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Abstract—By allowing partial instead of all workers to partici-
pate in a round of model synchronization, the recent proposal of
partial reduce provides a promising way to prevent the entire
training from being blocked by straggler workers in hetero-
geneous data-parallel distributed training. However, its current
designs are far from optimal, as it selects workers for partial
model synchronization agnostic to both their training progress
and available bandwidths. To address these issues, we analyze
the design space and propose selective reduce. By exploring the
idea of waiting for more workers to be ready and splitting them
into partial synchronization groups, based on the state of their
training progress and available bandwidths, selective reduce could
not only enlarge the scale of synchronization (i.e., the number
of involved workers) thus accelerating the convergence of the
training but also reduce the time cost of synchronization thus
making the training iterate faster. Extensive evaluations confirm
that selective reduce outperforms partial reduce and is robust to
both inaccurate bandwidth estimations and unknown-in-advance
runtime distributions of training computation.

Index Terms—Partial reduce, distributed training, scheduling

I. INTRODUCTION

Nowadays, machine learning, especially deep learning, has
empowered vast success services in production, including ad-
vertising recommendation, object classification, email filtering,
machine translation, etc [1], [2], [3], [4], [5]. Nevertheless,
with the development of technology and enrichment of training
data, new models are continued to be proposed for various
purposes like better model accuracy and/or generality [6],
higher computational efficiency [7], and lower resource re-
quirements [8], [9]. Accordingly, the efficient training of mod-
els plays a key role in the development of new models [10].
Data parallelism techniques have been widely used for this
goal [2], [3]: by spreading the massive training data along
with the involved computation tasks to a group of workers
(e.g., GPU or TPU servers), data-parallel distributed training
could shorten the training time by taking advantage of a large
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number of accelerators like GPUs and TPUs, with the cost of
increased traffic loads among workers. More specifically, to
guarantee and accelerate the convergence of the trained model,
workers participating in data-parallel training are designed to
synchronize their local results, like the computed gradients or
updated model parameters, periodically during the training [2],
[3]. Currently, the de facto design of synchronization is to
employ the collective communication primitive of all reduce
(especially the ring-based implementation since it triggers
balanced computation and traffic loads among all involved
workers [11], [12]). However, as is known, by default, all
reduce requires that all workers participate in each round of
synchronization, suffering from the problem of slow training
iteration and low resource utilization because of the ubiquitous
straggler workers occurring in distributed training [13], [14].

In large-scale distributed clusters, due to the heterogeneity
of the distributed training caused by various factors includ-
ing the dynamic competition of resources, complicated and
hierarchical network structures, and inconsistent and random
training workloads [13], some workers might complete a round
of training much slower than others, becoming stragglers.
These stragglers are unpredictable and would prevent early-
completed workers from moving to the next round, leading
to slow training iterations and a high waste of resources [1],
[14]. For such a problem, the recent proposal of partial
reduce [14] is a promising and generic solution. Distinguished
from the original all reduce, which enforces all workers to take
part in each round of global synchronization, partial reduce
provides a relaxed yet controllable partial synchronization
semantic to data-parallel distributed training: by allowing a
group of workers to launch a synchronization once their total
number reaches the pre-defined requirement of p, it prevents
the synchronous process from being blocked by stragglers [1],
[14], [15]. Then, these straggler workers would take part in
another round of partial reduce when completing their local
training, and there are p ready workers again [14], [15].

Despite promising to deal with stragglers, the current im-
plementation of partial reduce is far from optimal in de-
termining the number of workers for each partial reduce
operation, yielding room for performance improvement [14].
More specifically, in heterogeneous data-parallel distributed
training, workers are ready for model synchronization succes-
sively; to get rid of straggler workers, partial reduce leverages
a logically centralized controller and maintains a queue to
collect workers that are ready for synchronization. Once there
are p workers in the queue, the controller notifies these p
workers to launch an all reduce operation [14], immediately
(hereafter, we define the number of workers involved in a
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partial reduce operation as its scale). Obviously, such a design
is agnostic to both each worker’s training progress and the
available bandwidth, thus having two performance issues,
specifically for the synchronization of large models.

On the one hand, recent studies show theoretically and
empirically that the larger (synchronization) scales of partial
reduce tasks have on average, the higher convergence speeds
they are likely to achieve [14], [15]. So, for these consec-
utive ready workers, instead of launching a partial reduce
task immediately when there are p workers ready, waiting
a while might increase the average scale of synchronization
(i.e., the number of the involved workers) significantly. On
the other hand, given a set of workers, when the training
model is large, the completion time of their synchronization
tasks (consider the ring-based all reduce as an example) is
generally dominated by the worker with the smallest available
bandwidth; thus, when the available bandwidths of workers are
highly skewed, by waiting a while and then grouping workers
with similar bandwidth to form a partial reduce task, it is
possible to reduce the average completion time. Indeed, in such
a case, from the view of a partial reduce task, via waiting,
the bottleneck worker could be replaced with an incoming
worker. That is to say, waiting does not always enlarge the
(average) completion time of partial reduce, as it could enrich
the possible selections of ready workers. Obviously, the key
to addressing these two issues is to explore the benefits
of waiting, based on the state of both workers’ training
progress and their available bandwidths, i.e., being progress
and bandwidth aware. However, due to the phenomenon of
stragglers, it is quite challenging to achieve this goal, as i) the
exact time when a worker would be ready for synchronization
is unable to be known in advance [13], [14]; and ii) the
relationship between a partial reduce task’s completion time
and each worker’s available bandwidth highly depends on how
the synchronization operation is carried out.

In this paper, we propose the scheme of selective reduce to
overcome the drawbacks of partial reduce. As an improvement
of the original partial reduce, selective reduce also works on
a logical central controller to collect the status of workers
and launch partial synchronization on demand. Given that the
iterative training would repeat up to hundreds of thousands of
rounds, selective reduce uses the runtime distribution of train-
ing computation to predict whether training workers would
be ready for synchronization in the near future. Based on
this and together with the available bandwidth information of
workers, selective reduce i) adaptively assigns workers with
a similar bandwidth to the same group to shorten the time
of synchronization and ii) decides whether to wait for more
workers, such that the scale of partial synchronization can
be enlarged, and/or workers with the bottleneck bandwidth
in a partial synchronization group can be replaced for the
optimization of completion.

Extensive experiments demonstrate that selective reduce
could optimize both the scale and the completion time of
partial synchronization at the same time, thus bringing benefits
to the convergence of the distributed model training. For
example, in our heterogeneous test instances, compared with
partial reduce, selective reduce increases the average scale of

a round of synchronization up to 1.25× while reducing the
average completion time up to 2.55×.

To summarize, our main contributions are three-fold.
• A thorough analysis of drawbacks of the original partial

reduce for heterogeneous distributed training, along with
motivating examples showcasing the benefits of progress
and bandwidth aware worker selection (Section II).

• Selective reduce, a suite of novel adaptive bandwidth and
progress aware worker selection algorithms that could
optimize both the average scale and the completion time
for heterogeneous partial reduce operations (Section III).

• Extensive trace-based evaluations confirm the advantages
of selective reduce over the original partial reduce on
scheduling heterogeneous distributed training, and show
the robustness of selective reduce on inaccurate band-
width estimation and unknown-in-advance runtime dis-
tribution of training computation (Section IV).

In the rest of this paper, we first introduce the background
and motivation of progress and bandwidth aware worker
selection, and summarize the related work in Section II. Then,
we propose our design of selective reduce in Section III, and
evaluate its performance in Section IV. Finally, Section V
concludes the paper and discusses the possible future work.

II. BACKGROUND AND MOTIVATION

To motivate the design of selective reduce, in this section,
we give an overview of the background of data parallelism and
all reduce in Section II-A, then introduce the problems caused
by heterogeneity in Section II-B, and analyze the property of
partial reduce model synchronization, in Section II-C. After
that, we showcase the benefits of bandwidth and progress
aware selection for partial reduce with motivating examples in
Section II-D, and finally discuss related works in Section II-E.

