
Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

Maximizing the Throughput of Edge-Based
In-Network Aggregation With Routing Optimization

Zuohan Qiao1, Shouxi Luo1,2, Ke Li1, Huanlai Xing1, Bo Peng1

1School of Computing and Artificial Intelligence, Southwest Jiaotong University
2Tangshan Institute, Southwest Jiaotong University

Abstract—As is known, in-network aggregation (INA) is a
promising solution to alleviate the communication bottlenecks
faced by emerging distributed applications like data-parallel
distributed machine learning (DML). Recent studies have shown
that INA-aware routing optimization is the key to making
efficient use of deployed aggregators for acceleration. In this
paper, we consider a specific INA scenario, where aggregators
are deployed at the edge of the data center network (DCN),
like the Smart-NIC of servers and the programmable top-of-
rack (ToR) switches. We find that existing INA-aware routing
schemes like ATP and GRID are far from optimal for such
a scenario, since they do not take the characteristics of edge-
based INA into consideration. To address the problem, we
propose EINA, a model-based routing optimization scheme for
edge-based INA. In the core, EINA establishes a Mixed-Integer
Quadratically Constrained Programming (MIQCP) mathematical
model to precisely encode the requirements, constraints, and
objective of edge-based INA. Then, EINA transforms the model
into an Integer Quadratically Constrained Programming (IQCP)
for solving acceleration. Based on the results of the model,
EINA generates near-optimal (if not optimal) routing schemes
to maximize the total aggregation throughput, using deployed
edge aggregators. Performance studies indicate that EINA is
able to achieve aggregation throughput up to about 3.02× and
3.45× of those of existing schemes, ATP and GRID, respectively,
especially for the case where edge aggregators have limited
network bandwidth.

Index Terms—Distributed machine learning, in-network aggre-
gation, routing optimization.

I. INTRODUCTION

Nowadays, machine learning (ML) techniques, such as deep
neural networks, have been widely applied across various
domains and have achieved remarkable success [1], [2]. With
the development of ML, the scale of the deep neural network
(DNN) model is increasing rapidly, making it impossible to
train large-scale models using a single device [3], [4]. For such
an issue, parameter server (PS) based data-parallel distributed
machine learning (DML) design is a promising solution and
has been widely used in practice [5]. In such a parallelism
paradigm, the training dataset is shared among a group of
workers for parallel training. During the training, all workers
would periodically push their locally trained gradients to one
or multiple PSs for aggregation, and then pull the synchronized

This work was supported in part by NSFSC under Grant 2025ZNSFSC0489,
in part by the Hebei Natural Science Foundation under Grant F2025525008,
and in part by the Fundamental Research Funds for the Central Universities
under Grant 2682024ZTPY050. (Corresponding author: Shouxi Luo.)

results to start the next round of training. Obviously, with
the scale of the model and/or the training cluster scaling, the
network is prone to becoming the bottleneck of the entire
system, and in-network aggregation (INA) has been proven
to be a promising solution to alleviate the issue [3], [4], [6].

The key idea of INA is to enable some of the network
devices such as programmable switches [4] and Smart-NIC
applications [7] to pre-aggregate related gradient packets sent
by different workers into a single one when they pass by, thus
reducing both the traffic volume entering the network and the
load of the PS. Obviously, the key to maximizing the benefits
of INA lies in routing optimization, since related flows must
go through the same aggregator for INA [3]. Recently, several
proposals have been proposed for this purpose [3], [4], [8].
However, they are unaware of the heterogeneity of available
network bandwidth among aggregators (e.g., ATP [4] and
GRID [8]), or are specialized for specific network scenarios
(e.g., ARO [3]), thus are far from addressing all the issues.

