Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

Pushing the Performance Boundary of In-Network AllReduce
With Joint Topology and Routing Optimization

Shouxi Luo'?, Xiaoyu Yu', Ke Li', Huanlai Xing!
School of Computing and Artificial Intelligence, Southwest Jiaotong University
2Tangshan Institute, Southwest Jiaotong University

Abstract—Parameter server (PS) based AllReduce is widely
employed by distributed machine learning (DML) applications
for model synchronization. As recent studies show, the execution
of synchronization can be greatly accelerated by letting powerful
switches (a.k.a., aggregators) inside the network pre-aggregate
the associated traffic during the journey, yielding the solution
of In-Network (accelerated) AllReduce. We) find that the key
to pushing the performance boundary of in-network AllReduce
relies on controlling the system’s topology and routing jointly
since associated flows must go through the same aggregator(s) for
in-network acceleration, thus i) propose the solution of ATRO,
i.e., Aggregator-aware Topology and Routing Optimization, to
achieve this optimality. At the core, ATRO 1) envisions a realistic
scenario where commercially available optical switching devices
are employed to build a topology-reconfigurable cluster and
1) jointly manages its topology and routing with a novel theory-
empowered algorithm to maximize the throughput of in-network
accelerated AllReduce. As confirmed by evaluation studies, ATRO
achieves excellent performances: compared to the state-of-the-art
scheme that 7) only optimizes the routing, ;) jointly optimizes the
routing and task placements, and iii) jointly optimizes the routing
and aggregator placements, it could accelerate the AllReduce’s
execution (in terms of the achieved throughput) by up to 10.4x,
22.1x, and 14.0x, respectively.

Index Terms—In-network acceleration, routing optimization,
topology reconfiguration.

I. INTRODUCTION

Nowadays, the collective operation of parameter server (PS)
based AllReduce has been widely employed by data-parallel
distributed machine learning (DML) jobs to achieve efficient
synchronization of the local results during the training [1], [2].
To guarantee and accelerate the convergence of the distributed
training, workers in practice are designed to iterate to the next
round of training until its depending AllReduce operation(s)
has been completed. Accordingly, accelerating the execution
of such AllReduce operation is crucial for optimizing the
efficiency of distributed training [1]-[6].

For the acceleration of PS-based AllReduce, recent advances
in high-performance data-plane programmable network de-
vices [3], [4], [7] have provided a promising and genetic design,
by making efficient usage of the capacities of advanced network
devices, yielding the solution of in-network (accelerated) AllRe-
duce [1], [2]. More specifically, in the PS-based implementation,
the entire workflow of AllReduce is logically split into a

This work was supported in part by NSFSC under Grant 2025ZNSFSC0489,
in part by the Hebei Natural Science Foundation under Grant F2025525008,
and in part by the Fundamental Research Funds for the Central Universities
under Grant 2682024ZTPY050. (Corresponding author: Shouxi Luo.)

reduction process followed by a broadcast: i) the workers
that hold the input data first push their data to the parameter
server(s) for reduction (a.k.a, aggregation); i) once the results
are generated, the parameter server(s) broadcast/deliver them
back to involved workers. By using the processing and cache
capacities of powerful network devices (e.g., P4 switches [3],
[4]), it is possible to let some switches act as aggregators to
pre-aggregate reduction flows when they go by, i.e., conducting
in-network aggregation (INA) [4]. As a result, the reduction
procedure can be accelerated since both the triggered traffic
in the network and the workload of the PS can be greatly
reduced. Following the reversed routing paths for delivering
results and using these powerful switches to conduct multicast
at the network layer [8], [9], the triggered traffic and workloads
for the broadcast can be relieved as well.

