
Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

Efficient Parameter Synchronization for Peer-to-Peer
Distributed Learning With Selective Multicast

Shouxi Luo, Pingzhi Fan, Ke Li, Huanlai Xing, Long Luo, and Hongfang Yu

Abstract—Recent advances in distributed machine learning
show theoretically and empirically that, for many models, pro-
vided that workers will eventually participate in the synchro-
nizations, 𝑖) the training still converges, even if only 𝑝 workers
take part in each round of synchronization, and 𝑖𝑖) a larger 𝑝

generally leads to a faster rate of convergence. These findings
shed light on eliminating the bottleneck effects of parameter
synchronization in large-scale data-parallel distributed training
and have motivated several optimization designs. In this paper,
we focus on optimizing the parameter synchronization for peer-to-
peer distributed learning, where workers broadcast or multicast
their updated parameters to others for synchronization, and
propose SELMCAST, a suite of expressive and efficient multicast
receiver selection algorithms, to achieve the goal. Compared
with the state-of-the-art (SOTA) design, which randomly selects
exactly 𝑝 receivers for each worker’s multicast in a bandwidth-
agnostic way, SELMCAST chooses receivers based on the global
view of their available bandwidth and loads, yielding two ad-
vantages, i.e., accelerated parameter synchronization for higher
utilization of computing resources and enlarged average 𝑝 values
for faster convergence. Comprehensive evaluations show that
SELMCAST is efficient for both peer-to-peer Bulk Synchronous
Parallel (BSP) and Stale Synchronous Parallel (SSP) distributed
training, outperforming the SOTA solution significantly.

Index Terms—Distributed learning, receiver selection, param-
eter synchronization

I. INTRODUCTION

Over the past decade, machine learning techniques obtain
tremendous success and have been widely employed for vari-
ous applications like email filtering, advertising recommenda-
tion, speech recognition, machine translation, computer vision,

This work was supported in part by the National Key Research and
Development Program of China under Grant 2023YFB2904600, in part by
NSFC under Grant 62002300, Grant 62020106001, Grant 62394324, and
Grant 62102066, in part by the Fundamental Research Funds for the Central
Universities under Grant 2682024ZTPY050, Grant 2682022ZTPY089, and
ZYGX2022J003, and in part by the Sichuan Science and Technology Program
under Grant 2023ZHJY0009. The preliminary version of this work entitled
“Fast Parameter Synchronization for Distributed Learning with Selective Mul-
ticast” was published in IEEE International Conference on Communications
(ICC) 2022 [1] [DOI: 10.1109/ICC45855.2022.9838266]. (Corresponding
author: Shouxi Luo.)

Shouxi Luo is with the School of Computing and Artificial Intelli-
gence, Southwest Jiaotong University, Chengdu 611756, China (e-mail:
sxluo@swjtu.edu.cn).

Pingzhi Fan is with the Key Laboratory of Information Coding and
Transmission, CSNMT Int Coop. Res. Centre, Southwest Jiaotong University,
Chengdu, 611756, China (e-mail: p.fan@ieee.org).

Ke Li and Huanlai Xing are with the School of Computing and Artificial
Intelligence, Southwest Jiaotong University, Chengdu 611756, China (e-mail:
keli@swjtu.edu.cn; hxx@swjtu.edu.cn).

Long Luo and Hongfang Yu are with the School of Information and
Communication Engineering, University of Electronic Science and Tech-
nology of China, Chengdu 611731, China (e-mail: llong@uestc.edu.cn;
yuhf@uestc.edu.cn).

etc [1]–[5]. With the increasing popularity of machine learning
and the rapid development of new technologies, the realistic
quantities of training data for a learning task have increased
from GBs to TBs and PBs. Data-parallel distributed training
has become the key to obtaining the resulting model over such
massive amounts of data within reasonable times [2]–[4].

In datacenter-based data-parallel distributed training, the
dataset is generally split and then distributed among a group
of high-performance servers (i.e., workers), each of which
holds a replica of the model and iteratively updates its model
values with local training. To guarantee convergence, these
workers will synchronize their new resulting models peri-
odically, via various communication topologies such as the
star (i.e., parameter server), tree, ring, and peer-to-peer [3],
[6]. These schemes have various properties regarding latency,
traffic overheads, and reliability, thus being employed by
various learning systems and training algorithms.

With the continued growth of the training scale, the volume
of traffic triggered by parameter synchronization is increasing
greatly. Moreover, the wide employment of new hardware
like GPU, FPGA, and TPU, has repeatedly accelerated the
computation a lot, while the upgrade of network infrastructure
is relatively complicated and slow [7]. As a result, the non-
trivial time it takes for the underlying network to complete
the parameter synchronization would dominate the time cost
of the entire training, becoming the bottleneck. Optimizing
the communication bottleneck involved in parameter synchro-
nization is crucial for the implementation and deployment
of large-scale distributed machine learning. Indeed, this is
a hot research topic, where a large number of works are
involved [2], [3], [6], [8]–[10]. Recent advances have shown
theoretically and empirically that, for many models, provided
workers would participate in the synchronization eventually,
𝑖) the training will still converge, even if there are only 𝑝

workers taking part in each round of synchronization, and 𝑖𝑖) a
larger value of 𝑝 on average generally leads to a smaller round
of training to converge [4], [9], [11]–[15]. These findings shed
light on the optimization of parameter synchronization, having
motivated the improvements of several learning algorithms and
systems [4], [11]–[15].

In this paper, we focus on accelerating the parameter syn-
chronization for peer-to-peer distributed learning, following
the works of Orpheus [4], Malt [15], and SFB [14], and
propose SELMCAST, an expressive and efficient multicast
receiver selection algorithm to achieve the goal. More specif-
ically, in a naive peer-to-peer distributed training, to drive a
round of synchronization, each worker would broadcast its
new local model, the model update, or the sufficient factor

1

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

of the model update to all other workers [4], [14]. As a
result, the synchronization of 𝑛 workers would yield O(𝑛2)
traffic volumes. For this issue, Orpheus [4], the state-of-the-
art proposal, allows each worker only deliver model updates
to 𝑝 (out of 𝑛−1) randomly selected receivers in a bandwidth-
agnostic way. Such a design reduces the total traffic volume
and guarantees eventual convergence. However, it still suffers
from two serious problems. Firstly, since the completion of
synchronization is dominated by the slowest receiver, this
bandwidth-agnostic random selection might not remove the
bottleneck, thus bringing no improvement to the synchroniza-
tion with a high probability. Secondly, a larger proportion of
receivers involved in the synchronization generally leads to
fewer rounds of training to converge [9], [11], [12]. Orpheus
misses this opportunity of optimization since it only chooses
𝑝 receivers even if more receivers have sufficient bandwidth.

As a comparison, SELMCAST picks receivers based on the
global view of their available bandwidth and loads heuris-
tically. Despite the fact that the original selection problem
is hard to solve in theory, powered by insights stemming
from a model-based analysis of the problem, SELMCAST
is excellent in achieving efficient selections for both Bulk
Synchronous Parallel (BSP) and Stale Synchronous Parallel
(SSP) distributed training [4]. Extensive evaluations imply
that SELMCAST makes near-optimal selections, outperforming
Orpheus significantly, in terms of both the completion time of
synchronization or the utilization of computation resources,
and the average number of selected receivers.

Briefly, the contributions of this paper are four-fold:

1) A thorough analysis of the drawbacks of bandwidth-
agnostic random multicast receiver selection employed
by state-of-the-art solution.

2) A multiple-objective (mixed) integer linear program-
ming that describes the optimal receiver selection prob-
lem and motivates our algorithm design.

3) SELMCAST, a suite of O(𝑛3) bandwidth-aware re-
ceiver selection algorithms constructing efficient mul-
ticast topologies for the parameter synchronization of
both BSP and SSP peer-to-peer distributed training.

4) Extensive evaluations, showing that SELMCAST is ef-
fective, efficient, and near-optimal to accelerate data-
parallel peer-to-peer distributed learning built upon both
BSP and SSP.

Design Space and Limitation of SELMCAST. Theoreti-
cally, a larger multicast scale (saying 𝑝 for instance) generally
brings benefits to the converging speed (in terms of the number
of training rounds to converge) of peer-to-peer distributed
training, at the possible cost of slower completion of a round of
distributed training as more traffic volume would be introduced
for parameter synchronization [1], [11]. Note that, the wall
time of the training is the product of the number of involved
training rounds and the average time cost of each round. Thus,
for a given distributed training task, there is a sweet spot for
the choice of 𝑝. However, in practice, the convergence behav-
ior of distributed training can be affected by a lot of factors like
the structure of the model, the quality of the training dataset,
and the settings of various hyper-parameters including the

batch size, and learning rate [16], [17]; as far as we know, there
does not exist a clear model to describe the impacts of 𝑝 on
the converging speed thus the sweet spot of 𝑝 is case-by-case
and hard to track [11], [16]. Based on these facts, SELMCAST
aims to provide a generic multicast optimization service for
the parameter synchronization acceleration of various peer-to-
peer distributed model training tasks. At the core, SELMCAST
achieves this goal using best-effort optimization designs—It
tries to simultaneously 𝑖) accelerate the completion of each
synchronization thus improving the utilization of computing
resources, and 𝑖𝑖) enlarge the average scale of multicast.

In the rest of this paper, we first overview the background
and motivation in §II, then formulate the problem, analyze
it, and propose SELMCAST as a solution in §III. After that,
performance evaluation and related work discussion follow in
§IV and §V, respectively. Finally, §VI concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we first briefly overview the background of
distributed data-parallel training (§II-A), the synchronization
schemes of BSP and SSP (§II-B), and analyze the drawbacks
of state-of-the-art solutions for receiver selection (§II-C).