In this paper, we enrich the study of INA-aware routing
optimization by designing EINA to maximize the aggregation
throughput of edge-based INA. We focus on the case where
aggregators are deployed at the edge of the data center network
(DCN) like the Smart-NIC of servers or the programmable
top-of-rack (ToR) switches. Such scenarios are very common
in practice. For example, in public clouds, the workers run
inside virtual machines or containers; then, the NIC-based
network function application (e.g., SoftINA [7]) instances
running on the host servers could work as edge aggregators.
And in data centers built upon P4-compatible switches, the
ToR switches might be configured to support INA, acting
as edge aggregators [4]. In these scenarios, edge aggregators
are connected by a flat DCN, and due to the impact of
the other coexisting applications, different aggregators might
have distinct available bandwidth for the DML application.
Consequently, existing schemes such as ATP [4] and GRID [8]
that ignore this heterogeneity would have performance issues,
as Section IV shows. Also, by allowing the traffic to go
through multiple aggregators on demand, it is possible to make
more efficient usage of deployed edge aggregators. However,
existing INA routing optimization schemes like ARO [3] have
enforced flows to satisfy the up-down routing principle, and
thus are inapplicable to this edge-based INA scenario.

To address the problem, EINA establishes a Mixed-Integer
Quadratically Constrained Programming (MIQCP) mathemat-

1

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

ical model to precisely encode the requirements, constraints,
and objective of edge-based INA. Then, EINA further trans-
forms it to an Integer Quadratically Constrained Programming
(IQCP) for solving acceleration. Based on the results of the
model, EINA can generate a near-optimal (if not optimal)
routing scheme to maximize the aggregation throughput of PS-
based model synchronization using deployed edge aggregators.
Extensive experiments show that EINA can achieve aggrega-
tion throughput up to about 3.02× and 3.45× of those of
existing schemes, ATP and GRID, respectively, especially for
the case where edge aggregators have limited link capacities.

In summary, we make two main contributions in this paper.
• We propose EINA, a math model driven routing optimiza-

tion scheme that could achieve optimal or near-optimal
aggregation throughput for edge-based INA (§III).

• Extensive evaluations verify that EINA can fully use the
aggregator ability to maximize the aggregation through-
put, outperforming existing schemes significantly (§IV).

In the rest of this paper, Section II first provides an overview
of the background and motivation of INA. Then, Section III
describes our model and the design of EINA. After that,
Section IV reports our evaluation results. Lastly, Section V
concludes the paper and discusses future directions.

II. BACKGROUND AND MOTIVATION

In this section, we first overview the concepts of INA
(§II-A), then analyze the limitations of existing INA routing
optimization schemes (§II-B), and finally explain our motiva-
tion for proposing the algorithm EINA (§II-C).

A. Overview of INA

In-network aggregators are widely used in many fields, such
as distributed machine learning, big data analysis, and so
on [7]. For distributed machine learning, in the PS architecture,
a distributed machine learning training task needs to split the
model parameters across multiple worker nodes. After the
calculation is completed, each worker node needs to push the
data to the PS for aggregation operations like summation and
weighted average, then the parameter server will distribute the
data back to the worker nodes [3], [4]. However, the limit DCN
egress capacity for the PS and link capacity may limit the
training speed of the distributed machine learning model. In-
network technology can offload the aggregation process to the
network transmission process, thereby reducing the workload
of data transmission. So far, in Parameter Hub [5], the authors
design an efficient gradient aggregator, which achieves effi-
cient overlap between gradient processing and communication
through fine-grained key block division and core mapping
strategy. In NetAgg [9], the authors propose a distributed
aggregator based on middlebox. Executing application-specific
aggregation functions on the paths of data center networks ef-
fectively reduces network flow, alleviates network bottlenecks,
and significantly improves the performance and throughput of
distributed applications. In SoftINA [7], the authors design a
software-based network aggregator with high flexibility and
scalability without relying on dedicated hardware.

