stage. To prevent the FP computation from being blocked by the 
broadcast communication, 𝑤1 would try to complete the delivery of 𝑔𝑆1 , 
𝑔𝑆2 , 𝑔𝑆3 , and 𝑔𝑆4  before 𝑡𝐹𝑃

1 , 𝑡𝐹𝑃
2 , 𝑡𝐹𝑃

2 , and 𝑡𝐹𝑃
2 , using the quantization ra-

tio of 𝑚𝑎𝑥(𝑞, 𝑞2), where 𝑞2 is 𝑏(𝑡)(𝑡𝐹𝑃
1 −𝑡)∕𝑢(𝑔𝑆1 ), 𝑏(𝑡)(𝑡𝐹𝑃

2 −𝑡)∕𝑢(𝑔𝑆2 ), 𝑏(𝑡)(𝑡𝐹𝑃
3 −𝑡)∕𝑢(𝑔𝑆3 ), 

and 𝑏(𝑡)(𝑡𝐹𝑃
4 −𝑡)∕𝑢(𝑔𝑆4 ), respectively.

4.4. Efficient multi-level quantization with TFP

In consideration that gradients in deep learning are generally
floating-point numbers like FP16, FP32, and FP64, AQGB designs, TFP 
(Truncation of Floating Point number), a simple yet efficient multi-
level quantization scheme based on the floating-point numbers’ specific 
layouts—i.e., to quantify a gradient into 𝑘 bits, TFP directly truncates 
the bit array of the floating-point representations other than the first 𝑘
bits. Note that, when the targeted level of quantization is small e.g., 4 
or 2, before applying truncation AQGB would first convert the gradient 
into FP16, or FP8, to reduce the introduced errors.

Take the case of quantizing an FP32 gradient into its 12-bit repre-
sentation as an example. According to the IEEE 754 standard [36], the 
layout of an FP32 number can be divided into three parts: (1) 1 bit 
for the sign; (2) 8 bits for the exponent; and (3) 23 bits for the 
mantissa, as Fig.  6 and Eq.  (4) shows. Motivated by this observation and 
distinguished from existing static quantization schemes, TFP reduces 
the mantissa bits to achieve quantization on demand, yielding efficient 
multi-level quantization with the compression ratio of 𝑘∕32, where 𝑘 (≥
2) is the width of bits that should be kept. Obviously, smaller 𝑘 values 
yield higher quantization errors. 
𝑁(𝑆,𝐸,𝑀) ∶= (−1)S × 2E−127 × 1.M (4)

During the broadcast, quantized gradients are encapsulated as the 
payload of UDP. To make both encoding and decoding easy to manage, 
for a given array or stream of gradients made up of 𝑠 FP32 values,
AQGB workers would split them into partitions: by default, each parti-
tion would embody 𝑝 gradient values, yielding the original size of 32𝑝
bit; but for the last one, it would only hold the remaining 𝑠%𝑝 gradients. 
More specifically, in the first stage of gradient broadcasting, to meet the 
compression ratio of 𝑞1, for each F32 gradient in a partition, the AQGB
worker would directly send its first 𝐿𝐹 = ⌈32max(𝑞1, 𝑞)⌉ bits, where 𝑞 is 
with the default value of 0.125; thus, the amount of data to broadcast is 
roughly reduced from 1 to max(𝑞1, 𝑞). For each gradient value, there are 
32−𝐿𝐹  remaining bits that the worker could deliver in the second stage 
of broadcasting. In case the expected compression ratio is 𝑞2, the worker 
would directly send the first ⌈𝑞2(32 − 𝐿𝐹 )⌉ bits among the remaining. 
Let 𝑙 be UDP’s limit on the total size of all partitions in a packet. Then, 
for both stages of broadcasting, workers just greedily pack as many as 
possible successive partitions to generate a packet, under the constraint 
of 𝑙.