In practice, it is likely that only partial switches support
in-network acceleration (aggregation and multicast) due to the
limited budget [3]-[6]. As pointed out by [4], in these scenarios,
the key to releasing the power of in-network acceleration relies
on routing optimization, since associated flows must go through
the same aggregator to conduct in-network acceleration. In this
paper, we notice that only controlling the routing is insufficient
to reach the performance boundary of in-network aggregators.
This is because the optimization space that routing optimization
can explore, is fundamentally limited by the feasible paths
among workers, aggregators, and the PS(s), provided by the
network. To address this, the recent proposals of PARING [5]
and SPAR [6] have explored the designs of jointly optimizing
the placements of workers/PS, and the aggregators, along with
the routing of reduction traffic, respectively. Unfortunately, their
optimizations are not fundamental, since the entire network is
still in fixed forms like Leaf-Spine and Fat-Tree [4], limiting the
space that routing optimization can explore, and mismatching
with the requirements of in-network AllReduce workloads.

Distinguished from these existing schemes [4]-[6], in this
paper, we push the performance boundary of in-network
AllReduce with the novel design of Aggregator-aware Topology
and Routing Optimization (ATRO). Rather than relying on a
fixed cluster topology, ATRO i) envisions a realistic scenario
where commercially available optical switching devices like
optical patch panel [10], [11] are employed to build a topology-
reconfigurable cluster for Al training, and then i) jointly
controlling the cluster’s topology and routing to maximize the
throughput of aggregator-accelerated AllReduce operations. The
core of ATRO’s scheduling algorithm is to precisely formulate

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

the joint topology and routing optimization problem as a novel
yet easy-to-solve Integer Quadratic Programming (IQP) model
and solve it to obtain the optimal joint scheduling scheme.
Performance studies confirm the significant performance im-
provements of ATRO over existing solutions. For instance,
compared to the baselines of 7) organizing the cluster using
Leaf-Spine or Fat-Tree, then ii) only optimizing the routing
with the optimal design of ARO [4], jointly optimizing the
routing along with task placements with the approximation
algorithm of PARING [5], and jointly optimizing the routing
together with the aggregator placement with the greedy scheme
of SPAR [6], by optimizing the network topology and routing
jointly, ATRO could increase the throughput of in-network
AllReduce up to 17.4x, 24.8x, and 10.6 %, respectively.

In short, the main contributions of this paper are three-fold.

« A thorough analysis of the importance of joint topology
and routing optimization for accelerating in-network
AllReduce, which motivates the design of ATRO (§II-B).

o ATRO, a topology-reconfigurable cluster architecture
along with a novel IQP-based solution that could maximize
the throughput of PS-based AllReduce by jointly conduct-
ing aggregator-aware optimal optimization of network
topology and routing (§III).

« Performance evaluations confirming the significant per-
formance improvements of ATRO over state-of-the-art
(SOTA) schemes (§IV).

Next, we first overview the background and motivation in
Section II, then describe our design of ATRO in Section III.
After presenting the results of the performance evaluation in
Section IV, we finally conclude the paper in Section V.

II. BACKGROUND AND MOTIVATION
A. In-Network AllReduce

The collective operation of AllReduce is widely employed
by distributed applications like data-parallel model training
to synchronize the local results. The efficiency of com-
pleting AllReduce operations is pivotal to the application’s
performance—Because many distributed applications could
move to the next step of processing only until the launched
AllReduce has been completed by design [3], [4], [12], [13].

To achieve efficient performance, AllReduce has abundant
implementations having various traffic patterns, ranging from
direct peer-to-peer [14], rings [15], trees [12], and PS-based
star [4]. Among them, the PS-based solution is widely
employed in the context of data center networks [3]-[6], where
involved host nodes are classified into two types, namely
workers and parameter servers (PS), according to their roles.
Using PS-based implementation, the execution of an AllReduce
operation is decoupled into two stages, i.e., i) workers firstly
reduce all their input data to the PS via the network, then i) the
PS logically broadcasts the results back to all workers. When
the data is large, workers and the PS can split the data into
chunks and conduct the corresponding reduction and broadcast
in a pipelined fashion [12].