A. Distributed Data-Parallel Training

Nowadays, distributed data-parallel (DDP) training is
widely employed by machine learning algorithms to train
models over massive amounts of data within reasonable times.
In DDP training, the dataset is split across a group of workers,
who then train their local replicas of the model iteratively in
parallel. To ensure convergence, workers synchronize their up-
dated local models periodically. Regarding the implementation
of parameter synchronization, there are four types of basic
communication topology designs widely used today, namely,
stars (i.e., parameter server), trees, rings, and peer-to-peer,
respectively [3].

These designs have different properties in terms of latency,
traffic overhead, reliability, etc., targeting various application
scenarios. Among them, the peer-to-peer architecture is fully
decentralized, allowing workers to communicate with each
other directly, thus eliminating the single point of failure and
bottleneck. Currently, peer-to-peer parameter synchronization
is supported by many distributed machine learning frameworks
such as TensorFlow, PyTorch, MXNet, MALT, and Orpheus,
and used by numerous training algorithms [4], [14], [15].
In this paper, we focus on optimizing model (parameter)
synchronization for peer-to-peer distributed learning.

B. BSP and SSP

As for the consistency model of workers, current peer-to-
peer training frameworks like Orpheus [4] generally support
two types of convergence-guaranteed designs, namely BSP and
SSP [4], [18], [19], respectively. When BSP is employed, all
workers start the new round of training at the same time, then
synchronize their locally updated model parameters once all
workers complete the current round of training, and move to
the next round after the synchronization at the same time

2

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

0 50 100 150 200
p

0.1

0.2

0.3
Pr

ob
ab

ilit
y

of
 m

=
p

n=200

Fig. 1: The probability that a given worker happens to obtain
the balanced load (i.e., 𝑚 = 𝑝) is small; it decreases drastically
then increases slowly, with the growth of 𝑝.

again. Various recent studies have shown that the time it
takes to complete a round of training for workers is generally
skewed due to various reasons [20]. As a result, in BSP,
workers who complete early have to be idle to wait for these
stragglers, leading to a waste of time and low utilization
of computing resources. To address the impact of straggler
workers, the design of SSP is proposed [18], [19], as a relaxed-
yet-generalized version of BSP. Specifically, in SSP, a worker
is allowed to conduct synchronization and move to the next
round of training, once its training round is not larger than
the slowest worker too much; i.e., the gap is within a given
threshold like 𝑠𝑠𝑝. In practice, the value of 𝑠𝑠𝑝 can be either
pre-defined or dynamically tuned [21]. Following this, BSP
can be treated as the specific case with 𝑠𝑠𝑝 = 0.

C. Drawback of State-of-the-art Solutions

In peer-to-peer parameter synchronization, the communica-
tion overhead grows quadratically with the number of training
workers, as each worker would broadcast its updated model
values to all other nodes [3], [15]. Motivated by the fact that
the training of many models is able to tolerate some levels of
partial and staleness parameter synchronization, proposals like
Orpheus [4], Malt [15], and partial SFB [14] let each worker
send its new model to only a subset of the receivers, making
the traffic overheads controllable. This partial broadcast (a.k.a.,
multicast) does reduce the amount of traffic; however, the
completion time of synchronization might not change, because
the selection of receivers does not take the available bandwidth
of each worker into account. Take the design adopted by the
state-of-the-art Orpheus [4] as an example. Suppose that there
are 𝑛 workers training a model with data parallelism. At each
round of synchronization, every worker in Orpheus would
deliver its model to other 𝑝 (1 ≤ 𝑝 ≤ 𝑛−1) randomly selected
receivers, unaware of their available link capacities.

In theory, given a worker, the probability that it is selected as
the receivers of 𝑚 transfers can be calculated by Equation (1).

𝑃𝑟 (𝑚) = 𝐶𝑚
𝑛−1

(𝑝

𝑛 − 1

)𝑚 (
1 − 𝑝

𝑛 − 1

)𝑛−1−𝑚
(1)

If the randomization of receivers is conducted perfectly, each
worker will be selected as the receiver of 𝑝 multicast transfers
on average. Numerically, the probability that a given worker
happens to be involved in other 𝑝 transfers is small; and the

Multicast manager

Workers

Fig. 2: An overview of SELMCAST-optimized systems.

value first decreases drastically and then increases slowly, with
the growth of 𝑝. As the instance of 𝑛 = 200 in Figure 1
shows, when 𝑝 = 1, 𝑃𝑟 (𝑚 = 𝑝) = 𝑃𝑟 (1) ≈ 0.37; and once
𝑝 is in the range of [18, 181], the probability of achieving
the balanced load for a given worker is less than 0.1. These
results imply that even if all workers have the same available
link capacity, random receiver selection would lead to a
serious load imbalance. Even worse, in production, there might
be other applications hosted in the same cluster thus the
available link capacities that each worker could use are highly
skewed. This mismatch between the selection of receivers and
the available bandwidth makes the time costs of parameter
synchronization unoptimized with a very high probability.

Another drawback of random selection is that it selects only
𝑝 receivers even if there are abundant workers with sufficient
bandwidth. Recent studies [9], [11] show that the increase in
the proportion of workers generally yields a faster convergence
of the training. Thus, there is room for improvement.

III. SELECTIVE MULTICAST

As Figure 2 sketches, SELMCAST is a set of multicast
receiver selection algorithms running at a centralized manager
that help distributed training workers determine the commu-
nication topology for the multicast of their parameters. It
can be integrated into existing communication libraries with
engineering efforts and employed to enhance the performance
of distributed training frameworks like Orpheus [4], Malt [15],
and SFB [14], and other emerging peer-to-peer distributed
training systems [22]. Despite the implementation of SELM-
CAST relying on a logically centralized manager, it can handle
large-scale training clusters since the job of the SELMCAST
manager is minimal, i.e., determining the receivers for multi-
cast requests based on the observed network states. In practice,
the involved multicast might be implemented at either Layer
3 (i.e., L3 for short) or Layer 7 (i.e., L7 for short) by using
existing transport protocols [2], [23]. Accordingly, SELMCAST
should be expressive to support both L3 and L7 multicast
implementations at the same time.

During training, the SELMCAST manager collects the avail-
able bandwidth and remaining multicast task of each worker,
based on which, it computes efficient multicast topologies
incrementally, for each worker that becomes ready to synchro-
nization, to control their multicast transfers. Once selected by
SELMCAST, workers will launch either real multicast (L3) or
unicast (L7) transfers to conduct the delivery, according to
the underlying network [23], [24]. As being load-agnostic,

3

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

the random multicast adopted by [4] is likely to run into
load imbalance with high probability. Differently, the core
idea of SELMCAST is to choose receivers for newly active
parameter multicast transfers in a bandwidth-aware way, such
that it would take less time for the entire synchronization
to complete. We not only control the minimum number of
receivers for each multicast, but also ensure that each worker
always multicasts its parameters to all other workers at least
one time in every 𝑘 + 1 rounds of its synchronization, such
that eventual (global) synchronization is ensured. Moreover,
to accelerate the convergence, we try to let more workers par-
ticipate in the multicast, in case their joins would not postpone
the completion of the entire multicast too much. Given that
asynchronous parallel (ASP) can be treated as the specific
case of SSP (i.e., 𝑠𝑠𝑝 = +∞), SELMCAST can be extended to
support ASP-based peer-to-peer distributed training and other
advanced designs relying on mixed designs [25].

In the rest of this section, we first analyze the optimal
receiver selection problem formally (§III-A), among which,
the used notations are summarized in Table I; then based on the
findings, we further design receiver algorithms for peer-to-peer
BSP (§III-B) and SSP (§III-C) training in detail, respectively.
As we will show, both algorithms could be implemented as
O(𝑛3), making SELMCAST very efficient.

A. Problem Analysis

Now, we formally analyze the selection problem for BSP
training in theory, which provides insights on designing heuris-
tic algorithms for both BSP (§III-B) and SSP (§III-C) training.

1) Math Formulation: Given the non-blocking design of
modern data center networks [23], [26], [27], we abstract
the entire data center network out as one big switch as
Figure 2 shows, in which congestions only occur at ingresses
and egresses. Without loss of generality, we assume that the
training task involves 𝑛 workers (denoted by 𝑁), and denote
the remaining bandwidth of the abstract switch on ingress 𝑖

and egress 𝑗 that the distributed training could use as 𝑏𝐼
𝑖

and
𝑏𝐸
𝑗

, respectively. To perform parameter synchronization, the
𝑖-th sender would deliver its newest model to at least 𝑝𝑖 other
workers. Let the binary variable of 𝑥𝑖, 𝑗 denote whether the 𝑗-th
worker is selected as the receiver of the multicast task rooted at
worker 𝑖 in this round of synchronization, or not; then, we have
constraints (2) and (3). Note that there is no need to explicitly
transmit the results of worker 𝑖 to itself via the network. Thus,
we define that 𝑥𝑖,𝑖 is always 0 for ∀𝑖 ∈ 𝑁 , i.e., (4). For ease
of representation, we further let 𝑋𝑖 be {𝑥𝑖, 𝑗 : 𝑗 ∈ 𝑁} and 𝑋

be ∪𝑖∈𝑁 𝑋𝑖 , respectively.

𝑥𝑖, 𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝑁 × 𝑁 (2)∑︁
𝑗∈𝑁

𝑥𝑖, 𝑗 ≥ 𝑝𝑖 , ∀𝑖 ∈ 𝑁 (3)

𝑥𝑖,𝑖 = 0, ∀𝑖 ∈ 𝑁 (4)

Moreover, to guarantee convergence, each worker should
synchronize with all other workers at least once every 𝑘 + 1
round. Let 𝐷 be the set of worker pairs out-of-model delivery

in the last 𝑘 rounds. For (𝑖, 𝑗) ∈ 𝐷, the corresponding 𝑥𝑖, 𝑗
would be enforced to 1 as Eq.(5) shows.