A. Data Parallelism and All Reduce

Nowadays, data parallelism is widely employed to conduct
efficient collaborative training of deep neural network models
by using a group of selected workers [16], [17]. There are vari-
ous application scenarios ranging from intra-cluster/datacenter
high-performance distributed machine learning (DML) [16],
[18], to geo-distributed DML [15], [17], to cross-device fed-
erated learning (FL) [19]. In these systems, the training is
conducted iteratively. To drive a round, workers first train their
replicas of the global model using the locally held datasets in
parallel, and then synchronize their results (e.g., gradients or
updated model values) via the network [5], [16], [17], [19].
Here, the involved communication task of “aggregating then
disseminating workers’ results”, can be captured by the well-
known collective operation of all reduce. In some cases, the
results of some workers might be more important than those
of others. Accordingly, the results would be aggregated in a
weighted manner [14]; and we call such a type of all reduce
as weighted all reduce in this paper.

In practice, all reduce has various implementations, rang-
ing from peer-to-peer messaging [18], [20] to parameter
server (PS) based synchronization [16], [21], [22], [23], [24],

2



Published in IEEE Transactions on Network Science and Engineering, 2025. DOI: 10.1109/TNSE.2025.3595747 ©IEEE

0.4 0.5 0.6 0.7 0.8
train time(s)

0

500

1000

1500

2000

Fr
eq

ue
nc

y 
of

 tr
ai

n 
tim

e

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Frequency
CDF

(a) Example of heterogeneity caused
by dynamic resource competition
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(b) Example of heterogeneity caused
by inconsistent training workloads

Fig. 1. Distributions of the runtime of a round of training computation for two
typical models observed in real systems and reported by [13]: (a) showcases
the result of training the classical ResNet-50 (a CNN model) using a Google
Cloud instance equipped with 2 V100 GPUs on dataset ImageNet, and (b)
showcases the result of training a Transformer model with P100 GPU on
dataset WMT16. The red lines represent the CDF of the computation time of
a training computation round.

to algorithm synthesis [25], [26], [27], to tree-based de-
signs [17], [28], to ring-based schemes [12], etc. Basically,
different implementations are suitable for various application
scenarios and network topologies [29]. For example, ring-
based all reduce and its variants are widely used in intra-
cluster DML, where training workers are generally equipped
with high-performance training cards, and hold i.i.d. training
datasets [30]. Differently, for cross-device FL, PS-based imple-
mentation is popular, where the PS node is also in charge of the
dynamic selection and management of training workers [19],
[31], [32].

In this paper, we focus on designing schemes to optimize
the model synchronization for intra-cluster DML, and argue
that our designs can be extended to support other data-parallel
training workloads with further efforts.

B. Heterogeneity in Distributed Training

As is known, heterogeneity is abundant in DML, which
would cause the problem of stragglers, not only preventing
workers from making efficient use of the accelerator resources
but also slowing the iteration speed of training down [14].
Recent studies show that heterogeneity is inevitable in pro-
duction environments. It might stem from i) the dynamic
competition of resources like GPUs, I/O capacities, and net-
work bandwidth, ii) complicated and hierarchical network
structures, and iii) inconsistent training workloads involved in
the training [13], [14]. The runtime distributions of a training
computation round for two popular AI models, shown in
Figure 1, reported by [13], are typical examples.

Figure 1(a) shows a case of heterogeneity caused by
dynamic resource competition. The runtime distribution is
obtained by running the classic ResNet-50 training task (a
CNN model) on a Google Cloud instance equipped with
2 V100 GPUs, using the IamgeNet dataset [13]. As the
computation tasks involved in each training round of ResNet-
50 are consistent, the imbalance shown in Figure 1(a) is mainly
caused by the performance variability of cloud servers [13]. In
contrast, the imbalance of the runtime shown in Figure 1(b),
is derived from the various lengths of training data samples
used in different rounds. More specifically, the distribution is
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Fig. 2. The impacts of p on the convergence speed of a data-parallel
distributed training job built upon partial reduce, reported by work [14].

the result of training a Transformer model on P100 GPU using
the WMT16 dataset, which contains a lot of sentences with
various lengths, leading to changeable training workloads [13].
Consider that if data parallelism is used to scale up the model
training, then, workers who happen to have larger runtimes in
a round would act as the unpredictable stragglers.

C. Partial Reduce and Its Property

To relieve the impact of stragglers in data-parallel dis-
tributed training, researchers recently proposed the novel de-
sign of partial reduce [14]. Instead of enforcing all workers
(saying n for instances) to participate in each round of
synchronization, partial reduce allows partial of them to syn-
chronize their locally updated models in a weighted manner,
once the number of ready workers reaches the predefined
requirement of p (p ≤ n) [14]. Such a design enables workers
who complete their training computations earlier from being
blocked by those random stragglers, resulting in more efficient
distributed training without breaking the convergence guaran-
tees [14]. Once a straggler node completes the current round of
training, it becomes a new ready worker and would participate
in the incoming partial reduce synchronization. To address
the side effects caused by the stale model parameters of the
straggler, the reduction computation can be performed with
dynamic weights concerning the relative iteration accounts of
the involved workers [33].

According to the current design of partial reduce, a logical
central controller would act as a coordinator to dynamically
divide ready workers into groups for partial synchronization.
By design, each worker would report to the controller once
it completes the local training. And the controller maintains
the set of ready workers with a queue and pops them out to
launch a weighted all reduce collective immediately, each time
the length of the queue reaches p. Despite that partial reduce
can reduce the impact of stragglers, its current implementa-
tion is agnostic to both the training progress and available
bandwidth of workers, yielding two performance issues for
the synchronization of large models.

Specifically, a larger scale of partial reduce would generally
accelerate the convergence of the data-parallel distributed
training [14]. As an example, Figure 2 shows the number of
partial reduce synchronization and the total training iterations
that eight workers need to perform, to make a VGG-19 model
reach the accuracy of 90% on the dataset CIFAR10, under
different p settings. The data is directly extracted from the
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results reported in [14], where more details can be found. We
also observe consistent results in our own tests [15]. As the
results show, with the growth of p, both the number of needed
partial reduce synchronization (Figure 2(a)) and total training
iteration (Figure 2(b)) are prone to decrease.

Based on these observations, we now analyze the optimiza-
tion opportunities for partial reduce based training. Let π(p)
be the total training iteration that workers need to perform to
complete a training using partial reduce under the setting of p,
and tc and ts(p) be the average time each worker would take to
complete a round of training and a partial reduce, respectively.
Here, ts(p) also includes the possible waiting time, and tc
is not a function of p, since the completion of the worker’s
training computation is generally independent of the value of
p. Then, for a distributed training task involving n workers, we
could estimate T (p), the completion time of the data-parallel
distributed training driven by partial reduce, using E.q. (1).

T (p) ≈ π(p)

n
(tc + ts(p)) (1)

Theoretically and practically, the precise value of π(p) is
jointly determined by a lot of hyperparameter settings [15],
[34], [35] in a very complicated way, making it indescribable
in formulas. Given that π(p) is prone to decrease with the
growth of p, if we can optimize the partial reduce syn-
chronization to let ts(p) stay consistent or even reduce, the
entire distributed training can be accelerated. This gives us
insights into optimizing the performance of partial reduce
model synchronization.

D. Why Bandwidth and Progress Aware Selection

As a larger average scale of partial reduce synchronization
(i.e., the number of involved workers) generally leads to higher
convergence speeds, when there are p ready workers, instead
of launching the collective operation immediately, it is possible
to increase the average synchronization scale by waiting a
while, which benefits the convergence by decreasing π(p).
Following this design, if there are more than the minimum
required ready workers in the queue, by dividing workers
with similar available bandwidth into the same group, the
average time cost of a round of synchronization could be
reduced, accelerating the iteration of training by shortening
ts(p). We refer to the above design insights as bandwidth and
progress aware selections, and now, showcase the benefits with
motivating examples.