B. Related Work

For the routing control of INA traffic, ATP [4] adopts
the default ECMP routing scheme without considering the
heterogeneity of the available network bandwidth among ag-
gregators. Paring [10] proposes a framework to accelerate dis-
tributed training by jointly optimising task routing aggregation
in the network, which minimises the cost of Steiner trees and
finds spider structures to confirm routes. This framework can
significantly reduce communication time and network flow
overhead. However, the algorithm does not support multi-
ple aggregations of traffic and relies on heuristic methods,
which degrade solution quality. GRID [8] uses a mathematical
modeling method and a gradient routing algorithm based
on random rounding on the control plane to improve the
efficiency of in-network aggregation. However, it permits only
a single aggregation, and the randomized rounding method
leads to unstable results. InArt [11] proposes using a Lagrange
multiplier and a random rounding algorithm in route selection.
It adopts randomized rounding, which leaves room for im-
provement in solution quality. Additionally, data aggregation
is allowed only once. ARO [3] achieves the optimal routing
selection of in-network aggregation on programmable switches
for Clos topology by establishing an acceptable mathematical
model, and designs a heuristic algorithm to ensure that the
solution of large-scale topology is completed in a limited time.
However, ARO’s routing path must strictly adhere to the up-
down principle. In Camdoop [12], aggregation is placed on
the CPU of the server, which uses topology-aware heuristic
rules combined with multi-objective optimization and greedy
algorithm ideas to build aggregation trees for each to reduce
usage, and realizes the aggregation at the intermediate server
in the transmission path. This algorithm targets 3D torus
topologies. In the work of GOAT [13], the authors propose
a stochastic rounding method based on the knapsack problem
to decide the aggregation position of the gradient, which
primarily focuses on the limited memory of switches, which
differs from what we focus in this paper.

C. Motivating Examples

Currently, most aggregator routing algorithms are for fat-
tree or spine-leaf network topologies. Most of them aim to
deploy the aggregator on the programmable switch. In contrast,
the application scenario studied in this paper is aimed at
the aggregation routing optimization task of the aggregator
deployed on the edge aggregators. First, the main difference
between our aggregator and the work node is that they are on
the same edge aggregator, so there are many differences in
the DCN egress capacity and other aspects. Secondly, because
the scenario considered by solutions like ATP [4], GRID [8],
and ARO [3], is the switch, it needs to abide by the up-down
principle, and the edge aggregators do not need to consider the
up-down principle, so the number of routes that can be planned
is greater. Thirdly, our solution allows data to be aggregated
multiple times and combined with routing optimization to
maximize the throughput. So far, research related to direct
network topology has been conducted in CamDoop. This

2

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

(a) ATP (b) GRID (c) Random Routing (d) EINA

Fig. 1: Consider that there are five workers training a model with one PS and four edge aggregators. Aggregator 0 has 0.8
Gbps available DCN egress capacity, 1 Gbps available DCN ingress capacity, and 1 Gbps aggregation capacity, while all
other aggregators have the same ingress, egress, and aggregation capacities of 1 Gbps. Here, blue lines denote data links
without aggregation; red lines represent aggregated data links; green-highlighted aggregators indicate active participants in the
aggregation process, and grey ones signify non-participating nodes. In short, the ATP scheme achieves a worker node sending
throughput of 0.4 Gbps (Figure 1a,); both GRID and random routing (RR) schemes yield 0.333 Gbps (Figures 1b and 1c));
while our EINA delivers superior throughput at 0.5 Gbps (Figure 1d).

algorithm is for the 3D torus topology, which differs from
ours.

We give a concrete example to show our motivation in
Figure 1, which shows the different routing scenarios on
the same configuration between GRID [8], ATP [4], random
routing (RR), and our proposed EINA. The GRID does not
consider the limit of ingress capacity and egress capacity,
and it allows the data generated by the worker node to be
aggregated at other edge aggregators. Compared to other
algorithms, it consumes more ingress and egress capacity,
and the random rounding method has a high probability of
discarding the optimal solution. At the same time, the ATP
scheme is not optimal because its data can only be aggregated
on the nearest aggregator once. In comparison, EINA takes
full advantage of the aggregator’s aggregator capability and
produces a higher throughput solution.

III. EINA

In this section, we first introduce the system model (§III-A),
then give a formal definition of the optimization problem
(§III-B), and finally introduce the solver that we use to solve
the model for routing optimization (§III-C).

A. System Model

As shown in Figure 1d, we consider that a data-parallel
distributed training job involving a group of workers W and a
set of PSs P , is hosted in a cluster equipped with a group of
edge-based aggregators A.We define AW as the set of worker-
assigned aggregators and AE = A \ AW as the remaining
aggregators. For load balancing, the trained model is sharded
among all these |P | PSs. To iterate a round of training, each
worker splits its obtained gradient vector into |P | messages
and push them to PSs concurrently for gradient aggregation
and synchronization.