𝑥𝑖, 𝑗 = 1, (𝑖, 𝑗) ∈ 𝐷 (5)

The delivery of each worker’s model is a typical one-to-
many transfer that can be carried out with techniques like
L3 IP multicast [23]. If the underlying network does not
support IP multicast, workers could alternatively launch a
group of concurrent unicast transfers for all sender-receiver
pairs to achieve the multicast at the application layer (i.e.,
L7). Note that, like the case of coflow [26], [28], a parameter
synchronization is treated as done if and only if all the selected
deliveries have finished. Let 𝑣𝑖 be the original volume for the
multicast task rooted at worker 𝑖, 𝑣𝑖, 𝑗 be the remaining volume
that worker 𝑖 has not delivered to worker 𝑗 , and 𝑡 be the time
that all workers need to complete this amount of data. Then, in
the case of BSP training, just enforcing all involved transfers to
finish at the same time (i.e., 𝑡) would not harm the completion
of the entire synchronization. To avoid congestion, we would
have constraints (6) and (7) for involved 𝑥𝑖, 𝑗s and 𝑣𝑖, 𝑗s. Here,
𝑠𝑖 is either max 𝑗∈𝑁 𝑣𝑖, 𝑗𝑥𝑖, 𝑗 or

∑
𝑗∈𝑁 𝑣𝑖, 𝑗𝑥𝑖, 𝑗 (≥ 𝑝𝑖 ≥ 1), as (9)

denotes, respecting whether L3 multicast is employed or not.
𝑠𝑖

𝑡
≤ 𝑏𝐼𝑖 , ∀𝑖 ∈ 𝑁 (6)∑︁

𝑖∈𝑁

𝑣𝑖, 𝑗𝑥𝑖, 𝑗

𝑡
≤ 𝑏𝐸𝑗 , ∀ 𝑗 ∈ 𝑁 (7)

𝑡 > 0 (8)

𝑠𝑖 = 𝑓 (𝑋𝑖 , 𝑉𝑖) =
{

max 𝑗∈𝑁 𝑣𝑖, 𝑗𝑥𝑖, 𝑗 for L3 multicast∑
𝑗∈𝑁 𝑣𝑖, 𝑗𝑥𝑖, 𝑗 for L7 multicast

(9)

Obviously, inequalities (6) and (7) can be rewritten as the
linear inequalities (10) and (11), respectively.

𝑡 ≥ 1
𝑏𝐼
𝑖

𝑠𝑖 , ∀𝑖 ∈ 𝑁 (10)

𝑡 ≥ 1
𝑏𝐸
𝑗

∑︁
𝑖∈𝑁

𝑣𝑖, 𝑗𝑥𝑖, 𝑗 , ∀ 𝑗 ∈ 𝑁 (11)

Then, the optimization receiver selection problem for BSP
training can be formulated as a multi-objective mixed-integer
linear programming (MILP) as (12) shows.

Minimize
©­«𝑡,−

∑︁
𝑥𝑖, 𝑗 ∈𝑋

𝑥𝑖, 𝑗
ª®¬ : (2) − (5), (8) − (11)

 (12)

2) Hardness: As the reduction of the completion is more
important than the enlargement of the multicast scale, the
multi-objective mixed integer programming specified by (12)
can be solved with lexicographic optimization: i.e., 1) first
computing the optimal value of 𝑡, saying 𝑡∗ for instance, by
ignoring the second objective; and then 2) minimizing the
second objective soloing by adding the requirement of 𝑡 ≤ 𝑡∗

as a new constraint. Unfortunately, these two sub-problems
are hard to solve. For example, as Theorem 1 specifies,
even selecting receivers for these multicast tasks to minimize
their completion time is NP-hard in theory. Thus, to obtain
an efficient and effective communication topology for the

4

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

TABLE I: Notations used in both the problem analysis (§III-A) and algorithm designs (§III-B, §III-C)

Notation Description
𝑖, 𝑗 , 𝑘, 𝑙 indexes of ingresses, egresses, workers, or multicast tasks
𝜅 the index of the worker newly ready to start to multicast
𝑁 the set of all workers
𝐺 the set of already started multicast tasks
𝑝𝑖 the multicast rooted at worker 𝑖 needs 𝑝𝑖 receivers at least
𝑣𝑖 the original volume of the multicast task rooted at worker 𝑖
𝑣𝑖, 𝑗 the remaining volume of the transfer from worker 𝑖 to 𝑗

𝑐𝑖, 𝑗 the round that worker 𝑖 has not select 𝑗 as one of its receiver
𝐷 a set of worker pairs that must be selected for delivery
𝑏𝐼
𝑖

the available bandwidth on ingress 𝑖

𝑏𝐸
𝑖

the available bandwidth on egress 𝑖

𝜏𝑖 the time that the SSP training worker 𝑖 would wait if its multicast task is completed immediately
𝜂 if 𝑣𝑖, 𝑗 < 𝜂𝑣𝑖 , worker 𝑗 would be selected as the receiver of 𝑖 in this round of synchronization
𝑥𝑖, 𝑗 1-0 variable, indicating whether worker 𝑖 is determined to sends to 𝑗

𝑦𝑖, 𝑗 1-0 variable, indicating whether worker 𝑖 is temporarily selected to sends to 𝑗

𝑠𝑖 either max 𝑗: 𝑗≠𝑖 𝑥𝑖, 𝑗 or
∑

𝑗: 𝑗≠𝑖 𝑥𝑖, 𝑗 ; see its definition of (9)
𝑡 variable, indicating the remaining time to complete the multicast
𝑡𝑖 the estimated deadline for the multicast rooted at worker 𝑖 to complete, under the basic selection

multicast of model parameters, we design heuristic algorithms
based on the problem structure.

Theorem 1. For a group of multicast tasks, the optimization
problem of selecting no less than 𝑝 receiver(s) for each of them
to minimize their completion time is theoretically NP-hard.

Proof. We prove the NP-hardness of the optimization problem
specified in Theorem 1 by showing that it can be reduced from
the corresponding decision problem of “determine whether
there exists a receiver selection plan making their completion
time no more than a given value 𝑡”, which is NP-hard.

Obviously, for any instance of the above-mentioned decision
problem, we can transform it to: 𝑖) first compute the optimal
result of the optimization problem, saying 𝑡𝑜 for example,
𝑖𝑖) then check whether 𝑡𝑜 ≤ 𝑡 is satisfied or not. That is to say,
the decision problem reduces to the optimization problem, and
thus the former is no harder to solve than the latter [29].

Now, we prove the NP-hardness of the above decision
problem, by performing a reduction from the set-partition
problem, which is NP-hard since the well-known NP-complete
subset sum problem reduces to it [29], [30]. Generally, the set-
partition problem can be defined as “determine whether it is
possible to partition a set of positive integer numbers, saying
𝑆 for instance, into two sets 𝐴 and �̄� = 𝑆 \ 𝐴, such that∑

𝑥∈𝐴
∑
𝑥 =

∑
𝑥∈ �̄� 𝑥” [29], [30]. Given an instance in which 𝑆

involves 𝑛 elements, namely 𝑣1, · · · , 𝑣𝑛, respectively, we can
transform it to an instance of the above decision problem as
follows. By appending any two positive values 𝑣𝑛+1 and 𝑣𝑛+2,
we obtain a sequence of 𝑛 + 2 numbers. Consider a cluster
containing 𝑛 + 2 workers (labeled 𝑤1, · · · , 𝑤𝑛+2), where the
𝑖-th worker must multicast its local data with the volume of 𝑣𝑖
to any other 𝑛 selected workers; all workers have sufficient
uplink bandwidth; the first 𝑛 workers also have sufficient
downlink bandwidth, but the last two (i.e., 𝑤𝑛+1 and 𝑤𝑛+2)
only have the same download bandwidth of 𝑏. Note that the
slowest transfer dominates the completion (i.e., makespan)
time of a group of multicast tasks. To minimize the completion
time, workers 𝑤𝑛+1 and 𝑤𝑛+2 can directly select elements in
𝑆 = {𝑤1, · · · , 𝑤𝑛} as their receivers; for each of the first 𝑛

workers, saying 𝑤 𝑗 for instance, besides selecting 𝑆 \ {𝑤 𝑗 } as

the receivers, it has to select either 𝑤𝑛+1 or 𝑤𝑛+2 as its receiver
to meet the requirement of sending local data to 𝑛 others. Let
𝐴 and �̄� be the sets of workers that select 𝑤𝑛+1 and 𝑤𝑛+2,
respectively; then, we have 𝑆 = 𝐴∪ �̄� and 𝐴∩ �̄� = ∅; and the
final completion time is max(∑𝑥∈𝐴 𝑥,

∑
𝑥∈�̄� 𝑥)

𝑏
≥

∑
𝑥∈𝑆 𝑥

2𝑏 . So far,
we have transformed the problem of “partition 𝑆 into two sets
equally” into the problem of “determine whether it is possible
to find a receiver selection plan yielding the completion time
of 𝑡 =

∑
𝑥∈𝑆 𝑥

2𝑏 ”. Thus, Theorem 1 is proved. □

3) Insight: For the above multi-objective optimization
problem, a useful design trick is to first minimize the comple-
tion time 𝑡, and then fix the value of 𝑡 to maximize the value
of

∑
𝑥𝑖, 𝑗 ∈𝑋 𝑥𝑖, 𝑗 , i.e., selecting as many receivers as possible.