As confirmed by abundant recent studies [1]-[4], [13],
the emerging technique of in-network aggregation (INA) has

provided a generic and powerful solution to accelerate the
execution of PS-based AllReduce. The key idea is to let the
capable network devices (e.g., switches) pre-aggregate (i.e.,
reduce) the data sent by workers before it reaches the PS,
such that the traffic inside the network triggered by reduction
can be greatly reduced along the journey, and meanwhile, the
workload of the PS is also eased [3]. The recent advances
in data-plane programmable switches [3], [4], [7], [16] have
made the above vision readily deployable. Regarding the
broadcast of the results, existing IP multicast techniques have
provided bandwidth-efficient solutions [8], [9]. Empowered
by the above designs, the PS-based AllReduce’s performance
can be greatly improved, yielding an efficient in-network
(accelerated) AllReduce solution for distributed applications.

B. Importance of Joint Topology and Routing Optimization

To conduct INA, associated reduction flows sent by workers
must go through the same aggregator (i.e., INA-support switch)
before reaching the PS. In many cases, not all switches support
INA [4] [6]. Accordingly, managing associated reduction flows
to) go through the same aggregators and i7) simultaneously
reduce the introduced network congestion occurring on links, is
the key to achieving optimal in-network AllReduce by making
efficient usage of available aggregators [4].

Given an in-network AllReduce task, it is obvious that the
room for optimization is generally dominated by two coupled
factors, i.e., i) how the elements including the PS, workers,
and aggregators are networked, and ii) how the reduction
traffic is routed over the network. The recent work of ARO [4]
has explored the design of conducting near-optimal (if not
optimal) routing optimization to fully release the power of
deployed aggregators to accelerate in-network AllReduce over
Clos networks. Despite being efficient, the benefits of ARO
are still limited by the network topology since a routing plan
can be generated if and only if available paths exist between
workers, aggregators, and the PS. Beyond routing optimization,
the work of PARING [5] also jointly controls the placement
of tasks; alternatively, the work of SPAR [6] explores the
design of jointly controlling the placement of aggregators rather
than workers and the PS along with routing. Although jointly
controlling the placement of tasks and/or aggregators along with
the routing paths does bring benefits to make efficient usage of
aggregators. These solutions are still not fundamental, as the
entire network is still in fixed forms like Leaf-Spine and Fat-
Tree, limiting the space for routing optimization. Accordingly,
the fundamental way to push the performance boundary of
in-network AllReduce relies on conducting aggregator-aware
joint optimization of the network topology and routing.

C. Reconfigurability of Network Topology

Nowadays, abundant techniques like optical patch panel and
3D MEMS [10], [11] have made the interconnection relation-
ship between devices in the network/cluster reconfigurable at
runtime. These techniques have various reconfiguration delays,
ranging from several microseconds to minutes; in general, the
higher configurable delay it suffers from, the larger number

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

Switch Switch Switch

w:xx//

Optical Patch Panel

WK . f

Host| (Host) (Host (Host) ... (Host

Fig. 1: A topology-reconfigurable cluster architecture for the
in-network acceleration of PS-based AllReduce.

of ports a device built upon that technique could support [10].
For example, the current commercially available optical patch
panel device provides the runtime reconfigurability for 1008
ports, with a reconfiguration delay of a couple of minutes;
while the 3D-MEMS device supports the reconfiguration of
384 ports with a delay of about 10ms [10].

In practice, it generally takes hours, days, or even weeks
for distributed machine learning applications to complete the
training of deep models. Once a training job is deployed, the
patterns of its triggered AllReduce workload are determined.
Accordingly, the operator only needs to reconfigure the cluster
topology before launching the training. Compared to the entire
training duration, minutes of reconfiguration delays are trivial.
Thus, commercially available solutions like optical path panels
satisfy the demand for reconfigurability.

III. AGGREGATOR-AWARE TOPOLOGY AND ROUTING
OPTIMIZATION

To support the reconfigurability of the cluster topology at
runtime, as Figure 1 shows, we consider the case where all
hosts and switches (including aggregators) are connected to
a reconfigurable optical switching device (e.g., optical patch
panels, 3D MEMS [10], [11]). The cluster’s logical topology
can be tuned on demand by configuring the optical device.
Based on the above cluster architecture, by considering PS-
based distributed training as a concrete example (§III-A), we
now describe how to formulate the joint topology and routing
optimization problem as an IQP (§III-B) and solve it using
off-the-shelf commercial available solvers (§III-C). Our design
can also be extended to distributed training jobs built upon
tree-AllReduce.