For each PS and worker k, it is assigned to an aggregator
denoted by π[k], which has the INA capacity of cπ[k]. We use
ai to denote the number of workers assigned with aggregator
i, Regarding implementation, these edge-based aggregators

could be i) NIC-based network function application (Soft-
INA [7]) instances running on the hosting servers, where
workers run in virtual machines or containers, or ii) P4-based
ToR switches like ATP [4] that support INA, where workers
run on servers under these switches. We assume that each
worker has a high-performance and low-latency connection to
its assigned aggregator, which would not be a communication
bottleneck. Then, all aggregators are networked via a non-
blocking DCN fabric in which congestion generally occurs at
the ingress or egress of the network [14], [15]. For such a
network, we assume that the aggregator i currently has the
available capacity of bIi and bEi for links to the ingress and
egress of the DCN fabric, respectively.

Following the design of ARO [3], we let all workers send
data to PS p at the same throughput rp, which is a variable,
to unleash the power of INA. To capture their routing states
among edge-based aggregators, given PS p, aggregators i and
j, we further define a binary variable xp,i,j to denote whether
aggregator i would send a flow with the final destination of
PS p, to another aggregator j.

B. Problem Formulation

Now, we explain the constraints and objectives of our
optimization problem in detail.

1) Flow throughput constraints: Since a task’s data sending
throughput is limited by the worker’s network capacity, and
data transmission would become ineffective when the through-
put falls below a minimum threshold, EINA allows users to
limit the allowed range of the data sending throughput via
pre-defined constants rLp and rUp , as follows.

rLp ≤ rp ≤ rUp , ∀p ∈ P (1)

2) Routing requirements: Each aggregator i assigned to
training workers must send its aggregated flow aimed at PS p
to another aggregator j ∈ A \ {i}.∑

∀j∈A\{i}

xp,i,j = 1, ∀p ∈ P,∀i ∈ AW (2)

3

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

Obviously, the routes for traffic sent by all workers to a
PS p would form a tree rooted at aggregator π[p]. For each
aggregator i, we use an integer variable dp,j to denote its depth
(in terms of hops) to the root aggregator π[p]. Then, for each
PS p, its root aggregator π[p]’s depth has

dp,π[p] = 0, ∀p ∈ P (3)

To limit the length of the path for INA traffic, EINA allows
users set a parameter of d∗ to limit the maximum number of
aggregators that INA traffic could encounter before reaching
the PS. Recall that there are |A| aggregators in total and let
d̂ = min(d∗, |A|)− 1. Then, for other aggregators, we have

dp,i ∈ {1, · · · , d̂}, ∀p ∈ P,∀i ∈ A \ {π[p]} (4)

Moreover, if aggregator j sends data to aggregator i, j’s
depth should be i’s depth plus one. By introducing a large
constant M , we have the following pair of constraints.

dp,i ≥ dp,j+1−M(1−xp,i,j), ∀p ∈ P,∀i ∈ A,∀j ∈ A (5)

dp,i ≤ dp,j+1+M(1−xp,i,j), ∀p ∈ P,∀i ∈ A,∀j ∈ A (6)

For an aggregator having not been assigned to any worker
or PS, on receiving data forwarded by another aggregator, it
must forward the aggregated traffic out again; otherwise, no
forwarding is needed for it.∑

j∈A\{i}

xp,i,j ≤ 1,∀p ∈ P,∀i ∈ AE (7)

∑
∀k∈A

xp,j,k ≤ M
∑
∀i∈A

xp,i,j ,∀j ∈ AE (8)

dp,i ≥
∑
∀j∈A

xp,i,j ,∀i ∈ AE (9)

3) Limited aggregation capacity and network capacity:
Each edge-based aggregator i has a limited aggregation ca-
pacity ci. So, the sum of each flow throughput rp multiplied
by the number of flows before aggregation on this aggregator
should exceed this limitation.∑

∀p∈P

∑
∀i∈A\{j}

(xp,i,j + aj)rp ≤ cj , ∀j ∈ A (10)

Regarding the limitation of capacity, the total flow through-
put output from an aggregator i should not exceed bIi , i.e., the
link capacity of the corresponding ingress of the DCN.∑