For the minimization of 𝑡, if the constraint of (10) is relaxed,
the optimization objective can be rewritten as

Minimize max
𝑗∈𝑁

1
𝑏𝐸
𝑗

∑︁
𝑖∈𝑁

𝑣𝑖, 𝑗𝑥𝑖, 𝑗 (13)

which gives us the guideline of selecting receivers for each
multicast request in a weighted load-balanced way, yielding
SELMCAST. In short, SELMCAST involves two passes: 𝑖) it
first selects receivers to meet the minimum scale requirement
of each multicast, respecting the goal of minimizing 𝑡 (i.e.,
Basic Selection); then, 𝑖𝑖) to make full use of available link
capacities, it extends each request’s receiver set, provided that
including these receivers would not increase their completion
times (i.e., Pareto Improvement).

B. Receiver Selections for BSP Training

In BSP, workers would move to the next round of train-
ing only when all the triggered multicast tasks have been
completed. Thus, SELMCAST first selects as few workers as
possible to meet the basic requirements (i.e., Basic Selection);
then based on this basic selection, it estimates the completion
time of the parameter synchronization, and tries to select as
many receivers as possible, provided the extension of receivers
would not hurt the completion time (i.e., Pareto Improvement).

5

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

Algorithm 1 SELMCAST for BSP Training

Require: 𝑁, 𝐷, {𝑏𝐼
𝑖
}, {𝑏𝐸

𝑖
}, {𝑝𝑖}, {𝑣𝑖}, {𝑐𝑖, 𝑗 }

Ensure: selection plan {𝑥𝑖, 𝑗 }
/*Initialization*/

1: for each (𝑖, 𝑗) ∈ 𝑁 × 𝑁 do
2: 𝑥𝑖, 𝑗 ← 0; 𝑣𝑖, 𝑗 ← 𝑣𝑖
3: end for

/*Basic Selection*/
4: for each (𝑖, 𝑗) ∈ 𝐷 do ⊲ for consistency
5: 𝑥𝑖, 𝑗 ← 1
6: end for
7: 𝐿 ← sort {𝑖 ∈ 𝑁} in non-increasing order of

∑
𝑗: 𝑗≠𝑖 𝑥𝑖, 𝑗

8: for each 𝑖 ∈ 𝐿 do
9: 𝑞 ← 𝑝𝑖 −

∑
𝑗: 𝑗≠𝑖 𝑥𝑖, 𝑗 ⊲ need 𝑞 receivers more

10: 𝐽 ← Get the 𝑞-lightest loaded receivers,
where receiver 𝑗’s load is

𝑣𝑖+
∑

𝑙:𝑙≠ 𝑗 𝑣𝑙, 𝑗 𝑥𝑙, 𝑗

𝑏𝐸
𝑗

11: for each 𝑗 ∈ 𝐽 do
12: 𝑥𝑖, 𝑗 ← 1
13: end for
14: end for

/*Pareto Improvement*/
15: 𝑡 ← 0 ⊲ estimated completion time
16: for each 𝑖 ∈ 𝑁 do ⊲ estimate the completion time
17: 𝑠𝑖 ← 𝑓 ({𝑥𝑖, 𝑗 : 𝑗 ∈ 𝑁}, {𝑣𝑖, 𝑗 : 𝑗 ∈ 𝑁}) ⊲ via (9)
18: 𝑟𝑖 ←

∑
𝑙:𝑙≠𝑖 𝑣𝑙,𝑖𝑥𝑙,𝑖

19: 𝑡 ← max(𝑡, 1
𝑏𝐼
𝑖

𝑠𝑖 ,
1
𝑏𝐸
𝑖

𝑟𝑖)
20: end for
21: 𝐶 ←sort {(𝑖, 𝑗) : 𝑥𝑖, 𝑗 =0, 𝑖 ≠ 𝑗} in non-increasing of 𝑐𝑖, 𝑗
22: for each (𝑖, 𝑗) ∈ 𝐶 do ⊲ select more receivers if possible
23: 𝑠𝑖 ← 𝑓 ({𝑥𝑖, 𝑗 : 𝑗∈𝑁}, {𝑣𝑖, 𝑗 : 𝑗∈𝑁}), provided 𝑥𝑖, 𝑗 ← 1
24: 𝑟 𝑗 ←

∑
𝑙:𝑙≠ 𝑗 𝑣𝑙, 𝑗𝑥𝑙, 𝑗 , provided 𝑥𝑖, 𝑗 ← 1

25: if 𝑡 ≥ 1
𝑏𝐼
𝑖

𝑠𝑖 and 𝑡 ≥ 1
𝑏𝐸
𝑗

𝑟 𝑗 then
26: 𝑥𝑖, 𝑗 ← 1
27: end if
28: end for

1) Basic Selection: Lines 4-14 in Algorithm 1 show the
design of how SELMCAST selects receivers to satisfy the basic
requirements of receiver number for each parameter multicast
request. Suppose that beyond selecting receivers to meet the
requirement of 𝐷 (Lines 4-6), multicast 𝑖 needs 𝑞 receivers
more (Line 9). Motivated by (13), it first selects the 𝑞-lightest
loaded egresses as receivers provided the corresponding re-
ceiver was selected as the receiver (Line 10), and updates
the corresponding 𝑥𝑖, 𝑗 (Line 12). In consideration of that the
more determined receivers a multicast has, the less flexibility
it would have in selecting its receivers, Algorithm 1 processes
only these unstarted multicast requests, in non-increasing order
of their determined receivers (Lines 7, 8).

2) Pareto Improvement: It is obvious that the selections
made by the basic selection of Algorithm 1 do not guarantee
work-conservation. In other words, there is still remaining
bandwidth that could admit more receivers. To address this
issue, we further design a Pareto improvement scheme as
Lines 15-28 in Algorithm 1 shows. Basically, it first estimates
the least completion time that transfers (either multicast or

unicast depending on the underlying network) would obtain
(Line 15-20). Then, to pursue the goal that the selection
of extension receivers would not hurt the completion of all
requests, it repeatedly admits a new receiver, provided there
is enough remaining bandwidth on both the involved ingress
and egress (Line 33). Given the fact that some worker pairs
might not have been selected to synchronize for rounds of
training, Algorithm 1 checks worker pairs in non-increasing
order of the number of their un-selected rounds (Line 21).

C. Receiver Selections for SSP Training

Different from BSP, each worker following SSP can send
its local training results to other receivers immediately and
then move to the next round of training if the gap between its
local training round and the smallest one among all workers is
less than the pre-defined threshold 𝑘 . As a result, all workers
would not trigger multicast at the same time. To deal with all
the above facts and make efficient usage of the bandwidth, as
Algorithm 2 specifies, the designs that SELMCAST employs
for both the Basic Selection and Pareto Improvement are a
little bit different from those specified in Algorithm 1.

In short, during SSP training, workers would trigger Al-
gorithm 2 to conduct preemptive worker selections in an
online manner. Assume that a group of workers 𝐺 is currently
conducting the multicasting using the plan of {𝑥𝑖, 𝑗 }, and the
remaining volume of the sub-task that worker 𝑖 delivering to
worker 𝑗 is 𝑣𝑖, 𝑗 . For ∀𝑖 ∈ 𝑁 \ 𝐺,∀ 𝑗 ∈ 𝑁 , we have 𝑥𝑖, 𝑗 = 0.
Then, a new worker 𝜅 is ready for model delivery. To admit
it and optimize the delivery, we might preemptively disable
some of the receivers for tasks belonging to 𝐺.

In SSP, to simplify the management of data transmission, we
assume that, for each multicast task, if a worker is excluded
from the receiver set, either at the beginning or during the
delivery for the optimization of other newly launched multicast
tasks, it would not be re-selected to receive data from the
same sender in this round of synchronization again. Following
this design, the updated receivers for multicast task rooted
at worker 𝑖 are selected from workers whose 𝑥𝑖, 𝑗s are ones
(e.g., Lines 8, 16, and 29). Thus, at the very beginning (i.e.,
Lines 1-3), for the newly ready worker 𝜅, we set 𝑥𝑖, 𝑗 = 1 for
∀ 𝑗 ∈ 𝑁 \ {𝜅}. And as Lines 5-7 shows, during the procedure,
we use {𝑦𝑖, 𝑗 } to cache the new receiver selection plans, which
are used to update the value of {𝑥𝑖, 𝑗 } at the end (Lines 37-39).