Consider that five workers labeled from w1 to w5 in a cluster
are training a model with a size of 5 units. As Figure 3(a)
shows, they have various ingress and egress available band-
width; and due to the heterogeneity in distributed training, they
would complete the current round of training at time 1s, 2s,
3s, 3s, and 13s, respectively. Obviously, w5 acts as a straggler
in this round. We assume that workers carry out the synchro-
nization with ring-AllReduce [12]; and the completion time of
synchronization for a group of workers can be approximately
formulated by E.q.(2), i.e., 2mα + 2v

b . Here, m is the size
of the collective group, α is the transmission latency between
any workers, v is the size of the model (i.e., 5), and b is
the minimum bandwidth among all involved workers. As a
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Fig. 3. A motivating example: (a) Settings of the example, where workers are
connected with a data center network (DCN); (b) All reduce, avg(CT ) =
10, avg(p) = 5; (c) Partial reduce, avg(CT ) = 10, avg(p) = 2;
(d) Progress-aware selection, avg(CT ) = 10, avg(p) = 4; (e) Bandwidth-
aware selection, avg(CT ) = 6, avg(p) = 2.

simplified example, we assume that the transmission latency
between workers is ultra-low (i.e., α≪ 1) thus the time cost
of synchronization is dominated by 2v

b .
Following these definitions, as Figure 3(b) demonstrates,

when all reduce is used, given the minimum bandwidth is 1,
the first four workers, w1, w2, w3, and w4, would get blocked
until w5 is ready; then, they launch the synchronization at
13s and complete this task at 23s. However, if the scheme
for partial reduce with p = 2 is used, based on the workers’
arriving orders, the first four could form two groups {w1, w2}
and {w3, w4} to start and even complete two separate rounds
of synchronization before w5 is ready, i.e., Figure 3(c), greatly
reducing the time that workers are idle.

If the partial reduce controller is aware that w3 and w4

would be ready at time 3s, then by just waiting for 1s, it could
extend the scale of synchronization from 2 to 4, as Figure 3(d)
shows. Indeed, alternatively, at the time instance of 3s, by
taking the available bandwidth of workers into account, the
controller can even divide these four workers into two groups:
{w1, w3} and {w2, w4}. As sketched in Figure 3(e), following
this, the average completion time of synchronization can be
reduced from 10s to 10+2

2 = 6s. These two examples imply
that, by making use of the information of both the training
progress and the available bandwidth of workers, it is possible
to optimize the scale and per-round completion time of model
synchronization for partial reduce.

E. Related Work

Optimizing the model synchronization involved in data-
parallel DML is a hot research topic and there are abundant
related works [2], [3], [36]. In this subsection, we have a
broader discussion of these related papers.
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TABLE I
THE DIFFERENCES AMONG RELATED STRAGGLER-TOLERANT SYNCHRONIZATION SCHEMES.

# Scheme Remark Communication patterns Bandwidth-aware Progress-aware

BSP/ASP/SSP [37] - Centralized (PS) é é

DSSP [38] Based on SSP Centralized (PS) é é

DYNSGD [33] Based on SSP Centralized (PS) é é

Sync-Switch [39] Based on BSP and ASP Centralized (PS) é é

D-PSGD [40] - Decentralized é é

AD-PSGD [41] Relax of D-PSGD Decentralized é é

Prague [42] Based on AD-PSGD Decentralized é é

Eager-SGD [13] Relax of all reduce Decentralized é é

Partial reduce [14] Relax of all reduce Decentralized é é

CREW [15] Based on partial reduce Decentralized Ë é

Selective reduce Based on partial reduce Decentralized Ë Ë

1) Straggler-Tolerant Synchronization: As pointed out
by [13], various factors in training could make workers’
completion time for a round of local training skewed, causing
the problem of stragglers, and making bulk synchronous
parallel (BSP) based synchronization schemes like all reduce
suffer from performance issues. Besides partial reduce, asyn-
chronous communication schemes like asynchronous parallel
(ASP), stale synchronous parallel (SSP) [37], D-PSGD [40],
AD-PSGD [41], [42], Eager-SGD [13] are alternative propos-
als. Among them, ASP and SSP are originally implemented
using PS; and SSP can be treated as the generalization of ASP
and BSP [37]. It guarantees that the gap between workers’
training iterations would not exceed the predefined threshold
of k. Thus, SSP becomes BSP when k = 0 and turns into
ASP when k = +∞. Based on SSP, DYNSGD [33] employs
a dynamic learning rate schedule scheme to deal with the
impacts of stale gradients for performance improvement; and
DSSP [38] further designs a scheme to dynamically adjust the
staleness thresholds for workers to reduce the waiting time
based on the observed iteration time intervals. Different from
SSP, DYNSGD, and DSSP, Sync-Switch [39] employs the
design of dynamically switching the synchronization setting
from BSP to ASP during distributed training.

Different from these PS-based centralized model synchro-
nization designs, schemes like D-PSGD [40], AD-PSGD [41],
[42], Eager-SGD [13], and partial reduce [14] are the asyn-
chronous relaxations of BSP in the context of decentralized
training to tolerate stragglers. D-PSGD [40] shows that, by
only synchronizing with its neighbors according to a fixed
communication topology, training workers can converge to
the final model efficiently. To accelerate the synchronization,
AD-PSGD [42] moves a step from D-PSGD to allow workers
to just synchronize with a randomly selected neighbor each
time, regardless of whether their iteration rounds are the
same or not. And Prague [42] further provides an efficient
implementation of batched AD-PSGD operations. Differently,
when there are straggler workers, Eager-SGD [13] allows
these straggler workers to participate in the synchronization
with stale model values; and instead, partial reduce [14]
only launches the synchronization operation for these ready
workers, while limiting the minimum number of workers in-

volved in each round of partial synchronization. More recently,
the work of CREW [15] also showcases how to achieve
efficient partial reduce operations for fully-connected training
workers by making usage of all available workers and their
connections. Indeed, these schemes have various properties
and thus are suited for different use cases. A brief comparison
of their main differences is summarized in Table I.

2) Topology-Aware Collectives: As different all reduce
implementations have different traffic patterns, to execute
all reduce operations efficiently, the characteristics of the
underlying network among the training workers (e.g., the
topology and the bandwidth) should be taken into account [26],
[27], [29]. For this purpose, abundant topology-aware all
reduce schemes [25], [26], [27], along with various collective
communication libraries like NCCL [12], have been proposed.

For example, AutoCCL [43] proposes a search algorithm to
tune the performance of NCCL by exploring the impacts of its
configuration parameters,such as whether to use a tree-based
or ring-based implementation for all reduce. To address the
heterogeneity of the connections among the training workers
in public clouds, PLINK [44] designs a two-level tree/forest-
based hierarchical all reduce scheme for model aggregation.
In addition, to make efficient use of the heterogeneous link
among training workers, BLINK [45] designs algorithms to
launch multiple spanning trees for the execution of all reduce.
To achieve efficient all reduce for geo-distributed training
workers, MTREE [17] employs similar but improved designs
for both the generation and selection of spanning trees, result-
ing in increased throughput with a reduced number of trees.
Moreover, for cases where only parts of the workers participate
in the synchronization, STree [28] generates Steiner rather than
spanning trees for the all reduce operation and formulates the
problem as directed Steiner forest packing to optimize. Instead
of establishing these trees in advance, NetStorm [46] generates
trees with respect to the network status, dynamically, and uses
auxiliary paths composed of idle links for acceleration on
demand.