∀p∈P

rp ≤ bIi , ∀i ∈ A \ {π[p] : p ∈ P} (11)

The sum of all flows routed to an aggregator from other
aggregators should not exceed bEi , the link capacity of the
corresponding egress of the DCN.∑

∀p∈P

∑
∀i∈A\{j}

xp,i,jrp ≤ bEj , ∀i ∈ A (12)

4) Objective: Finally, the optimization objective of EINA is
to maximize the total aggregation throughput via edge-based
aggregator routing scheduling, i.e.,

Maximize
∑
∀p∈P

rp (13)

C. Solver Designs

Using expression (13) as the optimization objective while
subject to constraints (1)-(12), we have formulated the routing
optimization problem as a MIQCP for EINA. By solving it,
EINA obtains a routing scheme {xp,i,j : ∀(p, i, j)} along with
a bandwidth allocation scheme {rp : ∀p ∈ P} to maximize
the aggregation throughput with the acceleration of edge-based
in-network aggregators. Following the design of MTREE [6],
the PS p in EINA would obtain a rp∑

∀p∈P rp
proportion of the

total model for sharding.
In its core, EINA can solve the involved MIQCP by using

off-the-shelf commercial available solvers like Gurobi [16].
Motivated by the work of ARO [3], we find that for large-
scale scenarios, by enforcing the throughput rp (p ∈ P) to be
integers, we can transform the MIQCP into an IQCP. Although
the problem is NP-hard, as the results in Section IV shows, the
solving of Gurobi can be accelerated remarkably. For huge-
scale routing optimization, the design of an efficient heuristic
algorithm is still needed, which we leave as future work.

IV. PERFORMANCE EVALUATION

We evaluate the performance of EINA in various scenarios.
Results indicate that EINA can achieve performance gains
up to 3.02× and 3.45× over the baseline algorithms of
ATP [4] and GRID [8], respectively. Moreover, compared to
the MIQCP algorithm, the IQCP algorithm achieves up to
15.57× speedup in solution time while up to 8.11% perfor-
mance reduction. The paper is structured as follows: Section
IV-A presents the evaluation framework, and Section IV-B
demonstrates the experimental outcomes.

A. Methodology

We evaluate the performance of EINA by mainly use
algorithms GRID [8] RR, and ATP [4], as baselines. Our
experiments focus on the topology mentioned in Figure 1d.
For the ATP algorithm, we primarily apply the idea of random
allocation and early aggregation, setting the routing relation-
ship between servers to be randomly generated. In contrast,
the GRID algorithm applies the concept of its relaxation to
solve random intake and uses the model of the original paper
to solve. And the final solution is processed with constraint
satisfaction to make the solution feasible. For both EINA and
GRID, their involved models are solved by the commercial
Gurobi solver [16]. By default, we mainly consider the con-
dition in which there are 2 PSs, with 12 edge aggregators,
and each aggregator has 5∼10 workers. All edge aggregators,
including PS’s ingress, egress, and aggregation capacity, range
from 200 Gbps to 300 Gbps.

Regarding the metrics, we mainly consider
∑

∀pinP rp, the
total aggregation throughput that workers could achieve when

4

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

(a) Impacts of number of PSs (b) Impacts of number of aggregators (c) Impacts of number of workers

(d) Impacts of aggregator capacity (e) Impacts of ingress capacity (f) Impacts of egress capacity

Fig. 2: Detailed experimental results.

(a) Solving time (b) Aggregation throughput

Fig. 3: Experimental results demonstrate that transforming MIQCP into IQCP can significantly improve model-solving efficiency
while maintaining virtually unchanged total aggregation throughput.

transmitting the gradients to all PSs for aggregation. We also
investigate the time cost of solving the involved models using
Gurobi. All experiments are performed on an Ubuntu server
involving an i9-13900k CPU and 125G DDR5 memory.