1) Basic Selection: Compared to Algorithm 1, the basic
selection of Algorithm 2 involves three main differences as
Lines 8-20 show. Firstly, for the multicast task rooted at worker
𝑖, only workers whose 𝑥𝑖, 𝑗 = 1 might be selected as the re-
ceiver. Secondly, to avoid the waste of bandwidth, if worker 𝑗

has received a given proportion of the data from worker 𝑖, i.e.,
the amount of remaining volume is less than 𝜂𝑣𝑖 , this worker
would be always selected in this round of synchronization.
Here, 𝜂 is a tunable parameter, and 𝜂 = 0.75 has shown a
good performance in our evaluations (§II). Thirdly, regarding
the order of processing multicast tasks, they are checked in
non-increasing order of their estimated blocking times: {𝜏𝑖}.
Here, the value of 𝜏𝑖 indicates the time that worker 𝑖 would still
need to wait if its multicast task were completed immediately,

6

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

Algorithm 2 SELMCAST for SSP Training

Require: 𝑁, 𝐷, 𝐺, 𝜅, 𝜂, {𝑏𝐼
𝑖
}, {𝑏𝐸

𝑖
}, {𝑝𝑖}, {𝑣𝑖}, {𝜏𝑖},

{𝑥𝑖, 𝑗 }, {𝑣𝑖, 𝑗 }, {𝑐𝑖, 𝑗 }
Ensure: updated selection plan {𝑥𝑖, 𝑗 }; updated 𝐺

/*Initialization*/
1: for each 𝑗 ∈ 𝑁 \ {𝜅} do
2: 𝑥𝜅, 𝑗 ← 1; 𝑣𝜅, 𝑗 ← 𝑣𝑖
3: end for
4: 𝐺 ← 𝐺 ∪ {𝜅}
5: for each (𝑖, 𝑗) ∈ 𝑁 × 𝑁 do
6: 𝑦𝑖, 𝑗 ← 0
7: end for

/*Basic Selection*/
8: for each (𝑖, 𝑗) ∈ {(𝑖, 𝑗) : 𝑥𝑖, 𝑗 = 1} do ⊲ for consistency
9: if (𝑖, 𝑗) ∈ 𝐷 or 𝑣𝑖, 𝑗 < 𝜂𝑣𝑖 then

10: 𝑦𝑖, 𝑗 ← 1
11: end if
12: end for
13: 𝐿 ← sort tasks in 𝐺 in non-decreasing order of their {𝜏𝑖}
14: for each 𝑖 ∈ 𝐿 do
15: 𝑞 ← 𝑝𝑖 −

∑
𝑗: 𝑗≠𝑖 𝑦𝑖, 𝑗 ⊲ need 𝑞 receivers more

16: 𝐽 ← the 𝑞-lightest loaded receivers from { 𝑗 : 𝑥𝑖, 𝑗 =1},
where receiver 𝑗’s load is

𝑣𝑖, 𝑗+
∑

𝑙:𝑙≠ 𝑗 𝑣𝑙, 𝑗 𝑦𝑙, 𝑗

𝑏𝐸
𝑗

17: for each 𝑗 ∈ 𝐽 do
18: 𝑦𝑖, 𝑗 ← 1
19: end for
20: end for

/*Pareto Improvement*/
21: for each 𝑖 ∈ 𝐿 do ⊲ estimated completion times
22: 𝑠𝑖 ← 𝑓 ({𝑦𝑖, 𝑗 : 𝑗 ∈ 𝑁}, {𝑣𝑖, 𝑗 : 𝑗 ∈ 𝑁}) ⊲ via (9)
23: 𝑡𝑖 ← max(𝜏𝑖 , 1

𝑏𝐼
𝑖

𝑠𝑖)
24: for each 𝑗 ∈ { 𝑗 : 𝑦𝑖, 𝑗 = 1} do
25: 𝑟 𝑗 ←

∑
𝑙:𝑙≠ 𝑗 𝑣𝑙, 𝑗 𝑦𝑙, 𝑗

26: 𝑡𝑖 ← max(𝑡𝑖 , 1
𝑏𝐸
𝑗

𝑟 𝑗)
27: end for
28: end for
29: 𝐶 ← sort {(𝑖, 𝑗) : 𝑥𝑖, 𝑗 =1, 𝑦𝑖, 𝑗 =0} in non-increasing of 𝑐𝑖, 𝑗

30: for each (𝑖, 𝑗) ∈ 𝐶 do ⊲ select more receivers if possible
31: 𝑠𝑖 ← 𝑓 ({𝑦𝑖, 𝑗 : 𝑗∈𝑁}, {𝑣𝑖, 𝑗 : 𝑗∈𝑁}), provided 𝑦𝑖, 𝑗 ← 1
32: 𝑟 𝑗 ←

∑
𝑙:𝑙≠ 𝑗 𝑣𝑙, 𝑗𝑥𝑙, 𝑗 , provided 𝑦𝑖, 𝑗 ← 1

33: if 𝑡𝑖 ≥ 1
𝑏𝐼
𝑖

𝑠𝑖 and 𝑡𝑖 ≥ 1
𝑏𝐸
𝑗

𝑟 𝑗 then
34: 𝑦𝑖, 𝑗 ← 1
35: end if
36: end for
37: for each (𝑖, 𝑗) ∈ 𝑁 × 𝑁 do
38: 𝑥𝑖, 𝑗 ← 𝑦𝑖, 𝑗
39: end for

under the current settings of SSP. It is generally 0, but would
be the estimated completion time of the straggler, in the case
that this worker is the bellwether and the gap between their
training rounds is larger than the threshold of SSP.

2) Pareto Improvement: Lines 21-36 in Algorithm 2 sketch
the procedure of Pareto improvement. Compared with the case
of BSP, the main difference for SSP is that SELMCAST em-

ploys a distinct 𝑡𝑖 to estimate the “deadline” for the completion
of each multicast task under the basic selection (Lines 21-
28) (in BSP, all (sub)tasks share the same 𝑡). Then, based
on this, SELMCAST would try to select as many receivers as
possible, provided this “deadline” is still met (Lines 30-36).
Following this, the selection of receivers is optimized; during
the delivery, strict prioritized yet work-conserving bandwidth
allocations are needed for concurrent transfers.

D. Time Complexities of Proposed Algorithms

Now, we analyze the worst-case time complexity of both
algorithms. Algorithm 1 is made up of three parts namely
initialization, basic selection, and Pareto improvement, re-
spectively. The initialization of 𝑥𝑖, 𝑗s can be conducted with
the worst-time complexity of 𝑂 (𝑛2). And the core of basic
selection is to sort workers according to their

∑𝑥𝑖, 𝑗

𝑗: 𝑗≠𝑖s and
determine their receivers in order. For each multicast request,
the 𝑞-lightest loaded receivers would be selected within 𝑂 (𝑛2).
Thus, the entire basic selection can be completed within
𝑂 (𝑛3). Regarding Pareto improvement, its worst-case time
complexity is 𝑂 (𝑛4) since both the sort of {(𝑖, 𝑗) : 𝑥𝑖, 𝑗 =

0, 𝑖 ≠ 𝑗} and the selection of receivers followed can be done
within 𝑂 (𝑛4). Putting the three parts together, the worst-case
time complexity of Algorithm 1 is 𝑂 (𝑛4). The workflow of
Algorithm 2 is quite similar to that of Algorithm 1. Following
a similar analysis, we would obtain that its worst-case time
complexity does not exceed 𝑂 (𝑛4) as well.

IV. PERFORMANCE EVALUATION

Now, we evaluate SELMCAST through simulations. As it
is designed to provide generic acceleration services for the
parameter synchronization of peer-to-peer distributed training,
we mainly assess SELMCAST from a perspective of system
optimization. Extensive results indicate that SELMCAST is
near-optimal and scalable. Using optimized designs, SELM-
CAST not only reduces the completion time of parameter
synchronization for BSP training, or equivalently, improves the
average NPU utilization for SSP training, but also increases
the number of receivers very efficiently in both cases.

A. Methodology

1) Simulator and baselines: To study the performance of
SELMCAST in detail, like the recent works [10], [28], we
develop a flow-level, discrete-event network simulator with
Python 3, which precisely simulates the network behavior
of peer-to-peer distributed training systems under various
scheduling schemes. We mainly use Orpheus, i.e., selecting
receivers randomly [4], and Optimal, i.e., selecting receivers
following the results of model (12) solved using lexicographic
optimization, as baselines. By default, consistent with today’s
network design, we assume that concurrent transfers share
link capacities fairly following the principle of per-flow max-
min fairness [10]. And when the multicast is implemented at
the network layer (i.e., L3), its throughput is determined by
the slowest receiver. In summary, we consider the following
schemes and scenarios.

7

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

• SELMCAST (BSP, SSP): multicast receivers are deter-
mined using either Algorithms 1 or 2, respecting whether
BSP or SSP training is employed;

• Orpheus (BSP, SSP): for both BSP and SSP training,
multicast receivers are randomly selected, following [4].
Note that, to guarantee the convergence of partial syn-
chronization, the operator might want a worker to send
to all other workers at least once every 𝑘 rounds of local
training. To support this, when determining receivers for
the multicast task rooted at 𝑠, we modify Orpheus to:
𝑖) first selects all workers that have not been multicasted
by 𝑠 in the last 𝑘 rounds; then 𝑖𝑖) randomly selects
more receivers if the number of selected workers has not
reached the requirement of 𝑝.

• Optimal (BSP): for each round of BSP synchronization,
multicast receivers are determined following the results
of model (12), solved with Lexicographic optimization.

2) Workloads and metrics: In tests, we consider that 𝑛

workers, networked with an abstract non-blocking switch [23],
[27], are training a model collectively. To synchronize the
intermediate-trained results, each worker would multicast its
result to other 𝑝 colleagues (by default, in our tests, 𝑝 = 0.3).
Besides the training, there might be other services hosted on
the same cluster, and the shared network bandwidth is man-
aged proportionally. Accordingly, we assume that the available
bandwidth of each egress and ingress on the switch that the
training can use is �̄�(1 + 𝜆𝑥) and �̄�𝜇(1 + 𝜆𝑥), respectively.
Here, 𝑥 is a random value following the uniform distribution
of 𝑈 [−1; 1]; 𝜆 (0 ≤ 𝜆 < 1) and 𝜇 (𝜇 > 0) are two tunable
parameters, controlling the bound of bandwidth variation, and
the relative bandwidth of the ingress over that of the ingress,
respectively. As specified in Section I, our proposal aims to
provide a general communication optimization scheme for
peer-to-peer distributed training. Thus, we use system-related
metrics like the average completion time of a round of syn-
chronization, the number of receivers involved in each round
(i.e., scale), and the utilization of the computation resources for
performance evaluations. Given that the convergence behavior
of distributed training is jointly determined by a lot of factors
and varies with tasks [9], [17], the above metrics are more
qualified than metrics like the speed of convergence.