Different from using rings or trees, several recent works,
such as TECCL [26], TACOS [27], and TARS [25], try to
synthesize optimized topology and heterogeneity-aware trans-
mission schemes for all reduce by formulating the scheduling
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problem as math models to solve. And rather than generate
communication schemes to match the underlying network
topology, several recent works employ the contrast design of
reconfiguring the network topology on demand, to support
model synchronization schemes built upon parameter servers
(e.g., PSscheduler [21]) or Ring-based all reduce (e.g., SiP-
ML [47], TopoOpt [48] better.

3) Compressed Communication: To mitigate the bottleneck
efforts of model synchronization, a promising design is to
reduce the involved traffic by schemes like top-k sparsifica-
tion and gradient quantization. For example, Ok-Topk [49]
achieves scalable sparse all reduce using top-k sparsifica-
tion with estimated thresholds; Global-QSGD [50] designs a
quantization scheme that can work with tree-based all reduce
operations seamlessly. As the network status might change
during the training, DC2 [51] dynamically adjusts the value
of k for top-k sparsification respecting the network congestion;
likewise, AQGB [20] designs a truncation-based quantization
scheme for gradients, along with a novel algorithm to control
the level of quantization with respect to both the network
status and training progress. The work of Qsparse-Local-
SGD [52] also designs schemes to combine the usages of both
sparsification and quantization. In many cases, the involved
compression and decompression operations might introduce
non-trivial computational overheads, impacting the end-to-end
performance of compression-based model synchronization.
The recent work of [53] discusses the importance of taking
these factors into account when selecting the optimization
metric; and Espresso [54] explores the impacts of different
compression strategies on end-to-end training performance.

4) In-Network Accelerations: In PS-based model synchro-
nization, with the number of workers increasing, the central-
ized PS is prone to becoming the performance bottleneck. A
lot of recent papers have taken advantage of the capacity of
emerging network devices for in-network aggregation, result-
ing in in-network accelerated all reduce [16], [55]. For ex-
ample, ATP [55] designs schemes to enable P4-programmable
switches to act as such accelerators, and SwitchML [56] uses
P4-programmable switches to fully replace parameter servers.
In addition to P4-programmable hardware, ALEPH [57] and
SoftINA [22] also show the possibility of designing soft-
wareized aggregators for in-network acceleration based on
the eBPF technique and the virtual switch platform, respec-
tively. THC [58] and AQINA [59] design tensor compression
schemes that are compatible with in-network aggregation for
joint performance optimization.

Given that in-network aggregation requires aggregatable
flows to go through the same aggregator during the journey, so-
lutions like GRID [60], ARO [16], HINA [61], and EINA [24]
formulate aggregator-aware routing optimization as various
math models and design time-efficient algorithms to solve
them. Beyond routing optimization, SPAR [62], PARING [63],
and ATRO [23] design algorithms to further jointly optimize
the deployment of aggregators, the placement of training jobs,
and the topology of the underlying network, respectively to
optimize the benefits of in-network aggregation.

As in-network acceleration breaks the one-to-one commu-
nication pattern from each worker to the parameter server, the

support from the transport protocols is also needed. In this
respect, as case studies, A2TP [64] designs schemes to control
the sending rate of workers and the allocation of aggregator
resources; INP [19], [31] designs new transport protocols
involving novel algorithms for progress synchronization, cache
allocation, and flow and congestion control for edge-based
in-network aggregation; furthermore, MTP [65], [66] designs
a novel message-oriented protocol and resource allocation
schemes to support more generic in-network computing in
modern datacenters.

5) Computation-Communication Overlapping: Last but not
least, overlapping the communication with the involved train-
ing computation is another powerful design to avoid the
communication bottlenecks involved in DDL. For example,
ByteScheduler [67] analyzes the opportunity of computation-
communication overlapping (CCO) in data-parallel distributed
training through fine-grained tensor partition and commu-
nication scheduling, and designs a generic framework for
this purpose. Instead of splitting the tensors at the level of
data volume, DeAR [68] decouples each all reduce opera-
tion into two sub-operations of ReduceScatter and AllGather
for communication scheduling, reducing the possible startup
overhead of communication. PipeDAP [69] further optimizes
the execution order of decoupled ReduceScatter and AllGather
operations for performance improvements. In many cases,
the communication might not be fully overlapped by the
training computation. For these scenarios, the recent work of
AQGB [20] designs schemes to conduct CCO-aware adaptive
gradient quantization to reduce the amount of exposed commu-
nication. Nowadays, intra-layer model parallelism designs are
widely used to train large models on memory-limited devices.
To achieve computation-communication overlapping in such
scenarios, recent work of [70] designs schemes to decouple
computation operators to increase the opportunities of over-
lapping. And differently, TileLink [71] fuses communication
and computation kernels to generate compute-communication-
overlapped kernels.

In this paper, we follow the design of partial reduce [14],
and overcome its drawbacks with progress and bandwidth
aware worker selections (See Table I). As the first step, our
current design is tailored to intra-cluster DML, where training
workers prefer to use ring-based implementations for full or
partial synchronization. For other DML scenarios, more so-
phisticated implementations are needed for better performance,
which is left as future work.

III. SELECTIVE REDUCE ALGORITHMS

As analyzed in Section II, the key insights behind our
proposal are to enhance the performance of partial reduce
operations in a best-effort manner, with selective waiting and
grouping. Based on the state of the training progress and the
available bandwidth of workers, we would i) let a partial
reduce operation wait for more workers to be ready and
then ii) split them into partial synchronization groups, such
that i) the scale of synchronization could be enlarged for
accelerated convergence, and ii) the average time cost of each
synchronization would be shortened for faster iteration.

6
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Fig. 4. Our proposed algorithms reside in a logical controller to achieve
bandwidth and progress aware selections.

Next, we first present our fundamental assumptions and
models (Section III-A), then identify the design challenges
(Section III-B). After that, we further propose schemes
for bandwidth-aware grouping (BAG) (Section III-C), band-
width and progress waiting and replacement (BPAWR) (Sec-
tion III-D), and finally design the joint scheduling algorithm
of selective reduce as the solution (Section III-E).

A. Assumptions and Models

Distinguished from the raw partial reduce [14], the power
of Selective Reduce mainly stems from two selective designs:
i) waiting for more workers to be ready, such that the
average scale of synchronization groups could be enlarged,
and ii) splitting workers into groups in a bandwidth-aware
manner, so that the average communication time of each
iteration could be shortened. To be aware of both the training
progress and the available bandwidth of workers, as Figure 4
shows, our proposed selective algorithms reside in a logical
controller, which collects the time cost of each round of
training along with the updated available bandwidth of each
worker during the training. Table II summarizes the main
notations involved in our algorithm designs. Without loss
of generality, we consider that there are n training workers
(i.e., w1, · · · , wn) networked with a non-blocking data center
network, in which bandwidth contentions generally occur at
the edge [5], [72], [73]. During a round of synchronization,
the size of data a worker would send is generally equal to that
it would receive. Thus, for worker wi, we use bi to denote
its available bandwidth, which is the minimum value among
its uplink and downlink bandwidths. As a case study, in this
paper, we consider the scenario where the training model is
huge and a weighted version of ring-AllReduce is used as the
underlying collective primitive for synchronization.

Let α be the link latency between workers, gi be a group
of ready workers selected for synchronization, and β be the
time cost of sending one unit of data over the network; for
gi, its β(gi) ≈ 1

mini:wi∈gi
bi

. Then, under the assumption that
the involved computation is not the bottleneck, the total time
of performing ring-AllReduce for a group of workers gi can
be estimated with E.q. (2) [74], [75], where v is the model’s

TABLE II
NOTATIONS

Notation Description

wi the unique identifier of the worker i
bi wi’s available bandwidth
B, {bi} the set of all workers’ available bandwidth
v the size of the trained model
p the minimum size of worker groups for partial reduce
α the latency of inter-worker connection
η a tunable parameter used for bandwidth-aware grouping
θ a tunable parameter used for progress-aware waiting
∆t the pre-defined waiting time slot
PΦ(t) the probability that a worker computes a round within t

g, g∗, g∆ a group of (ready) workers
G a list of worker groups
L a list of sorted (ready) workers
S the set of workers still in training computation
T the estimated time of performing ring-AllReduce for group g

size.