A. System and Workload

Consider the widespread use case and implementation of
AllReduce, where a group of workers conduct data-parallel
training locally and send gradients to one PS via an INA-support
network for reduction (a.k.a., aggregation). As the completion
of the reduction is dominated by the slowest sending rate among
all workers, same with [4], we enforce all workers to send data
at the same rate, denoted by the non-negative integer variable
r, bringing benefits to INA [3]. Once the aggregated results
are generated, the PS can reliably disseminate the data back to
workers using IP multicast [8] over the reversed routing paths

at the same rate. When the data is large, both the reduction
and the dissemination processes can work in pipeline [12].

ey

In such systems, there are four types of nodes, namely,
worker (w), PS (ps), INA-agnostic common switch (cs), and
INA-supported switch, a.k.a. aggregator (agg). We denote
them by N, where k € {w,ps, cs,agg}, respectively. For
convenience, we also use Ny, = N5 U Nyg4q4 to represent all
switches including c¢s and agg, N, = N,,UN,, to represent all
workers and the PS, and N = N, U N, to represent all nodes.
As the topology between these nodes is re-configurable, we use
a binary variable z;, to indicate whether there is a connection
between node v and another node v (i.e., 1) or not (i.e., 0).
Because the sending rates of all workers are the same, the data
transmission rate on each link must be a non-negative multiple
of r, where this multiple denotes the number of flows on this
link. Following [4], we define a non-negative integer variable
Y, to represent the number of flows for reduction traffic from u
to v. Accordingly, all these variables {z? : (u,v) € P} denote
how all the nodes are networked (i.e., the network topology);
and all these variables {y” : (u,v) € P} denote how the
INA-supported traffic gets routed over that network.

z, €4{0,1}, ¥Y(u,v) P
Yy € L>o, Y(u,v)€P

T’GZZO

@)
(€)

Here, P denotes the feasible set of node pairs that might
have links as Eq. (4) specifies. Given that nodes like workers
and the PS generally have only one link connecting to the
network via either a switch or an aggregator, there would be
no direct connections between workers and the PS. Thus, node
pairs belonging to {(u,v) € N,, x N,,} are excluded from P.

P:={(u,v) € Nx N:u#v}\{(u,v) € N, x N} (4

B. Objective and Constraints

To accelerate the completion of the AllReduce operation,
we maximize its throughput:

Maximize r

)

To ensure that there exists a network topology along with a
routing scheme that achieves the optimal throughput, there are
various types of constraints that our variables r, {z¥ : (u,v) €
P} and {yY : (u,v) € P} must satisfy with. Now, we explain
these constraints in detail.

« Limited numbers of ports: In practice, the number of
links connected with each switch/aggregator cannot exceed
the number of ports it owns. We use 7, to represent the
number of available ports of node u and assume that the
inter-node connections are bidirectional. Then, we would

have constraints (6) and (7).
zy =y, Y(u,v)€eP

Z Ty <My, YueN
veEN\{u}

(6)
N

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

It’s worth noting that, as both worker and PS nodes
generally have only one port, their 1, = 1.

o« Networked workers and PS: To be networked, each
worker and the PS has exactly one connection to either a
switch or an aggregator, i.e.,

Zazﬂ:l,

u€ENg

Yv € N, ®)

« Effects of in-network aggregators: Since an aggregator
can reduce multiple associated reduction flows to a single
one, the sending rate of aggregator u is either r or 0,
depending on whether other nodes in the network send
data to it or not. Such a requirement can be jointly
formulated with constraints (9) and (10), where M is
a constant value larger than the number of workers. Using
it, constraints (10) can enforce the value of >~ p1(,,) ¥,

to be either 1 or 0, respecting the value of Zv,epg(u) Yo

> oy <1, Vu€ Ny,)
vEP(u)
S Y sl Y e Ny
vEP(u) v’ €P?(u) vEP(u)

Here, the functions of P!(u) and P?(v) are defined as
Egs. (11) and (12), respectively.