Note that many prior quantization schemes employ random rounding
to achieve unbiasedness; indeed, TFP supports this as well. Given a 
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Fig. 7. An illustration of how TFP supports unbiased stochastic quantization using 
random rounding.

floating-point number 𝑥, let 𝑇 (𝑥, 𝑘) be its truncated value by only 
keeping the first 𝑘 bits, and 𝑇 (𝑥, 𝑘) be the truncated value (by only 
keeping the first 𝑘 bits again) of the result of adding an ‘‘1’’ to the 
𝑘th bit of 𝑇 (𝑥, 𝑘). Then, the 𝑘-bit quantized value of 𝑥 using TFP with 
random rounding enabled is computed via Eq. (5). Here, 𝑟𝑎𝑛𝑑() would 
return a random float uniformly in the range of [0, 1) when called. As 
the example in Fig.  7 shows, for a FP32 number 𝑥 = 3.6, we have 
𝑇 (3.6, 12) = 3.5 and 𝑇 (3.6, 12) = 3.75; then, TFP(3.6, 12) would be 3.5 
with the probability of 1 − 3.6−3.5

3.75−3.5 = 0.6, or 3.75 otherwise. 

TFP(𝑥, 𝑘) ∶=
⎧

⎪

⎨

⎪

⎩

𝑇 (𝑥, 𝑘), if 𝑟𝑎𝑛𝑑() ≤ 1 − 𝑥−𝑇 (𝑥,𝑘)
𝑇 (𝑥,𝑘)−𝑇 (𝑥,𝑘)

𝑇 (𝑥, 𝑘), otherwise
(5)

In practice, if 𝑘 is large, the impact of truncation is limited and 
can easily be masked by techniques like error feedback. To simplify 
the involved computation, the random rounding of TFP can be disabled. 
However, when 𝑘 is quite small, random rounding would be helpful. In 
that case, to reduce the introduced quantization errors, TFP would first 
convert the original 𝑥 to a more compact float format like FP16, FP8, 
or even FP4 [37] and then conduct truncation-based quantization.

5. Performance evaluation

To evaluate the performance of AQGB, besides conducting small-
scale real training with PyTorch, following recent studies [38–40], we 
also develop a discrete-event simulator based on the design of ns3 
but in Python 3, which could simulate the behavior of a cluster run-
ning well-known DDL workloads under various model synchronization 
schemes including AQGB.

As we have shown in Fig.  2, for a targeted compression ratio 
e.g., 4 bit, 8 bit, the side effects of our proposed TFP and QSGD on 
the training convergence speed are very close. Then, we use these 
observed characteristics profiled from real distributed training to drive 
the simulation of more complex distributed training. Extensive results 
indicate that:

• In contrast to 𝑇𝑤𝑎𝑖𝑡, ROW is better since it captures the possible 
CCO, rather than only the time that workers are blocked by 
gradient communication.

• AQGB could adjust its level of quantization to cope with dynamic 
networks, thus making higher usage of the available bandwidth.

• By pursuing the goal of ROW with adaptive gradient quanti-
zation, AQGB could make efficient usage of the network as if 
gradients are not quantized while making the bottleneck 𝑇𝑤𝑎𝑖𝑡
time very close to that achieved by fixed-yet-low-bit (e.g., 4 bit) 
quantization.

5.1. Methodology

5.1.1. Metrics, tools, and baselines
As pointed out by various recent studies [23,34,35], given a dis-

tributed model training job, how the trained model converges is jointly 
determined by abundant factors, ranging from the training dataset to 
the model structure, to the hardware environment, and to the hyper-
parameter settings. Accordingly, to study and highlight the benefits of 
our proposed schemes in detail, like recent works [23,35], we develop a 
7 
Table 1
ResNet50 settings.
 Block ID Layer Block size FP time BP time 
 1 conv1–conv4_1 3 m 41.9% 50.5%  
 2 conv4_2–conv4_6 5.6 m 15.5% 14.2%  
 3 conv5_1–conv5_1 6 m 16.5% 12.9%  
 4 conv5_2–fc1000 11 m 26.1% 22.4%  
 FP:BP training time ratio is about 0.365:0.635

simulator and mainly employ system-relevant metrics for performance 
evaluation. More specifically, our simulator could simulate how a group 
of workers synchronize their locally trained model gradients to drive 
the DDL upon reliable broadcast.3 Besides the proposed adaptive quan-
tization AQGB, the simulator also supports other gradient quantization 
designs. As AQGB is the first work that supports adaptive gradient 
quantization based on the training progress and network state, to high-
light its behaviors in tests, we mainly use the cases with no quantization 
(i.e., labeled as 32 bit), and 4 bit QSGD-based quantization (i.e., labeled 
as 4 bit) as baselines. Regarding the metrics, besides our proposed 
ROW, we also consider 𝑇𝑤𝑎𝑖𝑡 (normalized by the average computation 
time per round of local training), the average utilization of network 
bandwidth, and the number of DDL training rounds in a given time 
duration 𝑇 , with the default value of 200 s, in our tests.