T (gi) = 2(|gi| − 1)α+ 2
|gi| − 1

|gi|
vβ(gi)

≈ 2|gi|α+
2v

mink:wk∈gi bk

(2)

When training large models, if the available bandwidth
of workers is highly skewed, the optimization room for our
algorithm designs is dominated by the selected workers’
bandwidth, as E.q. (3) shows.

T (gi)− T (gj)

≈2(|gi| − |gj |)α+ 2v(
1

mink:wk∈gi bk
− 1

mink:wk∈gj bk
)

(3)

B. Design Challenges

Unfortunately, the two objectives that the selection algo-
rithms would pursue are contradictory, making the design of
algorithms challenging. Consider the selective grouping of
workers as an instance. Suppose that there are p+ k workers
with various available bandwidths ready for synchronization.
For the goal of maximizing the scale of partial synchro-
nization, we should directly select all workers to formulate
a p + k group; while for the purpose of minimizing the
average time cost, the best scheme is to only select the top-p
highest-bandwidth workers to form a group. A similar situation
occurs for selective waiting: when deciding to wait, should
we use the newly arriving workers to enlarge the scale of
synchronization, or to replace some low-bandwidth workers
such that the average completion time could be reduced?

In the rest of this section, we first describe the design of
BAG, a bandwidth-aware grouping algorithm that is able to
expand the scale of synchronization with a slightly controlled
cost of larger completion times (Section III-C). Then, based
on BAG, we further propose BPAWR, a novel algorithm
that could optimize both the average scale and completion
time for partial synchronization, by conducting bandwidth
and progress aware waiting and (worker) replacement (Sec-
tion III-D). Finally, by putting BAG and BPAWR together,
we design SELECTIVEREDUCE, a selectively reduce algorithm

7
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Algorithm 1 BAG: Bandwidth-Aware Grouping
1: function BAG(Q, p, η, {bi})
2: L← sort workers in Q resp. {bi} non-increasingly
3: G← list() ▷ List of Groups
4: g ← list() ▷ a new group
5: for each wi ∈ L do
6: if len(g) ≤ p then
7: append wi to g
8: b∗ ← bi(1− η) ▷ bi is the bandwidth of wi

9: else if bi ≥ b∗ then
10: append wi to g
11: else
12: append g to G
13: g ← list() ▷ a new group
14: append wi to g
15: end if
16: end for
17: if len(g) > 0 then
18: append g to G
19: end if
20: return G
21: end function

that achieves optimized and convergence-guaranteed partial
reduce for heterogeneous data-parallel distributed training
(Section III-E).

C. Bandwidth-Aware Grouping

As we have discussed, given p + k ready workers, to
maximize the average synchronization scale, the best design is
to just select all workers to conduct partial reduce; on the con-
trary, to minimize the average completion times of synchro-
nization, the best scheme is to sort workers in non-increasing
order of their available bandwidth, then slice the first ⌊p+k

p ⌋p
workers into ⌊p+k

p ⌋ groups (with the size of p) sequentially.
To explore their trade-offs and balance these two optimization
goals, we propose the design of η-based bandwidth-aware
grouping, i.e., BAG. The insight behind BAG is that the
completion time of a round of synchronization for a group of
workers is dominated by the one with the smallest bandwidth,
saying bi for instance; then, by including workers with an
available bandwidth no smaller than bi(1 − η) into the same
group, we can expand the scale of synchronization with the
controlled maximum time penalty of v

bi(1−η) −
v
bi

= v
bi

η
1−η .

Algorithm 1 illustrates details of how the proposed η-based
BAG works. Given a queue of currently ready workers Q,
the minimum allowed synchronization scale p, the tunable
parameter η, and the currently available bandwidth of workers
{bi}, BAG would split workers in Q into a list of groups
G = [g1, g2, · · · ]. To achieve this, BAG first sorts workers
respecting their available bandwidth non-increasingly (Line 2).
Then, BAG tries to select p workers to generate a group g
and records the relaxed bandwidth threshold b∗ (Lines 4-8)
for group extension (Lines 9-10). If there does not exist a
worker wi whose available bandwidth meets the requirement
of bi ≥ b∗, BAG appends the generated group g to G and

moves to generate the next group (Lines 11-15). Such a
process is repeated until all workers in L have been checked.
Finally, the last generated group will be appended as well
(Lines 17-19).

Regarding the time complexity, considering that there are
n workers in Q. Obviously, the most complex operation of
Algorithm 1 is the first step of sorting (Line 2), which can be
completed within O(n ln(n)). As the rest of the steps can be
done within O(n), the entire Algorithm 1 is O(n ln(n)).

D. Bandwidth- and Progress- Aware Waiting and Replacement

Despite it being hard, if not impossible, to predict the
exact completion time of a round of training on a worker, we
could get an approximate estimation based on the distributions
of the worker’s observed runtime. In practice, the training
would repeat up to hundreds of thousands of rounds and
even more to complete. By formulating the distribution of
runtime as a probability model, the controller of selective
reduce could compute the probability of the instance that a
given training worker would complete its current round within
the next time slot of ∆t. Then, based on this observation,
we design BPAWR, a bandwidth and progress aware waiting
and replacement algorithm to further update the generated
worker groups. Such a design makes our proposal work well
even without precise knowledge of the probability model at
runtime in advance. As evaluations in Section IV-B5 will show,
such a design makes our proposal robust to achieve efficient
performance without prior knowledge of the distribution.

1) The Probability Model: We use the random variable T
to denote the time a worker would take to complete a round
of training under the specific parameter settings Φ and use
PΦ(T ≤ t) to denote the probability that this worker would
complete its current iteration within time t. In practice, the
form of PΦ(T ≤ t) is the same as FΦ(t), i.e., the CDF (Cumu-
lative Distribution Function) of T , which can be approximately
computed from the frequency of T observed in the completed
iterations. The polylines in Figure 1 show examples. Consider
that a worker started a round of training at t time ago and
currently, it is still in training (i.e., PΦ(T > t) = 1); then, the
probability that it would complete the training in the next ∆t
is PΦ(T ≤ t + ∆t|T > t), which is exactly equal to FΦ(t),
the CDF of T , as E.q. (4) shows.

PΦ(T ≤ t+∆t|T > t) =
PΦ(t ≤ T ≤ t+∆t)

PΦ(T > t)
PΦ(T>t)=1
========= PΦ(T ≤ t+∆t)

= FΦ(t+∆t)

(4)

2) Algorithm Details: Algorithm 2 explains the details of
how our proposed selective BPAWR algorithm employs the
PΦ(T ≤ t+∆t|T > t)-based training progress and available
bandwidth information for workers to further optimize the
synchronization. Let S be the set of workers who are still in
training and could be waited for, p be the minimum allowed
size of a synchronization group, η be the tunable parameter
for bandwidth-aware grouping, v be the model size, and {bi}
be the currently available bandwidth of each training worker,
respectively. Then, given a group of ready workers g, and
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Algorithm 2 bpaWR: Bandwidth and Progress aware Waiting
and Replacement

1: function BPAWR(S, g, p, η,∆t, v, {bi}, θ)
2: if len(g) < p then
3: return False, ∅, S ▷ wait for more ready workers
4: end if
5: b̂← mini:wi∈g bi
6: C ← PREDICTWORKERS(S, ∆t, b̂)
7: S← S \ {wi : (wi, bi, pi) ∈ C}
8: k ← ⌊CALCEXPECTEDNEWWORKERNUM(C)⌋
9: b← CALCEXPECTEDBW(C)

10: L← copy(g)
11: insert k virtual workers whose bandwidth is b into L
12: G← BAG(L, p, η, {bi})
13: g∗ ← G[0]
14: g∆ ← set(g)\set(g∗) ▷ workers in g but not in g∗