B. Results

We first evaluate the performance of different algorithms
under different numbers of parameter servers, as shown in
Figure 2a. As the number of PSs increases, the algorithms
become more complex. When there is only 1 PS, the total
throughput obtained by EINA, GRID, ATP, and RR are 20.3
Gbps, 5.88 Gbps, 9.9 Gbps, and 16.72 Gbps. With the number
of PSs increases to 5, the total throughput obtained by EINA,
GRID, ATP, and RR are 19.90 Gbps, 25.32 Gbps, 19.90 Gbps,
and 17.23 Gbps, respectively. As the number of PS increases,
GRID and ATP show a trend of first increasing and then
stabilizing, while RR and EINA algorithms remain stable.
The throughput of GRID keeps growing and exceeds EINA

because at this point, each aggregator’s aggregation capacity is
limited, and EINA has fully utilized the aggregation capacity
of each aggregator. At the same time, GRID allows data to
be sent directly to PS nodes without aggregation. Therefore,
a higher total throughput can be achieved by GRID when
the aggregation capacity becomes the limiting factor, but the
ingress and egress capacities are sufficient.

We further study the impact of different numbers of edge
aggregators as shown in Figure 2b. When the number of
edge aggregators is 15, the total throughput obtained by
EINA, GRID, ATP, and RR are 39.4 Gbps, 33.72 Gbps,
20.53 Gbps, and 30.41 Gbps, respectively. As the number of
edge aggregators increases to 20 and 25, the total aggregation
throughput obtained by EINA, GRID, ATP, and RR are 7.84
Gbps, 8.95 Gbps, 7.84 Gbps, and 8.53 Gbps. As the number
of aggregators increases, ATP and GRID show a trend of
first decreasing and then stabilizing. At the same time, EINA
and RR show a stable trend. This is because EINA and RR

5

Accepted to appear in IEEE/CIC International Conference on Communications in China, 2025 ©IEEE

allow data to be aggregated multiple times, so they can fully
use the aggregators’ aggregation ability to accommodate more
aggregators. However, GRID, and ATP only allow INA once,
so the aggregation capacity and the egress point of the DCN
for aggregator connected to the PS will quickly become the
bottleneck, thus decreasing the throughput.

Under the same conditions, we evaluate the impact of
different numbers of workers as shown in Figure 2b. When the
number of edge aggregators ranges from 10 to 15, the total
throughput obtained by EINA, GRID, ATP, and RR is 39.2
Gbps, 37.04 Gbps, 39 Gbps, and 29.23 Gbps, respectively. As
the number of edge aggregators increases to range from 30
to 35, the total throughput obtained by EINA, GRID, ATP,
and RR are 39.4 Gbps, 18.04 Gbps, 13 Gbps, and 28.42
Gbps. In general, as the number of worker nodes increases, all
algorithms show a downward trend, and finally differ by five
levels. This is because when there are fewer worker nodes,
GRID produces larger throughput than EINA which allows
it not to aggregate on its nearest aggregator. The aggregators
connected by PS also have insufficient aggregation or DCN
egress capacity, so the throughputs of the four algorithms are
almost the same.

We also test the situation where the aggregation capacity,
ingress and egress capacity in different edge aggregators
differ. The results are shown in Figures 2d, 2e, and 2f. In
summary, as aggregation capacity increases, the throughput
of RR (Random Routing) and EINA continues to improve
because multiple rounds of aggregation are permitted, pre-
venting the aggregators connected to the PS from becoming
bottlenecks. The trend and cause of throughput variation when
the DCN ingress bandwidth increases are consistent with
the different aggregation capacity experiments. However, as
DCN egress bandwidth gradually increases, GRID and ATP
exhibit an initial rise followed by stabilization because the
primary bottleneck shifts from DCN egress bandwidth to the
aggregation capacity of the PS-connected aggregators.

Our evaluation also incorporated the relaxation algorithm
across two experimental scenarios: one scenario with 2 PSs
and 50 edge aggregators, and the other scenario with 4 PSs
and 50 edge aggregators. Each scenario’s edge aggregator is
connected to 5-10 worker nodes. The aggregation capacity,
ingress, and egress capacities ranged from 200 to 400 Gbps
across all scenarios, and there are 10 aggregators without
workers in each scenario. The experimental results in Figure 3
reveal that while the relaxation algorithm showed a marginal
performance degradation of up to 8.11% reduction compared
to the original algorithm, it achieves up to 15.57× in solu-
tion time, demonstrating remarkable computational efficiency
improvements. This significant time reduction is consistently
observed across all evaluation scenarios.