5.1.2. Cluster and workloads
We consider that 𝑚 workers are training the well-known ResNet50 

model [41] with data-parallel designs. These training workers are 
assumed to be networked with a top-of-rack switch and with 2.5 Gbps 
links. By default, 𝑚 = 16. During the training, each worker transmits 
the gradient blocks generated during backpropagation to other 𝑚 − 1
workers by broadcasting. For possible CCO optimization, the model is 
divided into 4 blocks respecting its structure and number of parameters, 
as Table  1 specifies. Our basic principle here is to balance the number 
of parameters in each block, respecting their layer-wise structure. There 
are also other ways for splitting. As how a model could be split highly 
depends on its structure, for the optimization of the splitting scheme for 
different types of models, we leave this as a future direction. For the 
detailed computation times involved in each block, we use the cycle-
accurate CNN accelerator simulator of SCALE-SIM [40] to synthesize 
the time cost of each step.

In consideration that, during the training, the time needed by a 
worker to conduct a round of training is not exactly the same because of 
system noise, we randomly scale the time values generated by SCALE-
SIM [40] to synthesize their time costs. In tests, we consider two 
scale principles respecting different scenarios: (1) Uniform. Workers 
are with very similar performance; The time a worker needs to com-
plete a local iteration of BP+FP, follows the uniform distribution of 
𝑈 [0.9, 1.1] × 1.5 s, with an average value of 1.5 s. This is the default 
setting in tests. (2) With stragglers. Workers might suffer from a 
remarkably larger training time, with a low probability. For this type, 
we consider that the computation time of a local iteration follows the 
distribution tested on a standard Google Cloud GPU instance using the 
dataset of ImageNet, reported by [32]. To be comparable with the case 
of uniform, the expected value of the generated computation times 
keeps 1.5 s, as Fig.  8 shows.

5.2. Results

5.2.1. React to the change of bandwidth
To check the ability of AQGB on reacting to the change of band-

width, we proactively reconfigure the available link bandwidth that 
it would use and record the compression ratio AQGB estimated via 

3 Concurrent transfers share link capacities with max–min fairness.
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Fig. 8. A synthesized runtime distribution of training workers based on that reported 
by [32].

Fig. 9. An example shows that AQGB could adjust the level of quantization respecting 
the change of available bandwidth.

Fig. 10. With adaptive quantization, AQGB reduces 𝑇𝑤𝑎𝑖𝑡 while making efficient usage 
of bandwidth. Distinguished from the metric of 𝑇𝑤𝑎𝑖𝑡, which only reflects the time 
that training workers are blocked by communication, ROW could capture the overlap 
between computation and communication, thus preventing AQGB from making over-
killed quantization.

max(𝑏(𝑡)(𝑡𝐵𝑃𝑛+1−𝑖(𝑡)−𝑡)∕𝑢(𝑡), 0.375). Fig.  9 shows an instance we observed when 
8 workers are training ResNet50. Despite that the absolute values are 
related to the instance, we do consistently observe that AQGB is able to 
adjust the quantization ratio (i.e., 𝑄𝑟𝑎𝑡𝑖𝑜 defined by Eq. (3) and shown 
in Fig.  9) respecting the network status.

5.2.2. Acceleration of the training iteration
Now, we check the advantage of the proposed ROW and AQGB. 

Fig.  10(a) shows that compared to the scheme of no-quantization 
(i.e., 32 bit), AQGB enables workers to obtain more training rounds 
in the same specified time. Consistent with the results of Fig.  12, when
8 
Fig. 11. Training convergence speed and model accuracy for DDL tasks that use 8 
simulated workers to train the model of ResNet50 over the CIFAR-10 dataset, with 
no-quantization, fixed-quantization, and AQGB, where the EF is not enabled.