P(u) == {v: 3(u,v) € P}

P2(v) == {u: 3I(u,v) € P}

« Behaviors of common switches: Since a common switch

cannot perform aggregation, the total receiving rate of the
reduction traffic, must be equal to its total sending rate.

Z Yy = Z y;j/, Yu € N

vEP2(u) v’ €PL(u)

Y
(12)

(13)

« Limited link capacities: For each possible link (u,v),
the transfer rate passing through it should not exceed its
capacity. Here, we consider the case that the reduction and
the dissemination involved in the AllReduce are conducted
in pipeline. Thus, we take the bidirectional traffic on each
link into account, obtaining the constraint of (14).

(Yo +yy)r < by, Y(u,v) €P (14)

« Relationships between connection and transfer rate:
Let binary variable a?, donate whether node u sends data
to node v for reduction (i.e., 1) or not (i.e., 0). Then, we
have the following two constraints.

ay € {0,1}, VY(u,v) €P
a, <y, < Ma;, Y(u,v)eP

15)
(16)

Obviously, there must be a link from w to v, if u is sending
reduction traffic to v, i.e., constraint (17).

al <al, Y(uv) €P (17)

o Loop-freedom of routes: Given that an aggregator could
aggregate multiple flows into one, as the example in

1

Worker 0~__ 4
; Aggregator %1»{ Switch

Worker 1~

Fig. 2: A possible loop due to INA which aggregates multiple
flows into one.

Figure 2 shows, the above constraints do not guarantee
that the data sent from workers would finally reach the
PS, because routing loops may occur. Thus, we further
introduce the concept of hierarchy—By limiting the upper
bound of the length of routing paths from workers to the

specifically, we organize switches and aggregators in a
layered structure and use an integer variable [,, to represent
the layer of node u. Notably, this [, does not indicate
the number of distances/hops to the PS, as cross-layer
connections are allowed.

w€A{l,- (18)

For simplification, we limit the [, of the switch or
aggregator u directly sending reduction traffic to the PS
v (i.e., ay = 1) to 1, yielding the following constraint.

ly <1+ L(l—a,), Vué& Ns,ve Ny (19)
Also, if a network device u is directly sending reduction
traffic to another device v (i.e., a, = 1), they must have

the relationship of I, > [, + 1, which can be formulated
by constraint (20).

lb+1<l,+L1Q-a}), Y(uwv)eS (20

Here, S defined by Eq. (21), represents the feasible set
of network device pairs.

S :={(u,v) € Ny x N

, L}, VYue N,

cu# v} 21

C. Joint Optimization

Putting all the constraints and the objective together, we have
formally formulated the problem of joint network topology
and routing optimization for in-network AllReduce as an IQP.
Motivated by the solving acceleration design of quantized
sending rates (QSR) proposed by ARO [4], we also use a
parameter to restrict that the optimized rate is selected from a
pre-defined collection of integers for fast solving.

We find that for in-network AllReduce jobs with a modest
scale, we can directly obtain the corresponding IQP model’s op-
timal results efficiently (e.g., within a few seconds or minutes)
by using off-the-shelf high-performance commercial available
solvers like Gurobi [17]. Then, the obtained {z? : (u,v) € P}
indicates the structure of the network. Notably, if there is a
node pair (u,v) whose 2, = 1 but y” + y% = 0, it means
this link is not used by the AllReduce; thus, we can directly
delete the connection between them to simplify the topology.
Finally, just like the design of ARO [4], based on the obtained
{y% : (u,v) € P}, we can generate the routing paths to
accelerate the in-network AllReduce task by making full usage
of the capacities of aggregators.