15: tX ← T (g)− T (g∗) ≈ 2v
mini:wi∈g bi

− 2v
mini:wi∈g∗bi

16: if tX > θ∆t then
17: return True, g∆,S
18: else
19: return False, ∅,S
20: end if
21: end function
22: function PREDICTWORKERS(S, ∆t, b)
23: C ← list()
24: for each (wi, bi, ti) ∈ S do
25: if bi > b then
26: pi ← FΦ(ti +∆t) ▷ Refer to E.q.(4)
27: append (wi, bi, pi) to C
28: end if
29: end for
30: return C
31: end function
32: function CALCEXPECTEDNEWWORKERNUM(C)
33: return

∑
(wi,bi,pi)∈C pi

34: end function
35: function CALCEXPECTEDBW(C)
36: return

∑
(wi,bi,pi)∈C pibi∑
(wi,bi,pi)∈C pi

37: end function

a pre-defined waiting time slot ∆t, BPAWR would decide
i) whether a round of synchronization should be triggered
immediately, i.e., waiting (True) or not (False); ii) a set of
slow-bandwidth workers that should be excluded from g for
the optimization of completion time, i.e., ∅ or g∆; and iii) the
updated S that can be used for remaining unprocessed groups.

Basically, if the size of g has not reached the requirement of
p, all these workers must wait for more to be ready (Lines 2-
4). Otherwise, BPAWR computes b̂, the bottleneck bandwidth
of workers in g, and filters out the workers in training whose
available bandwidth is not less than b̂, and computes their
probabilities (Lines 6, 22-31) to form a list C. Then, based
on C, BPAWR calculates k, the expected number of workers
that are likely to be ready within ∆t (Lines 8, 32-34), and
assumes that these workers are with the bandwidth of b, i.e.,

the weighted average bandwidth of workers in C (Lines 9,
35-37). By feeding these k expected workers along with these
already in g to BAG, BPAWR decides a new grouping plan
G for them (Line 12), among which, the first group g∗ is
the augmented alternative of g, under bandwidth and progress
aware waiting and replacement (Line 13). Using this estimated
g∗, BPAWR computes both the set of workers that could be
excluded from g (and g∗) (Line 14), and the synchronization
time that would be saved because of the bandwidth-aware
worker replacement (Line 15). Then, if the saved time is
larger than θ times of the bound of the waiting time ∆
(Line 16), BPAWR would decide to wait and replace (Line 17);
otherwise, no waiting and replacement will be conducted for g
(Line 19). Here, θ is a tunable parameter, with the default value
of 1, to control whether it is worth conducting waiting and
replacement. Notable, to avoid these workers being wanted by
multiple groups, once workers in C has been checked, BPAWR
would remove them from S (Line 7).

In short, following Algorithm 2, BPAWR evaluates whether
it is worth waiting for more workers to be ready based on
the status of the available bandwidth and training progress of
each worker. As specified by E.q.(4), FΦ(t), the distribution
of workers’ completion times for a round of training (see
Figure 1 for examples), provides a way to predict whether
a worker would complete its current round within ∆t. If this
distribution is unknown in advance, BPAWR can directly use
the distribution collected by the controller.

As for Algorithm 2’s time complexity, no complex loops
are involved. Obviously, if there are n workers, each
step, including the invoking of functions like PREDICT-
WORKERS, CALCEXPECTEDNEWWORKERNUM, CALCEX-
PECTEDBW but BAG (Line 12), could complete within O(n).
As BAG is O(n ln(n)), Algorithm 2 is O(n ln(n)).

E. Optimizing Partial Reduce with Selection

Using BAG and BPAWR as building blocks, we design
SELECTIVEREDUCE, which could achieve bandwidth and
progress aware performance-optimized partial reduce for it-
erative distributed deep training and ensure consistency.

Algorithm 3 shows how the proposed SELECTIVEREDUCE
works in the controller: it would repeat until the training
should stop (i.e., ShouldContinueTraining() returns False,
Line 4). Besides parameters p, η, θ,∆t, and v, it also involves
the parameter of c, which specifies that the synchronization
must include all workers to conduct a fully weighted all
reduce after c rounds. To achieve these, SELECTIVEREDUCE
uses k to record how many rounds of synchronization have
been conducted (Lines 2, 20), which controls the type of
triggered synchronization (Lines 5, 8). During the running,
SELECTIVEREDUCE uses a queue Q to maintain workers that
are ready for synchronization (Line 3), and pop all or part of
them to conduct fully (Lines 6-7) or partially (Lines 18-19)
weighted all reduce, depending on the value of k%c (Lines 5,
8), respectively. Given that workers have achieved diverse
training rounds, thus, like the design of partial reduce [14],
to achieve better convergence speeds, the synchronization of
selective workers is carried out with a weighted variant of all
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Algorithm 3 Selective Reduce
1: procedure SELECTIVEREDUCE(p, η, θ,∆t, v, c)
2: k ← 0 ▷ the current round of training
3: Q← queue() ▷ Queue of ready workers
4: while ShouldContinueTraining() do
5: if k%c = 0 and len(Q) = n then

▷ perform all reduce every c rounds
6: S ← pop n elements from Q
7: launch WeightedAllReduce(S) ▷ Async
8: else if k%c ̸= 0 and len(Q) ≥ p then
9: B ←GetUpdatedBandwidthForAllWorkers()

10: S← GetSetOfWorkersInTraining()
11: G← BAG(Q, η, p, θ, B)
12: for each gi ∈ G do ▷ G : [g1, · · · , gj ]
13: (F, g∆,S)← BPAWR(S, gi, p, η,∆t, v, B, θ)
14: if g∆ ̸= ∅ and i < len(G) then
15: move workers in g∆ from gi to gi+1

16: end if
17: if F then
18: S ← pop workers in gi from Q
19: launch WeightedAllReduce(S)
20: k ← k + 1
21: end if
22: end for
23: end if
24: w ←GetReadyWorkerID(∆t) ▷ nil if timeout
25: if w ̸= nil then
26: push w to Q
27: end if
28: end while
29: end procedure

reduce. And to support multiple groups of workers perform-
ing synchronizations at the same time, SELECTIVEREDUCE
launches these WeightedAllReduce instances asynchronously.
Once an instance of synchronization is completed, the involved
workers could continue their training and get marked as in-
training workers.

On each round of processing, if k%c ̸= 0 and the number of
ready workers, denoted by len(Q), is larger than p (Line 8),
SELECTIVEREDUCE would conduct the selection algorithms
to control the execution of partial reduces. To do so, it first
obtains the updated bandwidth of each worker (Line 9), along
with the set of workers still in training (Line 10). Then,
it splits these workers into a list of groups G by using
BAG (Line 11). After that, based on the results given by
BPAWR (Line 13), it tries to adjust these generated groups
(Lines 14-16) and determine whether to launch a round of
synchronization (Lines 17-21) for each group in sequence
(Line 12), or wait for more workers (Lines 24-27). Here,
GetReadyWorkerID(∆t) employs a blocking design and would
return nil if no new worker becomes ready within ∆t.

Obviously, by tuning the value of p, η, θ, and ∆t, SELEC-
TIVEREDUCE could balance the two conflicting optimization
objectives respecting the requirements of training tasks. Like
the original partial reduce, a logical controller would run
the logic specified in Algorithm 3 based on the observed

training progress and bandwidth of workers. As we mainly
focus on the case of intra-cluster distributed training in this
paper, it is possible to collect the above required status
information efficiently via a stand-alone system in practice.
Based on them, the controller would invoke BAG and BPAWR
to make decisions and launch weighted all reduce operations
for controlled synchronization. As both BAG and BPAWR are
only O(n ln(n)), our proposal scheme would not be the perfor-
mance bottleneck of the distributed training. Moreover, as the
performance evaluation in Section IV-B5 shows, the proposed
selective reduce is robust to achieve efficient performance even
upon inaccurate bandwidth estimations.