Table 2
ResNet50 upon CIFAR-10.
 Quantization 
scheme

Top-1 
accuracy

Convergence 
rate

Acceleration 
(CCO)

Actual 
speedup

 

 None (i.e., FP32) 85.36% 1(Baseline) 1(Baseline) 1(Baseline)  
 4 bit QSGD 82.94% 0.76× 3.33× 2.54×  
 AQGB 84.69% 0.97× 3.26× 3.15×  

AQGB limits the quantization level to be no less than 4 bit, workers 
could iterate the training very fast, close to the case when fixed 4bit-
QSGD quantization is employed. For example, in the case shown in 
Fig.  10, without quantization, workers would iterate 39 rounds within 
200 s; while with AQGB, workers iterate 127 rounds, close to the 130 
rounds workers achieve under 4 bit quantization. Despite iterating the 
most rounds, as Fig.  10(b) shows, 4bit-QSGD quantization achieves the 
worst network bandwidth utilization, less than half of that achieved 
by AQGB. In contrast, both AQGB and the no-quantization scheme 
achieve much higher utilizations of about 77% and 90%, with a gap of 
about 13%. Higher network utilization means fewer data are dropped, 
yielding better quantization quality thus bringing possible benefits to 
the model accuracy or training convergence [16].

Consistent with the results in Fig.  10(a), as Fig.  10(c) shows, the 
𝑇𝑤𝑎𝑖𝑡 achieved by AQGB is close to that of 4bit-based quantization, 
significantly outperforming the case when no quantization is employed. 
Besides, we also plot their ROW values as Fig.  10(d) shows. Obviously, 
compared to 𝑇𝑤𝑎𝑖𝑡, ROW is a better metric: besides reflecting the time 
that training workers are blocked by gradient communication (as 𝑇𝑤𝑎𝑖𝑡
does), it also captures the overlap between computation and com-
munication. Thus, using ROW as the optimization goal, quantization 
schemes like AQGB would control the level of compression properly 
without over-killing.

5.2.3. Optimized convergence speed and final accuracy
Fig.  11 illustrates the model performance in a simulated DDL sce-

nario. As Fig.  11(a) shows, with AQGB, the convergence rate of dis-
tributed training is slightly lower than the case of no-quantization 
but much higher than the case of 4 bit quantization (in terms of the 
number of training rounds to converge), while Fig.  11(b) shows that the 
accuracy achieved by AQGB-enabled training is almost comparable to 
the case of no quantization; and as shown in Table  2, the gap between 
the two cases is only 0.67%. By combining the observed improvements 
in terms of convergence rate and CCO optimized by AQGB, we further 
estimate the actual speedup ratio AQGB could achieve on distributed 
training: compared to no-quantization, AQGB could reduce the training 
time by about 3.15×, while keeping the decrease of the top-1 accu-
racy about 0.67%. Even compared to 4bit-QSGD quantization, AQGB
achieves an improvement of 3.15×, which is significantly higher than 
the 2.54× achieved by 4 bit fixed quantization, yielding about 24% 
improvement in the acceleration ratio and a 2.75% increase in model 
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Fig. 12. Impacts of link bandwidth.

accuracy. It can be seen that AQGB is all-around superior compared 
to traditional fixed quantization schemes. Taking advantage of the 
awareness of the dynamics of network bandwidth, AQGB achieves 
higher-quality gradient transmission with almost no reduction in the 
number of iterations per time. In summary, given that AQGB has a 
faster convergence rate as well as a smaller risk of accuracy loss, when 
developing new models, at the early stages of the training where fast 
convergence is desired, it is promising to use AQGB instead of a fixed 
gradient quantization (e.g., QSGD).