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

IV. PERFORMANCE EVALUATION

Now, we evaluate the performance of ATRO by using SOTA
schemes, including the aggregator-aware routing optimization
scheme of ARO [4], the joint routing and task placement
optimization scheme of PARING [5], and the joint routing
and aggregator placement optimization scheme of SPAR [6],
as baselines. Results show that ATRO achieves excellent
performance. By directly conducting the joint optimal topology
and routing optimizations for in-network AllReduce work-
loads, ATRO achieves about 4.0 ~ 17.4x, 5.8 ~ 24.8x,
and 5.6 ~ 10.6x higher throughput, than the designs of
1) organizing the cluster following the well-known architectures
like Leaf-Spine and Fat-Tree then i) optimizing the workloads
using ARO, PARING, and SPAR, respectively.

A. Methodology

1) Workloads and baselines: We consider the case in
which n workers, together with one PS, launch an in-network
AllReduce for model synchronization. To the best of our
knowledge, ATRO is the first proposal that optimizes the
topology and routing for in-network AllReduce jointly. As
the baselines, ¢) the cluster is built upon the typical network
architecture of either Leaf-Spine or Fat-Tree (variant), and i) a
suite of SOTA schemes ARO [4], PARING [5], and SPAR [6]
are employed to conduct optimization on the fixed topology,
and the AllReduce task involves 90 workers by default. In both
Leaf-Spine and Fat-Tree, there are 20 switches each with 24
ports, and by default 4 of them support INA. All links have
the same bidirectional capacity of 100Gbps. To be fair, ATRO
manages the same amounts of switches and aggregators for
joint optimization and limits the maximum allowed layer (i.e.,
L) to 5. The detailed baseline topology settings are as follows.

o Leaf-Spine. There are 10 spines and 10 leaves; each leaf
supports 14 hosts, yielding 140 in total.

o Fat-Tree (variant). 20 switches form a 4-ary architecture,
with 4 cores, 8 aggregations, and 8 edges. Each edge
supports 12 hosts, yielding 96 in total and the oversub-
scription is 6 : 1.

The three baseline algorithms employ the following settings.

e« ARO [4]. Workers and the PS are embedded into hosts
randomly with no overlapping. Then, their routing paths
are optimized with ARO [4]. For efficient model solving,
we enable the solving acceleration of quantized sending
rates (QSR) for ARO using N = 100 [4].

« PARING [5]. The placements of workers and the PS,
and their routing paths are jointly optimized with the
approximation algorithm of PARING [5]. PARING ab-
stracts the network among workers, aggregators, and the
PS out as an overlay to determine the high-level overlay
routing, without explicitly controlling how the traffic
is routed between these elements inside the underlay
network. In tests, we assume the shortest path first routing
principle is used, and if there are multiple shortest paths,
PARING selects one randomly. When constructing the
degree-constraint Steiner tree upon the overlay network

N w B (%4
o o o o
! ! !

Throughput (Gbps)

5

H_|

1 HH
H_|
H

o
!

Fig. 3: ATRO achieves the best in-network AllReduce through-
put than all SOTA baselines.

for PARING, we assume that the PS has sufficient degrees
and aggregators have sufficient capacities.

« SPAR [6]. Workers and the PS are randomly and exclu-
sively embedded into hosts. Then, their routing paths and
the placements of the aggregators are jointly optimized
with the greedy algorithm of SPAR [6]. Respecting SPAR’s
design, only top-of-rack (i.e., leaf or edge in our settings)
switches would be selected to support INA [6]. When
using SPAR [6], like the setting used for PARING,
aggregators are assumed to have sufficient capacities, and
the shortest path first routing principle is used for inter-
element traffic.

2) Simulators and metrics: We implement a simulator with
Python 3 following that of ARO [4] to assess the performance
of ATRO and baselines. In tests, we mainly use the throughput
achieved by the optimized in-network AllReduce as the metric.
To reduce the noise of random factors in the experiment settings
on the results, we repeat each group of experiments 30 times
(except ATRO, which runs only once as no random factors are
involved) and report the average values. All experiments are
conducted on a desktop PC equipped with an Intel 15-12400
CPU and two 16G memory cards.