• Workers in BSP training would iterate to the next round of
training at the same time. Thus, we mainly assess selec-
tion schemes SELMCAST, Optimal, and Orpheus by the
quality of multicast topology they conduct in terms of two
metrics. The primary is completion time, i.e., the comple-
tion time normalized by the ideal completion time that the
involved synchronization would take to complete; and the
secondary is average multicast scale, i.e., the number of
selected receivers per multicast task, normalized by the
total number of workers. Using these normalized metrics,
the settings of both the model size and the averaged link
bandwidth �̄� are insignificant. Besides, we also test the
computation time to study their scalabilities, in terms
of the computation time each scheme would take. By
default, we assume that each worker would multicast their
results to other 𝑝 workers, and let 𝜆 = 0.5, 𝜇 = 1, 𝑛 = 200,

0 1000 2000
0.00

0.02

0.04

0.06

0.08
LSTM

mean

1000 2000
0.00

0.05

0.10

0.15

0.20

Transformer
mean

1000 1500
0.0

0.2

0.4

0.6

0.8
ResNet-50

mean

Pr
op

or
tio

n

Runtime of a round of training computation (ms)

Fig. 3: The distributions of the runtime of a round of training
computation for three types of workloads reported by [20].
Runtimes here are re-scaled to have the mean value of 1000ms.

and 𝑝 = 0.3𝑛. When the multicast is implemented at L3,
congestion would mainly occur at egresses. To study the
algorithm performances under a situation where ingresses
also become the bottlenecks, we also set 𝜇 = 1

𝑝
for L3

multicast in some tests.
• In the case of SSP, we consider three types of training

workloads as Figure 3 shows, i.e., workers are training an
LSTM model using the UCF101 dataset, a Transformer
model using the WMT16 dataset, and a ResNet-50 (CNN)
model using the ImageNet dataset, respectively [20].
Hereafter, they are referred to as LSTM, Transformer, and
ResNet-50 for short. We directly use the distribution of
the runtime that it would take for a worker to complete
a round of training, reported by [20], and re-scale the
values such that their average approximates 1000ms, to
drive the simulation. Motivated by real-world training
configurations, by default, we let �̄� = 40Gbps, and
assume that the size of data to multicast is 200MB.
For different multicast management schemes, besides the
average multicast scale of all multicast tasks, we mainly
use the average NPU utilization, i.e., the average of
workers’ utilizations of computation resources, defined
by the ratio of their total computation time to their total
training time, as the metric. Basically, given the same or
larger multicast scales, the higher computation utilization
generally means that the training would converge faster,
with both a smaller training round and time cost. By
default, we consider that 𝜂 = 0.75, both the threshold
of SSP and the value of 𝑘 are 4, and observe the iterative
training in 10 minutes to compute the performance. We
have observed consistent results under different cluster
scales, and the results reported in this paper are based on
the case of 𝑛 = 50.

For each parameter setting, we conduct 10 trials to compute
and report the mean values. When investigating the time costs
of the algorithms, to filter out the possible noise introduced
by the OS dynamics, we report the median values instead.

B. Performance for BSP Training

1) Efficiency: Figure 4 shows the computation time costs,
normalized synchronization completion times, and average
receiver numbers achieved by the schedules of SELMCAST,
Orpheus, and Optimal, respectively, where the scale of the

8

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

50 75 100 125 150 175 200

Cluster Scale (n)

0

10

20

C
om

p
u

ta
ti

o
n

T
im

e
(s

)

L3 Multicast

SelMcast

Orpheus

Optimal

(a) [Median] Efficiency (L3)

50 75 100 125 150 175 200

Cluster Scale (n)

0.0

0.2

0.4

0.6

C
om

p
u

ta
ti

o
n

T
im

e
(s

)

L7 Multicast

SelMcast

Orpheus

Optimal

(b) [Median] Efficiency (L7)

50 75 100 125 150 175 200

Cluster Scale (n)

1.0

1.2

1.4

1.6

1.8

C
om

p
le

ti
on

T
im

e
(N

o
rm

al
iz

ed
) L3 Multicast

SelMcast

Orpheus

Optimal

(c) Completion time (L3)

50 75 100 125 150 175 200

Cluster Scale (n)

1.3

1.4

1.5

1.6

1.7

C
om

p
le

ti
on

T
im

e
(N

o
rm

al
iz

ed
) L7 Multicast

SelMcast

Orpheus

Optimal

(d) Completion time (L7)

50 75 100 125 150 175 200

Cluster Scale (n)

0.290

0.295

0.300

0.305

0.310

A
v
g.

M
u

lt
ic

a
st

S
ca

le

L3 Multicast

SelMcast

Orpheus

Optimal

(e) Avg. Multicast scale (L3)

50 75 100 125 150 175 200

Cluster Scale (n)

0.300

0.325

0.350

0.375

0.400

A
v
g.

M
u

lt
ic

a
st

S
ca

le

L7 Multicast

SelMcast

Orpheus

Optimal

(f) Avg. Multicast scale (L7)

Fig. 4: [BSP] SELMCAST is very efficient to achieve near-
optimal performances, in terms of both the normalized com-
pletion times and average multicast scales. Note that the results
of SELMCAST generally overlap with those of Optimal.

training cluster increases from 50 to 200 workers. These
tests are conducted upon a Ubuntu PC equipped with one
AMD Ryzen 5 (3500X 6-Core) CPU Processor and two 8G
DDR4 RAM cards. Both SELMCAST and Orpheus only use a
single core while the Gurobi-powered Optimal will take over
all available cores for parallel computation. To ensure that
Optimal would finish within a reasonable time, its time limit
of model solving is set to 60 seconds. As Figures 4a and 4b
show, the (median) computation time costs of Optimal grow
super-linearly for both L3 and L7 multicast tasks. For instance,
in the case of selecting L3 multicast receivers for 200 workers,
the median computation time of Optimal is larger than 27s.
Results also show that 𝑖) the mathematical model of selecting
receivers for L7 multicast is much simpler to solve than that
of L3 multicast, and 𝑖𝑖) the speed of Optimal highly depends
on the problem instance, reaching the limit of 60s in some
cases. By contrast, both SELMCAST and Orpheus are fast,
finishing the computations within tens of milliseconds with a
single core.

2) Completion Time: Regarding the completion times of se-
lective parameter synchronization, as Figures 4c and 4d show,
despite the achieved performance gain decreasing slightly with
the increase of cluster scale, SELMCAST always outperforms
Orpheus significantly. Take the instance when 𝑛 = 100 as
an example, compared to Orpheus, SELMCAST reduces the
average normalized completion time of synchronization from
about 1.67 to 1.02, and from about 1.67 to 1.32, for L3 and
L7 multicast, respectively, by using bandwidth-aware receiver

0.1 0.2 0.3 0.4 0.5

p/n

1.0

1.2

1.4

1.6

1.8

C
om

p
le

ti
on

T
im

e
(N

o
rm

a
li
ze

d
) L3 Multicast

SelMcast

Orpheus

Optimal

(a) Completion time (L3)

0.1 0.2 0.3 0.4 0.5

p/n

1.4

1.6

1.8

2.0

C
om

p
le

ti
on

T
im

e
(N

o
rm

a
li
ze

d
) L7 Multicast

SelMcast

Orpheus

Optimal

(b) Completion time (L7)

Fig. 5: [BSP] SELMCAST achieves consistent normalized
completion times when 𝑝 increases, while the results of Or-
pheus decrease to approach 1.5, for both L3 and L7 multicast.

Orpheus SelMcast Optimal

0.30

0.32

0.34

0.36

0.38

0.40

A
v
g.

M
u

lt
ic

as
t

S
ca

le

L3 Multicast (µ = 1
p
)

Fig. 6: [BSP] When 𝜇 = 1
𝑝

, SELMCAST would select about
33% more receivers per worker than Orpheus for L3 multicast.

selection. To understand the impact of 𝑝/𝑛 on the selection,
we vary its value from 0.1 to 0.5. As Figure 5 shows, although
the average normalized completion time achieved by Orpheus
drops first, it finally approximates about 1.5 for both L3 and L7
multicast. As a comparison, both SELMCAST and the Optimal
are able to achieve consistently high performances.

3) Number of Receivers: As for the average number of
finally selected receivers, SELMCAST outperforms Orpheus
about 1.3× on selecting receivers for L7 multicast (Figure 4f);
while all schemes would select exactly 𝑝 receivers to meet
the requirements thus yielding no performance gains when
L3 multicast is employed (Figure 4e). It is reasonable, since
in the case of L3 multicast, network congestions generally
occur at egresses hence there is no more worker with sufficient
bandwidth to select. To verify this, we return the tests by
reducing the value of 𝜇 from 1 to 1

𝑝
, in which ingresses

would be the bottleneck as well. As expected, compared
with Orpheus, about 33% more receivers are selected by
SELMCAST in this instance (Figures 6).

Noteworthily, in all these tests, the results of SELMCAST
and Optimal almost overlap, implying that SELMCAST is able
to achieve near-optimal receiver selections for both L3 and L7
multicast very efficiently.

C. Performance for SSP Training

Different from BSP training, when workers are conducting
heterogeneous distributed training with SSP, multicast requests
are likely to appear one after another. Quite different from
the case of BSP training, when the L7-based implementation
is employed, for each multicast task, the communication
bottlenecks mainly occur at the ingress, and SELMCAST
would select as few receivers as possible to accelerate the
completion. Accordingly, we mainly look into the performance
of SELMCAST under L3-based multicast for SSP training.