5.2.4. Impacts of bandwidth
Next, we study the influence of available bandwidth by increasing 

the link capacities from 2 Gbps to 10 Gbps and rerun the tests. As Fig. 
12(b) shows, with the increase in bandwidth, the observed bandwidth 
utilization decrease for all schemes, including the scheme without 
quantization. As expected, such a result implies that the bottleneck ef-
fects of communication are alleviated; therefore, due to the reduction of 
𝑇𝑤𝑎𝑖𝑡 as Fig.  12(c) shows, workers could conduct more training rounds 
as confirmed by Fig.  12(a). Results also imply that, for both AQGB and 
the 4 bit quantization scheme, the improvements of the training round 
are trivial. This is because, with quantization, they already relieve the 
bottleneck efforts of gradient communication. However, as Figs.  12(b)
and 12(d) show, unlike using the fixed 4 bit quantization, the adaptive 
design of AQGB enables it to make effective use of the available 
bandwidth, leading to higher network utilization and ROW. Moreover, 
from Fig.  12(d), we also observe that, for AQGB, once communication 
is not the bottleneck, the value of ROW also decreases with growing 
bandwidth. This is reasonable since the overlap between computation 
and communication (i.e., the numerator in the definition of ROW) is 
decreased.

5.2.5. Impacts of stragglers
To further investigate the influence of the straggler in the training, 

we assume that the time cost a worker needs to complete a round of 
local training following the distribution shown in Fig.  8, belonging to 
the range of [1.33, 2.67] s, with the expected value of 1.5 s. In case 
a worker spends noticeably more than 1.5 s (e.g., 2.0 s) to complete 
a round of training, we treat it as a straggler in this round. The 
appearance of such stragglers enforces other normal workers to wait 
for their completion for the transmission of gradients in each round of 
synchronization. As Fig.  13(a) shows, due to the presence of straggler, 
the improved number of training rounds for both 4 bit quantization 
and AQGB are only about 125.6% and 118.0%, respectively, when 
compared to no-quantization. Such achieved improvements in training 
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Fig. 13. Performances when the time cost of local training follows the distribution of 
Fig.  8.

rounds are much less than those obtained in the uniform case without 
stragglers (i.e., Fig.  10(a)). As for the network utilization (Fig.  13(b)), 
the results are similar to the uniform scenario. And because of strag-
glers, the room for the optimizations of both 𝑇𝑤𝑎𝑖𝑡 and ROW is limited, 
Compared to benchmarks, performance drops by almost an order of 
magnitude (Figs.  13(c) and 13(d)). Nevertheless, compared to no-
quantization and 4bit-quantization, AQGB could make more efficient 
use of the underlying network by maximizing the CCO.

5.2.6. Impacts of block splitting
To investigate the impacts of the block-splitting scheme, we control 

the number of split blocks from 3 to 6 and rerun the tests. As we have 
mentioned, in the case of 4 blocks, the model is divided following the 
scheme specified by Table  1. Based on this, we merge the 3rd and 
4th blocks to generate the case of 3-block-splitting, and split the 4th 
block (e.g., conv5_2-fc1000, Table  1) to the two parts of conv5_2, and 
conv5_3-fc1000, to generate the case of 5-block-splitting. As for the 
case of 6-block-splitting, it is generated by continuing to regroup the 
first 2 blocks (i.e., conv1-conv4_6) into 3 new blocks, conv1-conv3_4, 
conv4_1-conv4_3, and conv4_4-conv4_6. Fig.  14 shows both the training 
rounds and average ROW values AQGB achieved in a period of 200 s. 
Here, no-split refers to the (lower) case where the entire model is not 
split; and ideal refers to the (upper) ideal-yet-unachievable situation in 
which perfect CCO is obtained (i.e., 𝑇𝑤𝑎𝑖𝑡 = 0, all communication is 
masked). Thus, the gap between no-split and ideal shows the room for 
the optimization of the iteration speed of the training. As indicated 
by the results, despite splitting the model into more blocks could 
increase the training iterations a little, it distinctly improves the CCO, 
as the value of ROW continues to grow. Thus, for communication 
optimization, workers prefer a fine-grained split of the model. However, 
in practice, how a model could be split also highly depends on its struc-
ture, and small blocks generally introduce additional communication 
overhead. Thus, future studies are needed to explore generic principles 
and guidelines for the optimization of block splitting.

6. Related work

The key idea of our proposed scheme is to maximize the CCO for 
DDL in dynamic environments with adaptive lossy gradient quantiza-
tion. For both overlapping the communication with computation and 
lossy gradient compression, there are a great many various propos-
als [5,6]. In the following, we briefly discuss some recent advances 
related to AQGB.
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Fig. 14. Impacts of the number of split blocks on the performance of AQGB. Results 
imply that,  despite splitting the model into more blocks only increasing the training 
iterations a little, it distinctly improves the CCO, as the value of ROW continues to 
grow.