IV. PERFORMANCE STUDY

In this section, we evaluate the performance of selective re-
duce through extensive trace-based, event-driven simulations.
Detailed results imply that, compared with the original partial
reduce and all reduce, selective reduce could improve iteration
speed, decrease the synchronization completion time of each
round, and expand the scale of synchronization significantly,
yielding near-optimal performance.

A. Methodology

1) Network and workloads: We consider that n workers
networked with an abstract network switch are training a
model collectively. Regarding the available bandwidth of the
uplink and downlink that each worker could use for model
synchronization (i.e., the value of bk in E.q. (2)), we assume
it is round(20u, 3)Gbps, where u follows the uniform distri-
bution of U [λ, 1], and by default λ is set to 0.05, yielding a
minimum bandwidth of 1Gbps for bk. For any pair of training
workers, we assume its one-way latency is 1ms (i.e., the value
of α in E.q. (2)). As for the amount of traffic, to highlight the
impacts of large models, we assume that models with the size
of 500MB. For the time cost of each round of training, we
further assume that it is random, but following the observed
results of training a Transformer model on dataset WMT16 and
training a CNN model on dataset ImageNet, reported by [13],
as Figure 1 shows. For the sake of description, we call these
two types of training computation time settings Transformer
training trace and CNN training trace, respectively. To test the
impacts of training scales, we increase the number of workers
n, from 40 to 200 with a step size of 40. And by default,
p = 0.3n, η = 0.3 and θ = 1.

2) Simulator, baselines, and metrics: To study the perfor-
mance of selective reduce, we develop a flow-level simula-
tor with Python 3 based on that used in [15], [18], [73].
In brief, at the core of the simulator is a discrete-event
simulation engine sharing the similar designs with that of
ns3, an open-source network simulator designed for Internet
systems. During the simulation, events would be executed
one-by-one respecting their logical time, and newly gener-
ated events would be inserted into the queue on demand.
For the involved communication, link capacities would be
allocated to concurrent transfers fairly. By feeding the engine
with events configured based on the training traces described
in Figure 1, and intentionally controlling the generation of
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model synchronization events, it could precisely simulate how
heterogeneous distributed training systems behave under the
control of various synchronization schemes.

Although there are abundant related proposals, the work
of [14] has shown that partial reduce outperforms existing
schemes like ASP, DYNSGD [33], AD-PSGD [41], and Eager-
SGD [13], in tests. Among them, DYNSGD is an improve-
ment of the SSP [37], and AD-PSGD is already reported to
outperform D-PSGD [40]. As our proposed selective reduce
is an improvement of the partial reduce scheme by design,
we could conclude that selective reduce is able to outperform
these schemes as well. Thus, in tests, we mainly use the partial
reduce as the baseline. Besides partial reduce and selective
reduce, our simulator also supports the original all reduce.
For these schemes, we assume that all the involved collective
operations are performed on a logical ring.

In practice, the efficiency of distributed training is jointly
determined by two factors, i.e., the number of training rounds
to reach the stop criteria (a targeted accuracy), and the time
cost of each round. As recent studies have shown [14], [15],
when triggered partial reduce operations have a larger average
scale, the training workers could take less rounds of iterations
to reach a targeted accuracy. However, there does not exist a
simple formula to express the relationship between the average
scale of partial reduce operations and the actual convergence
speed [14], [15]. Despite works like [14] having proved that
partial reduce has a convergence rate of O(1/

√
pk) under

some assumptions, where p and k are the scale and number
of synchronization, respectively, such a result bound is very
loose. This is because the convergence pattern of a distributed
training job is the result of various factors, ranging from the
quality of the training dataset, the structure of the model,
the settings of the hyper-parameters, etc [15], [18], [34]. To
provide generic communication acceleration optimizations for
partial reduce operations, selective reduce tries to shorten
the average time cost of each synchronization and enlarge
their average scale simultaneously, in the best-effort manner.
Accordingly, like recent communication optimization stud-
ies [15], [16], [17], [18], we use the following system-related
metrics to assess the performance of selective reduce.

• Average sync time: the average time of a round of
synchronization—Smaller values indicate more efficient
synchronization (i.e., accelerated iteration);

• Average sync scale: the average scale of a round of
synchronization—Larger scales generally lead to fewer
rounds of iteration for models to converge (i.e., acceler-
ated convergence);

• Total sync: the number of synchronization that workers
have completed during the training;

• Total iteration: the total number of iterations for all
workers during the test—A higher value yields better uti-
lization of the computing resources (e.g., GPUs, TPUs);

• Wasted wait time: following the plan given by BPAWR,
a group of workers might be configured to wait for more
ready workers; if no newly ready workers join finally, we
call these wait time slots wasted.

Besides, we also study the influence of tunable parameters

like η and θ on the above performance metrics, bandwidth fluc-
tuations and latency. For each parameter setting, we conduct
20 trials to compute and report their minimum, medium,
and maximum values.

B. Performance

1) Results on the CNN and Transformer training traces:
Figures 5 and 6 show the results of selective reduce, partial
reduce and all reduce on the two training traces, respectively.
By default, in each simulated training instance, workers would
stop the training after 100s. As Figures 5(a) and 6(a) show,
on both training traces, with the growth of the cluster scale
n, the average sync times achieved by all reduce and partial
reduce increase. As a result, for these two schemes, the total
amount of training iterations for all workers increase sub-
linearly with the growth of the cluster scales (Figures 5(c)
and 6(c)), yielding reduced utilization of accelerators like
GPU. We argue that this is mainly caused by the joint effects
of the increased transmission latency and the heterogeneity
of workers’ available bandwidth, as specified by E.q.(2).
Indubitably, the enlargement of the scale of synchronization
could lead to a larger transmission latency for ring-based
proposals including all reduce, partial reduce, and selective
reduce. Regarding the heterogeneity of bandwidth, however,
the mechanism of how it impacts the average sync time of
partial reduce is a little bit different from that of partial
reduce. On one hand, for all reduce, the probability that there
are workers with very low available bandwidth, approximating
the floor of round(20λ, 3)Gbps, would increase with the
cluster scales. On the other, for partial reduce, given that
workers with skewed bandwidth become ready randomly and
would be split into groups with the size of p, the probability
that there is at least one worker whose available bandwidth
is low would increase with the growth of the cluster scale
as well, leading to enlarged average sync times. Regarding
selective reduce, as larger cluster scales, provides a larger room
for bandwidth-aware waiting and replacement, the achieved
average sync time even decrease.

As shown in Figures 5(b) and 6(b), compared with partial
reduce, selective reduce could improve the average sync scales
from the required limit of p to larger values, showing the
ability of selective reduce on accelerating the coverage of
distributed training. Results also show that the cluster size
might impact the number of improvements of selective reduce,
depending on the characteristics of the training workloads.
Following these observations and given that selective reduce
has both optimized average sync time and scales on larger
clusters, however, with the growth of n, the total amount of
training iterations it achieves larger goes down. We find that
this is because workers under the schedule of selective reduce
would spend more time on waiting, leading to a reduced
amount of total sync as Figures 5(d) and 6(d) show.

Besides, we also investigate the wasted wait time of each
worker under the schedule of selective reduce. As Figure 7
reveals, compared with the test duration of 100s, the amount
is trivial, only a few milliseconds for each worker, accounting
for less than 0.01% of the total training time.
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Fig. 5. Results on the CNN training trace show that, compared with partial
reduce, selective reduce is able to launch synchronizations with larger scales
and complete them faster, thus achieving more total iteration rounds in the
same given time, making better utilization of accelerators.
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Fig. 6. Despite various values being observed, the results on the Transformer
training trace show consistent results with those on the CNN training trace,
confirming the advantage of selective reduce over partial reduce.
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Fig. 7. Compared with partial reduce and all reduce, the BPAWR algorithm
used by selective reduce does introduce wasted wait time in some instances;
however, as the total amount is tiny, the impact on performance is trivial.
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Fig. 8. Impacts of p on the performance of selective reduce.