B. Results

1) Case studies: Figure 3 shows the details of the in-network
AllReduce throughput achieved by ATRO and the baselines,
under the default settings, where the red lines in the displayed
violins indicate the mean values. Compared to the design of
using the fixed network topology and then optimizing the
in-network AllReduce workload with ARO, PARING, and
SPAR, ATRO obtains the throughput of 50Gbps, yielding
improvements of about 3.77 x /9.67x, 7.06 x /15.2x and
6.17 x /6.73% in Leaf-Spine/Fat-Tree topology, respectively.

2) Impacts of the scale of AllReduce: When the number
of aggregators is fixed at 4, Figure 4 shows the throughput
achieved by different schemes as the number of workers
increases from 60 to 90. Obviously, ATRO achieved the
maximum throughput. When the number of workers did not
exceed 80, ATRO could achieve a full bandwidth throughput
of 100Gbps. However, as the number of workers continued
to increase, ATRO’s throughput decreased by half to 50Gbps.
This is because when the number of workers is small, ATRO

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

| === ARO (Leaf-Spine) mml PARING (Leaf-Spine) m#m® SPAR (Leaf-Spine) ===
S ARO (Fat-Tree) BEM PARING (Fat-Tree) @@ SPAR (Fat-Tree)

ATRO

s)
=R
o N
o O

o

N B O ©
o O O ©o

Throughput (Gbp

o

60 70 80 90
Number of Workers

Fig. 4: Impacts of the number of involved workers on the

achieved throughput of in-network AllReduce.

4 Emm ARO (Leaf-Spine) Il PARING (Leaf-Spine) Bz SPAR (Leaf-Spine) E=ss
=R ARO (Fat-Tree) BEM PARING (Fat-Tree) E@@ SPAR (Fat-Tree)

ATRO

S)

= R

N B OO0 ON
o O O O O ©

Throughput (Gbp

o

Number of Aggregators

Fig. 5: Impacts of the number of switches supporting INA on
the achieved throughput of in-network AllReduce.

can fully utilize the aggregators to ensure that there is more
than one aggregated flow on each link. For other schemes,
although ARO has achieved maximum optimization of routing,
it is limited by the fixed topology; although PARING optimizes
routing and task placement jointly, it does not consider the
impact of bandwidth and only uses the number of hops
as the communication cost between two nodes, resulting in
poor performance; SPAR optimizes routing and aggregator
placement together, but uses a greedy method to determine
the placement of aggregators, making it far from optimal.
Besides, compared to Far-Tree, ARO and PARING perform
better in Leaf-Spine, because Leaf-Spine can provide higher
throughput limits for workers with lower oversubscription.
However, SPAR does not have a clear trend in both topologies,
mainly because it uses aggregator placement to alleviate the
upward communication pressure of ToR switches in Fat-Tree.

3) Impacts of the number of aggregators: We then change
the number of aggregators with 90 workers in an AllReduce task
and obtain Figure 5. As expected, despite all schemes obtaining
higher throughput when the number of aggregators increases,
the improvements achieved by ATRO are the most significant.
As Figure 5 shows, when there are only 4 aggregators, ATRO
only achieves the throughput of about 33Gbps, a third of the
full link capacity; but once the number of aggregators reaches
6, the full throughput of 100Gbps can be obtained.

4) Efficiency of ATRO: Despite ATRO relying on solving
IQP models for the joint scheduling, we find it very efficient
for modest scale in-network AllReduce tasks—In our tests, the
time cost ranges from 2 to 330 seconds respecting the scale of
the instance. Such a delay is acceptable since we only need to
solve the model once before launching a long-running training.

V. CONCLUSION AND FUTURE WORK

In this paper, we show that joint topology and routing
optimization are the keys to pushing the performance boundary
of PS-based in-network AllReduce, and propose the proposal
of ATRO. The core of ATRO relies on formulating the
joint optimization problem as an IQP using a suite of novel
techniques, and solving it to obtain the optimal scheduling
scheme accordingly. Extensive performance studies indicate that
ATRO outperforms all SOTA schemes significantly, achieving
improvements up to 24.8x.