6.1. Overlapping communication with computation

Different from ooo [28] that reorders the executions of back-
prop progress, iPart [11] overlaps the gradient communication with 
backward computation and parameter communication with forward 
computation for parameter server based DDL, by partitioning the 
involved communication and computation in suitable partition sizes. 
AccTFM [42] employs similar but more sophisticated designs for the 
distributed training of specialized Transformer-based DNNs, in which, 
both sparsification and quantization methods are also embodied to re-
duce the involved traffic volume. Also aiming at the goal of optimizing 
the CCO, Prophet [31] directly use the wait time as the metric and tries 
to minimize it by reordering the delivery of gradients in block-wise 
manners [31]. Distinguished from them, in this paper, we propose the 
metric of ROW to explicitly measure the CCO for DDL, which is a better 
metric for the optimization objective as we have discussed in Section 2.

6.2. Lossy gradient quantization

As a lossy compression technique, quantizing float32 gradients into 
fewer bits could reduce the traffic volume, with the possible cost of 
slowed convergence speed or reduced model accuracy. For example, 
researchers have shown recently that, in theory, worse compression 
quality leads to slower convergence [16]. However, in practice, the 
convergence of a model on a given dataset is determined by a lot of 
hyper-parameters jointly, such as the batch size, training algorithm, 
and learning rate [34]. Thus, there does not exist a clear and fixed 
relationship between a DDL task’s convergence speed and the compres-
sion quality, or more specifically, the quantization level, it has taken 
advantage of [43]. Besides determining the level of quantization in 
advance [5], some recent proposals have proposed adaptive designs 
that could adjust the quantization settings respecting the gradients 
updates and other dynamic factors during training [26,27]. However, 
none of them have taken the dynamic available bandwidth into account 
and AQGB overcomes this type of drawback. Besides quantization, 
sparsification (e.g., Top-k, random-k) is another type of lossy compres-
sion scheme widely employed to reduce the traffic load of gradient 
synchronization for DDL [5,19]. Some recent proposals also show that 
these two types of designs can work together for communication opti-
mization [44]. Currently, AQGB only supports adaptive quantization; 
extending it to support adaptive joint-sparsification-and-quantization 
communication optimization yields attractive future directions.

7. Conclusion and future work

In this paper, we revisit the idea of using gradient quantization 
techniques to tame the communication bottlenecks involved in DDL. 
Different from prior solutions, our proposed solution, AQGB, embodies 
two novel designs. Firstly, instead of employing fixed quantization 
designs, it dynamically adapts the level of quantization respecting the 
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training and transmission progress, bringing benefits to the conver-
gence and quality of the training [5,15–17]. And secondly, rather than 
just reducing the time training workers take for the completion of a 
round of model synchronization, it purses the explicit goal of maxi-
mizing their ROW (the Ratio of Overlap time to Wait time), fully re-
leasing the power of overlapping communication with computation for 
DDL [4]. Detailed trace-based performance studies confirm that AQGB
can optimize the utilization of both the computation and network 
resources, thus improving the DDL system performance significantly.

Regarding the practical deployment, AQGB can be implemented as a 
part of the communication library [45], and using the existing reliable 
transport mechanisms like MPI_Bcast and reliable multicast transport 
protocol(s) [46] for quantized gradient broadcast. Although the compu-
tations involved are not particularly complicated, a full-fledged imple-
mentation of AQGB still requires substantial future engineering effort. 
Besides, as a generic approximate gradient synchronization framework 
that could adjust the level of quantization concerning the training 
progress and network state, AQGB supports any other quantization 
ratio control and multi-level quantization schemes besides the ones 
specified in Sections 4.3 and 4.4. Accordingly, it is possible to make 
joint usage of AQGB and other quantization schemes like QSGD [18], 
DAdaQuant [47], DQ-SGD [48], and others [26,27]. However, non-
trivial modifications on both AQGB and these schemes are needed to 
achieve the goal, as they were not originally designed for that purpose, 
having not supported adaptive multi-level quantization yet. We leave 
these for future work.
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