As a summary, results on both traces confirm that the
selective designs enable selective reduce to outperform partial
reduce in terms of the average sync time, average sync scale,
and total iterations, with improvements up to 1.89-2.55×,
1.19-1.25×, and 1.1-1.17×, respectively. Despite the type
of workloads having impacts on the observed result values,
results also indicate consistent conclusions. Thus, in the rest
of the test, we mainly report the results obtained from the
Transformer training trace.

2) Impacts of p: To study the impacts of p on the perfor-
mance of selective designs, we vary its value from 0.1n to 0.5n
and obtain Figure 8. As expected, for both selective reduce and
partial reduce, with the enlargement of p/n, the average sync
scales do grow (Figure 8(a)), at the cost of slowed average
sync time (Figure 8(b)) and reduced amount of total sync
(Figure 8(c)). Accordingly, the total rounds of training iteration
achieved by all workers decrease (Figure 8(d)). It’s worth
noting that selective reduce achieves the smallest average sync
time when p = 0.5n; this is because in this case, the average
sync scale is about 130 (Figure 8(a)), larger than half of
the cluster. As a result, the remaining workers in the cluster
could never form a group, yielding the smallest amount of
total iteration for selective reduce (Figure 8(d)). Nevertheless,
selective reduce always outperforms partial reduce in terms of
the average sync scale, average sync time, and total iteration
in these test instances.

3) Impacts of η: According to the design of Algorithms 1
and 2, the behavior of selective reduce is mainly tuned by
the setting of η. To investigate the impacts, we increase η
from 0 to 0.8, with the step size of 0.2, and obtain Figure 9.
Basically, as Figure 9(a) shows, larger η values would lead to
larger average sync scales. However, with the increase of η,
the average sync time first decreases slightly and then grows
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Fig. 9. The impacts of η on the performance of selective reduce.

(Figure 9(b)). We argue that in these test instances when η
is not too much, the benefits of the selective replacement
design adopted by BPAWR could mask the enlarged sync time
caused by the increase of η, and the opportunity of replacement
happens to increase with η. Such a result implies that our
proposed η-based bandwidth-aware grouping (i.e., BAG) does
not necessarily slow the synchronization down. As shown in
Figure 9(c), the total iteration conducted by all workers also
grows with η at the same time. However, when η is large, e.g.,
when η = 0.8, the amount of total iteration decrease. This is
because in this case, the average scale of synchronization is
larger than n−p (Figure 9(a)). Similar to the case of p = 0.5n
shown in Figure 8, the remaining workers could not meet
the requirement of p, and the amount of total sync decreases
significantly (Figure 9(d)), thus the amount of total iteration is
small. Again, in all these instances, selective reduce achieves
larger and faster synchronizations than partial reduce.

4) Impacts of θ: Now, we analyze the impacts of the
tunable parameter θ, which is used by BPAWR to decide
whether to wait and replace or not. As Figure 10 shows,
overall, the performance of selective reduce is not very sen-
sitive to θ. Following Algorithm 2, the larger the value θ
is, the more conservative waiting and replacement decisions
would be made. As a consequence, with θ increasing from 1
to 20, the average sync scale decreases (Figure 10(a)) while
the average sync time increases (Figure 10(b)). However, as
the total amount of synchronization increases (Figure 10(c)),
a slightly larger amount of total iteration is finally obtained
(Figure 10(d)).

5) Impacts of unknown training distribution and inaccurate
bandwidth estimation: So far, we assume that the controller
has knowledge of the distribution of training traces in advance,
and can estimate the available bandwidth of each worker
precisely. In practice, for a new training task, the distribution
of the time cost of a round of training computation might be
unknown in advance, and errors might occur in the bandwidth
estimation. For these unseen training tasks, the selective reduce
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Fig. 10. The impacts of θ on the performance of selective reduce.

controller directly uses the distributions observed during the
training so far as the trace to estimate the completion of
training workers. We call such a scenario as cold start; in
contrast, the case of in-advance known distribution is named
as warm start. Results in Figure 11 demonstrate that there is no
obvious performance gap between cold start and warm start
for selective reduce. To investigate the impacts of inaccurate
bandwidth estimation, for a worker with the available band-
width of b, we artificially introduce an error of b×e×x to its
estimated values, where x is randomly generated following
the uniform distribution of U [−1, 1] and e is a parameter
controlling the scale of errors. As Figure 12 shows, in these
test instances, for selective reduce with both cold start and
warm start, with the increase of the scale of estimation error
e, the average sync time slightly increases (Figure 12(a)) and
the average sync scale marginally decreases (Figure 12(b));
however, the amount number of synchronization also grows
(Figure 12(d)), leading to a little bit more total iterations
conducted by workers (Figure 12(c)). Nevertheless, the change
in value is not obvious, implying that selective reduce is robust
to mask these errors and achieve consistent performance.

6) Impacts of bandwidth skewness λ: Recall that in tests,
the available bandwidth of workers is generated randomly via
round(20u, 3)Gbps, where u follows U [λ, 1]. Accordingly,
the smaller λ is, the higher bandwidth skewness workers would
have. To study its impacts on the performance of selective
reduce, we update the value of λ to 0.1 and 0.2 and re-conduct
tests. As shown in Figure 13, without surprise, results confirm
that the bandwidth-aware selective design makes selective
reduce always outperforms partial reduce in terms of the
average sync time, average sync scale, and total iteration; and
the more heterogeneous the bandwidth values are, the larger
performance gain selective reduce could achieve.
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Fig. 11. If the distribution of the time cost of a round of training computation
is unknown in advance, by just using the distributions observed during the
training (a.k.a, cold start), selective reduce is able to achieve performances
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warm start). As the gaps between these two cases are tiny, to be compact,
we only show the detailed results of metrics of average sync time here.
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Fig. 12. Selective reduce is able to achieve consistent performance when the
scale of error increases, implying our proposed algorithm designs are robust.

7) Impacts of latency α: Lastly, we analyze the impact of
network delay α on the performance, by varying its value
from 0ms to 1ms, to 5ms, and to 50ms. As Figure 14(b)
shows, the impacts of α on average sync scale are trivial.
However, it is true for other metrics only when α is much
smaller than v

b , e.g., α ≤ 1ms in our tests. Then, consistent
with E.q. 2, as shown in Figure 14(a), for all schemes, the
average sync time grows with the increase of α, leading to
reduced amounts of total iterations (see Figure 14(c)). Also,
the growth ratios of partial reduce and selective reduce are
slower than that of all reduce since only part of the workers
are involved in each round as Figure 14(b) shows. Notably,
despite that selective reduce has larger average sync scales
than partial reduce, its average sync time grows more slowly
since the impact of increasing α has been partially alleviated
by our proposed bandwidth-aware selective design.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, partial reduce is a promising solution for
eliminating the impacts of straggler workers in heterogeneous
data-parallel distributed training. However, its worker selection
scheme is far from optimal, specifically for the synchronization
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Fig. 13. The impacts of bandwidth skewness λ.
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Fig. 14. The impacts of latency α.

of large models, since it is agnostic to both each worker’s
training progress and available link capacities. Accordingly,
we design selective reduce, a suite of adaptive algorithms
that could conduct progress and bandwidth aware worker
selection to optimize both the scale and completion time
of model synchronization for the partial reduce solution.
Extensive performance studies show the advantage of selective
reduce over the original partial reduce and also indicate that
it is robust to unknown-in-advance runtime distributions and
inaccurate bandwidth estimation.

Currently, the bandwidth-aware design of the selection
algorithms of selective reduce is specialized in assuming that
synchronization tasks are carried out with ring-AllReduce
implementations. As future work, extending selective reduce
to support other implementations like tree is still open.
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