V. CONCLUSION AND FUTURE WORK

This paper proposes a routing optimization scheme EINA
for edge-based in-network aggregation where aggregators are
deployed on edge nodes like the smart network cards of servers
and ToR switches, for distributed applications like PS-based

data-parallel distributed machine learning. By systematically
modelling the routing problem as a mathematical optimization
problem, EINA can maximize the total aggregation throughput
of workers. Performance evaluations demonstrate that EINA
delivers significantly higher aggregation throughput, outper-
forming conventional ATP and GRID schemes by approxi-
mately 3.02× and 3.45×, respectively. However, when the
aggregation capacity of the aggregator is significantly lower
than its bandwidth capacity, our algorithm does not perform
as well as GRID, mainly due to the restriction that all worker
nodes need to be aggregated on the corresponding aggregator.
Therefore, in future work, we will further optimize the EINA
algorithm by loosening this restriction and so on, so that it
can obtain a better and efficient routing scheme.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of CVPR, 2016, pp. 770–778.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of NAACL, vol. 1. Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 4171–4186.

[3] S. Luo, X. Yu, K. Li, and H. Xing, “Releasing the power of in-network
aggregation with aggregator-aware routing optimization,” IEEE/ACM
Transactions on Networking, vol. 32, no. 5, pp. 4488–4502, 2024.

[4] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift,
“ATP: In-network aggregation for multi-tenant learning,” in Proceedings
of NSDI, Apr. 2021, pp. 741–761.

[5] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter hub: a rack-scale parameter server for distributed deep neural
network training,” in Proceedings of SoCC. ACM, 2018, pp. 41–54.

[6] S. Luo, R. Wang, and H. Xing, “Efficient inter-datacenter allreduce with
multiple trees,” IEEE Transactions on Network Science and Engineering,
vol. 11, no. 5, pp. 4793–4806, 2024.

[7] X. Yu and S. Luo, “Softina: A softwarized in-network aggregator for
distributed applications,” in Proceedings of 2024 10th International
Conference on Computer and Communications (ICCC), 2024, pp. 351–
355.

[8] J. Fang, G. Zhao, H. Xu, C. Wu, and Z. Yu, “Grid: Gradient routing
with in-network aggregation for distributed training,” IEEE/ACM Trans-
actions on Networking, vol. 31, no. 5, pp. 2267–2280, 2023.

[9] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch,
and A. L. Wolf, “NetAgg: Using middleboxes for application-specific
on-path aggregation in data centres,” in Proceedings of CoNEXT. ACM,
2014, pp. 249–262.

[10] Y. Qiu, G. Zhao, H. Xu, H. Huang, and C. Qiao, “Paring: Joint
task placement and routing for distributed training with in-network
aggregation,” IEEE/ACM Transactions on Networking, vol. 32, no. 5,
pp. 4317–4332, 2024.

[11] J. Liu, Y. Zhai, G. Zhao, H. Xu, J. Fang, Z. Zeng, and Y. Zhu, “InArt:
In-network aggregation with route selection for accelerating distributed
training,” in Proceedings of the ACM Web Conference 2024. ACM,
2024, pp. 2879–2889.

[12] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop: Exploit-
ing in-network aggregation for big data applications,” in Proceedings of
NSDI. USENIX Association, 2012, pp. 29–42.

[13] J. Fang, H. Xu, G. Zhao, Z. Yu, B. Shen, and L. Xie, “Accelerating dis-
tributed training with collaborative in-network aggregation,” IEEE/ACM
Transactions on Networking, vol. 32, no. 4, pp. 3437–3452, 2024.

[14] S. Luo, H. Yu, K. Li, and H. Xing, “Efficient file dissemination in data
center networks with priority-based adaptive multicast,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 6, pp. 1161–1175,
2020.

[15] S. Luo, K. Li, H. Xing, and P. Fan, “Efficient and flexible component
placement for serverless computing,” IEEE Systems Journal, vol. 18,
no. 2, pp. 1104–1114, 2024.

[16] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

6