Currently, ATRO focuses on the optimization of a single
AllReduce task and directly solves the math model with
Gurobi [17]. Once the network scale is large, it is impossible to
obtain optimal results in a reasonable time. In future work, we
plan to extend ATRO to support the optimization of multiple
in-network AllReduce tasks and design efficient and effective
heuristic algorithms, e.g., based on decomposition techniques.

REFERENCES

[1] D. De Sensi, E. Costa Molero et al., “Canary: Congestion-aware in-
network allreduce using dynamic trees,” Future Generation Computer
Systems, vol. 152, pp. 70-82, 2024.

[2] H. Song, “In-network allreduce optimization with virtual aggregation
trees,” in Proceedings of the 2024 SIGCOMM Workshop on Networks
for Al Computing, ser. NAIC *24. ACM, 2024, pp. 54-60.

[3] C. Lao, Y. Le et al., “ATP: In-network aggregation for multi-tenant
learning,” in Proceedings of the 18th NSDI, Apr. 2021, pp. 741-761.

[4] S. Luo, X. Yu et al., “Releasing the power of in-network aggregation

with aggregator-aware routing optimization,” IEEE/ACM Transactions

on Networking, vol. 32, no. 5, pp. 4488-4502, 2024.

Y. Qiu, G. Zhao et al., “Paring: Joint task placement and routing for dis-

tributed training with in-network aggregation,” IEEE/ACM Transactions

on Networking, vol. 32, no. 5, pp. 4317-4332, 2024.

L. Luo, S. Yang et al., “Maximizing aggregation throughput for distributed

training with constrained in-network computing,” in Proceedings of IEEE

ICC, 2023, pp. 3652-3657.

[71 M. Yang, A. Baban et al., “Using trio: juniper networks’ programmable

chipset - for emerging in-network applications,” in Proceedings of the

ACM SIGCOMM 2022 Conference. ACM, 2022, pp. 633-648.

S. Luo, H. Yu et al., “Efficient file dissemination in data center networks

with priority-based adaptive multicast,” IEEE Journal on Selected Areas

in Communications, vol. 38, no. 6, pp. 1161-1175, 2020.

[9] S. Luo, H. Xing, and K. Li, “Near-optimal multicast tree construction in

leaf-spine data center networks,” IEEE Systems Journal, vol. 14, no. 2,

pp. 2581-2584, 2020.

W. Wang, M. Khazraee et al., “TopoOpt: Co-optimizing network topology

and parallelization strategy for distributed training jobs,” in Proceedings

of the 20th NSDI, Apr. 2023, pp. 739-767.

K.-T. Foerster and S. Schmid, “Survey of reconfigurable data center

networks: Enablers, algorithms, complexity,” SIGACT News, vol. 50,

no. 2, pp. 62-79, jul 2019.

S. Luo, R. Wang, and H. Xing, “Efficient inter-datacenter allreduce with

multiple trees,” IEEE Transactions on Network Science and Engineering,

vol. 11, no. 5, pp. 4793-4806, 2024.

J. Fang, G. Zhao et al., “Grid: Gradient routing with in-network aggre-

gation for distributed training,” IEEE/ACM Transactions on Networking,

vol. 31, no. 5, pp. 2267-2280, 2023.

S. Luo, P. Fan et al., “Efficient parameter synchronization for peer-to-

peer distributed learning with selective multicast,” IEEE Transactions on

Services Computing, vol. 18, no. 1, pp. 156-168, 2025.

D. D. Sensi, T. Bonato et al., “Swing: Short-cutting rings for higher

bandwidth allreduce,” in Proceedings of the 21st NSDI, Apr. 2024, pp.

1445-1462.

D. De Sensi, S. Di Girolamo et al., “Flare: flexible in-network allreduce,”

in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, ser. SC *21. ACM, 2021.

Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”

2023. [Online]. Available: https://www.gurobi.com

[5

=

[6

=

[8

[t}

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