9

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

0.5

0.6

0.7

0.8

A
vg

.
N

P
U

U
ti

liz
at

io
n

LSTM

0.5

0.6

0.7

0.8
Transformer

0.5

0.6

0.7

0.8
ResNet-50

SelMcast Orpheus

0.4

0.6

0.8

1.0

A
vg

.
M

u
lt

ic
as

t
S

ca
le

SelMcast Orpheus

0.4

0.6

0.8

1.0

SelMcast Orpheus

0.4

0.6

0.8

1.0

Fig. 7: [SSP] Compared with Orpheus, SELMCAST not only
significantly enlarges the scale of multicast but also increases
the utilization of computation resources.

1) Case study: Figure 7 shows the details of both the NPU
utilization and average multicast tasks of the tested instance.
Obviously, SELMCAST shows significant performance upon
Orpheus in all these three training scenarios—For the training
of LSTM, Transformer, and ResNet-50 models, it not only
enlarges the average normalized scale of multicast from 0.3 to
0.55, but also improves the average utilization of computation
resources from about 0.63, 0.65, and 0.64 to about 0.68,
0.70, and 0.70, respectively. It is worth noting that, in the
cases of training the models of Transformer and ResNet-
50, the normalized scale of multicast scheduled by Orpheus
might be larger than the default value of 0.3 in some cases.
This is mainly due to the experiment settings—A worker is
required to multicast its local result to another receiver if
it has not done this in the last 𝑘 rounds. As a result, the
number of receivers for a multicast might be larger than 𝑝

even under the control of Orpheus. Results also imply that the
benefits of communications optimization depend on the type
and characteristics of training workloads.

2) Impacts of 𝑝/𝑛: To study the impact of the requirement
of 𝑝 on the performance of SELMCAST, we have re-conducted
the tests by increasing the value of 𝑝 from 0.05𝑛 to 0.4𝑛.
As Figure 8 shows, under the schedule of SELMCAST, with
the value of 𝑝/𝑛 increasing from 0.05 to 0.4, for these three
training workloads, the achieved average multicast scale has
grown from 0.37, 0.34, and 0.33, to 0.65, 0.64, and 0.61
respectively, while the average NPU utilization has decreased
from 0.75, 0.81, and 0.81, to 0.59, 0.59, and 0.59, respectively.
This is reasonable since larger multicast scales generally
trigger more traffic volumes, thus making the time cost of
communication increasing and leading to less NPU utilization.
Results also show that SELMCAST significantly outperforms
Orpheus in both metrics. For example, when 𝑝 = 0.4𝑛, it could
not only improve the average multicast scale more than 0.2𝑛
but also enlarge the average NPU utilization by about 0.05
at the same time, for all three instances. We also observed
that when 𝑝 ≤ 0.2𝑛, the increase of 𝑝 has little impact on
the performance of Orpheus. This is mainly due to the setting
of 𝑘 , which ensures that a worker must multicast its result
to another worker if it has not done this in its last 𝑘 rounds

0.6

0.7

A
vg

.
N

P
U

U
ti

liz
at

io
n

LSTM

0.6

0.7

0.8

Transformer

0.6

0.7

0.8

ResNet-50

0.1 0.2 0.3 0.4

0.2

0.4

0.6

A
vg

.
M

u
lt

ic
as

t
S

ca
le

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.1 0.2 0.3 0.4

0.2

0.4

0.6

p/n

SelMcast Orpheus

Fig. 8: [SSP] As expected, SELMCAST outperforms Orpheus
in all scenarios; and for both schemes, a higher value generally
leads to larger average multicast scales but lower average NPU
utilizations. Due to the setting of 𝑘 = 4, the results of Orpheus
roughly remain consistent when 𝑝/𝑛 ≤ 0.2.

0.5

0.6

0.7
A

vg
.

N
P

U
U

ti
liz

at
io

n

LSTM

0.5

0.6

0.7

Transformer

0.5

0.6

0.7

ResNet-50

10 20

0.4

0.6

A
vg

.
M

u
lt

ic
as

t
S

ca
le

10 20

0.4

0.6

10 20

0.4

0.6

k

SelMcast Orpheus

Fig. 9: [SSP] SELMCAST always outperforms Orpheus. For
both schemes, with the increase of 𝑘 , the increments of
achieved average NPU utilization and the degradation of
achieved average multicast scales decrease, approximating the
results of the case when the requirement of 𝑘 is removed.

of multicasting. Accordingly, when 𝑘 = 4, for each multicast
task, the average number of selected receivers would not be
less than 1/(𝑘 + 1) = 1/(1 + 4) = 0.2.

3) Impacts of 𝑘 and ssp: Figure 9 shows the results of both
SELMCAST and Orpheus in our scenario. Again, SELMCAST
always outperforms Orpheus. With the requirement of 𝑘 being
relaxed, their achieved average multicast scales achieved by
both SELMCAST and Orpheus decrease, while their achieved
NPU utilization would grow. However, both the increments
of achieved average NPU utilization and the degradation of
achieved average multicast scales decrease very fast at the
same time. As a result, their results would finally approximate
the case when the requirement of 𝑘 is totally removed; in that
case, SELMCAST has improved the average NPU utilization
from 0.64, 0.66, and 0.66, to 0.72, 0.77, and 0.73, respectively,
and the average multicast scale from 0.3 to 0.46, 0.44, and
0.42, respectively. These results indicate up to about 1.17× and
1.53× improvements, in terms of the achieved average NPU

10

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

0.4

0.6

0.8

A
vg

.
N

P
U

U
ti

liz
at

io
n

LSTM

0.4

0.6

0.8

Transformer

0.4

0.6

0.8
ResNet-50

0 5 10

0.4

0.6

A
vg

.
M

u
lt

ic
as

t
S

ca
le

0 5 10

0.4

0.6

0 5 10

0.3

0.4

0.5

0.6

ssp (k=ssp)

SelMcast Orpheus

Fig. 10: [SSP] The impacts of 𝑠𝑠𝑝 on the performance of
SELMCAST and Orpheus under the setting of 𝑘 = ssp are
similar to the impacts of 𝑘 when fixing ssp. SELMCAST
consistently achieves better performances.

0.2

0.4

0.6

0.8

A
vg

.
N

P
U

U
ti

liz
at

io
n

LSTM

0.2

0.4

0.6

0.8
Transformer

0.2

0.4

0.6

0.8
ResNet-50

0.0 0.25 0.5 0.75 1.0

0.4

0.6

0.8

1.0

A
vg

.
M

u
lt

ic
as

t
S

ca
le

0.0 0.25 0.5 0.75 1.0

0.4

0.6

0.8

1.0

0.0 0.25 0.5 0.75 1.0

0.4

0.6

0.8

1.0

η

Fig. 11: [SSP] Similar to the impact of parameter 𝑘 , by tuning
the value of 𝜂, SELMCAST can trade reduced NPU utilization
for a larger average multicast scale. The best setting of 𝜂

depends on the characteristics of the training workloads.

utilization and average multicast scale, respectively. Next, we
investigate the impacts of ssp on their performance, while
keeping the setting of 𝑘 = ssp. As Figure 10 shows, the results
are quite similar to what we obtain in Figure 9.

4) Impacts of 𝜂: To study the impacts of the setting of 𝜂

on the performance of SELMCAST, we range its value from
0.0 to 1.0 to re-conduct the tests. As Figure 11 indicates, with
the increase of 𝜂, SELMCAST could achieve larger average
multicast scales with the cost of lower NPU utilization; also,
when 𝜂 ≤ 0.5, its impact is inconspicuous. Thus, 𝜂 provides
a way to control SELMCAST to trade the NPU utilization
for larger average multicast scales. We argue that just letting
𝜂 = 0.75 yields a good default choice, as the average multicast
scale could be increased by about 66%, 66%, and 58%, while
the demotion of NPU utilization is less than 6%, 8%, and 7%,
respectively. However, the effects of the improved multicast
scale on the coverage speed of the model training highly
depend on both the model’s property and hyper-parameter
settings. Thus, the sweet spot of the setting of 𝜂 also calls
for case-by-case tuning and future study.

0.25

0.50

0.75

A
vg

.
N

P
U

U
ti

liz
at

io
n

LSTM

0.25

0.50

0.75

Transformer

0.00

0.25

0.50

0.75

ResNet-50

2−4 2−2 20 22 24

0.4

0.6

A
vg

.
M

u
lt

ic
as

t
S

ca
le

2−4 2−2 20 22 24

0.4

0.6

2−4 2−2 20 22 24

0.4

0.6

Model Size Rescaling Factor (Log Scale)

SelMcast Orpheus

Fig. 12: [SSP] Both the achieved NPU utilization and average
multicast scale would decrease with the data size increasing,
and SELMCAST could always achieve much larger average
multicast scales.

5) Impacts of data volume: Figure 12 shows the results
when the size of the data to multicast is rescaled by a
factor, ranging from 2−4 to 24. Basically, with the growth of
multicast data, the time cost of communication will dominate
the entire distributed training. As a result, both the achieved
NPU utilization and average multicast scale would decrease.
Although the gap between the achieved NPU utilization of
SELMCAST and Orpheus might become small, SELMCAST
could always achieve much larger average multicast scales.

6) Impacts of bandwidth variability: Last but not least, we
study the impacts of bandwidth variability on the performance
of SELMCAST by updating the bandwidth of each link every
Δ𝑇 using 𝑏 = 𝑏# (1− 𝛾) + 𝛾𝑏∗. Here, 𝑏# is randomly generated
at the beginning of the training and 𝑏∗ is randomly generated
each time, using the schemes described in Section IV-A. We
observe consistent results under the different Δ𝑇 settings and
Figure 13 shows results of varying 𝛾 from 0 to 1 while letting
Δ𝑇 = 100𝑚𝑠. The results of Orpheus show that, even selecting
𝑝 receivers randomly, the increase of 𝛾 would make the
achieved average NPU utilization climb up and then decline.
We argue that this is mainly caused by the interaction of the in-
volved random factors. A similar result of the NPU utilization
is observed for SELMCAST. By using Orpheus as the baseline,
Figure 13 also implies that SELMCAST’s improvements of
NPU utilization also decrease slowly with the increase of
𝛾. When 𝛾 = 1, the NPU utilization of SELMCAST might
be even slightly smaller than that of Orpheus. Nevertheless,
SELMCAST always achieves larger average multicast scales,
with an improvement of up to 67% in all scenarios. Again, the
change of SELMCAST’s achieved average multicast scale also
reflects the fluctuation of the achieved NPU utilization: i.e., a
smaller multicast scale leads to a higher NPU utilization.

Overall, all the above performance studies confirm that
for both BSP and SSP distributed training, SELMCAST can
achieve significantly better performances in terms of the
utilization of the computation resources and the scale of
scheduled multicast than the state-of-the-art solution Orpheus.

11

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

0.5

0.6

0.7

0.8

0.9

A
vg

.
N

P
U

U
ti

liz
at

io
n

LSTM

0.5

0.6

0.7

0.8

0.9
Transformer

0.5

0.6

0.7

0.8

0.9
ResNet-50

0.0 0.5 1.0
0.2

0.3

0.4

0.5

0.6

A
vg

.
M

u
lt

ic
as

t
S

ca
le

0.0 0.5 1.0
0.2

0.3

0.4

0.5

0.6

0.0 0.5 1.0
0.2

0.3

0.4

0.5

0.6

Level of Bandwidth Variation: γ

SelMcast Orpheus

Fig. 13: [SSP] Despite that the performance of SELMCAST
would get impacted by the variability of the bandwidth, it gen-
erally achieves larger average multicast scales than Orpheus.

V. RELATED WORK

Optimizing the synchronization of model parameters for
large-scale distributed training is a hot topic. The design
insight behind SELMCAST is to leverage the fact that a lot
of distributed training tasks can tolerate partial parameter
synchronization by design. In this section, we briefly overview
the recent proposals sharing this idea and refer the readers
to [2], [3] for comprehensive surveys.

P-Reduce [11] and Prague [12] achieve partial parameter
synchronization by executing the AllReduce collective opera-
tions on a selected set of workers. Similarly, Dutta et al. [13]
systematically analyze the benefits of partial synchronization
schemes named 𝑘-sync SGD, 𝑘-batch-sync SGD, 𝑘-async
SGD, and 𝑘-batch-async SGD, for parameter server based dis-
tributed training. And Hegedűs et al. [31] further study the per-
formance of Gossip-based partial synchronization. Different
from these works, SELMCAST mainly focuses on optimizing
peer-to-peer distributed machine learning, where each worker
would directly send its updated model to other workers [3].
Our design is motivated by the recent work of Orpheus [4],
which selects receivers randomly and is the follow-up work
of [14]. Recently, such peer-to-peer communication is also
employed by emerging distributed training frameworks built
upon serverless computing for model synchronization [22],
showing the increasing application scenarios of SELMCAST.
Notably, training workers in some systems might be networked
with heterogeneous links and parts of them do not have direct
connections. In these contexts, topology-aware communication
scheduling schemes are needed for efficient model synchro-
nization [10]. For example, works like [10], [32], [33] have
explored the idea of generating trees for the synchronization of
workers’ local results. Accordingly, how to achieve selectively
partial synchronizations in such heterogeneous environments
yields an interesting future direction.

Besides the level of participating workers, the idea of partial
synchronization could also be implemented at the level of
parameters. For example, papers like [34] show that only
delivering the top-𝑘 model gradients works well for many
training tasks; BTP finds that many algorithms are robust

to random gradient drops with bounded amounts [35]; and
DGT [36] further shows that providing different reliabilities
to gradients respecting their contributions would release the
power of partial synchronization more refined. Based on these
observations, more generally, Poco proposes to achieve selec-
tive partial completion for collective flows globally [27]. Dif-
ferently, schemes based on adaptive parameter freezing reduce
the traffic volume of model synchronization by dynamically
selecting the current stable parameters to not synchronize [37].
Obviously, by jointly leveraging the tasks’ tolerance of both
participating workers and parameters at the same time, it is
promising to improve the performance of parameter synchro-
nization further. We leave this as future work.

VI. CONCLUSION

This paper proposes SELMCAST, an expressive bandwidth-
aware multicast receiver selection algorithm to manage the
communication topology of parameter synchronization for
peer-to-peer intra-datacenter distributed learning. SELMCAST
is efficient and supports both L3 and L7 multicast-based
parameter synchronization by design. Extensive simulations
indicate that SELMCAST efficiently achieves near-optimal
performance for both BSP and SSP training.

REFERENCES

[1] S. Luo, P. Fan et al., “Fast parameter synchronization for distributed
learning with selective multicast,” in Proceedings of the IEEE ICC, 2022,
pp. 4775–4780.

[2] S. Shi, Z. Tang et al., “A quantitative survey of communication opti-
mizations in distributed deep learning,” IEEE Network, vol. 35, no. 3,
pp. 230–237, 2021.

[3] J. Verbraeken, M. Wolting et al., “A survey on distributed machine
learning,” ACM Computing Surveys, vol. 53, no. 2, Mar. 2020.

[4] P. Xie, J. K. Kim et al., “Orpheus: Efficient distributed machine learning
via system and algorithm co-design,” in Proceedings of the ACM SoCC,
2018, pp. 1–13.

[5] S. Luo, P. Fan et al., “Eliminating communication bottlenecks in cross-
device federated learning with in-network processing at the edge,” in
Proceedings of the IEEE ICC, 2022, pp. 4601–4606.

[6] S. Luo, X. Yu et al., “Releasing the power of in-network aggregation
with aggregator-aware routing optimization,” IEEE/ACM Transactions
on Networking, vol. 32, no. 5, pp. 4488–4502, 2024.

[7] A. Sapio, M. Canini et al., “Scaling distributed machine learning with
in-network aggregation,” in Proceedings of the 18th NSDI, Apr. 2021,
pp. 785–808.

[8] L. Luo, Y. Zhang et al., “Fast synchronization of model updates for
collaborative learning in micro-clouds,” in Proceedings of the IEEE 23rd
HPCC, 2021, pp. 831–836.

[9] S. Luo, R. Wang et al., “Efficient cross-cloud partial reduce with crew,”
IEEE Transactions on Parallel and Distributed Systems, vol. 35, no. 11,
pp. 2224–2238, 2024.

[10] S. Luo, R. Wang, and H. Xing, “Efficient inter-datacenter allreduce with
multiple trees,” IEEE Transactions on Network Science and Engineering,
vol. 11, no. 5, pp. 4793–4806, 2024.

[11] X. Miao, X. Nie et al., “Heterogeneity-aware distributed machine
learning training via partial reduce,” in Proceedings of SIGMOD. ACM,
Jun 2021, pp. 2262–2270.

[12] Q. Luo, J. He et al., “Prague: High-performance heterogeneity-aware
asynchronous decentralized training,” in Proceedings of the 25th ASP-
LOS. ACM, Mar 2020, pp. 401–416.

[13] S. Dutta, J. Wang, and G. Joshi, “Slow and stale gradients can win the
race,” IEEE Journal on Selected Areas in Information Theory, vol. 2,
no. 3, pp. 1012–1024, 2021.

[14] P. Xie, J. K. Kim et al., “Lighter-communication distributed machine
learning via sufficient factor broadcasting,” in Proceedings of the 32nd
Conference on Uncertainty in Artificial Intelligence (UAI), 2016, pp.
795–804.

12

Published in IEEE Transactions on Services Computing, 2025. DOI: 10.1109/TSC.2024.3506480 ©IEEE

[15] H. Li, A. Kadav et al., “Malt: Distributed data-parallelism for existing
ml applications,” in Proceedings of the 10th EuroSys. ACM, 2015.

[16] Q. Hu, Z. Ye et al., “Hydro: Surrogate-Based hyperparameter tuning
service in datacenters,” in Proceedings of the 17th OSDI. Boston, MA:
USENIX Association, Jul. 2023, pp. 757–777.

[17] L. Mai, G. Li et al., “KungFu: Making training in distributed machine
learning adaptive,” in Proceedings of the 14th OSDI. USENIX
Association, Nov. 2020, pp. 937–954.

[18] Q. Ho, J. Cipar et al., “More effective distributed ml via a stale
synchronous parallel parameter server,” in Proceedings of the 26th
International Conference on Neural Information Processing Systems
(NIPS). Red Hook, NY, USA: Curran Associates Inc., 2013, pp. 1223–
1231.

[19] H. Cui, J. Cipar et al., “Exploiting bounded staleness to speed up big
data analytics,” in Proceedings of the USENIX ATC. USA: USENIX
Association, 2014, pp. 37–48.

[20] S. Li, T. Ben-Nun et al., “Taming unbalanced training workloads in deep
learning with partial collective operations,” in Proceedings of the 25th
PPoPP. ACM, 2020, pp. 45–61.

[21] X. Zhao, A. An et al., “Dynamic stale synchronous parallel distributed
training for deep learning,” in Proceedings of the 39th IEEE ICDCS,
2019, pp. 1507–1517.

[22] A. Barrak, “The promise of serverless computing within peer-to-peer
architectures for distributed ml training,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, no. 21, pp. 23 383–23 384,
Mar. 2024.

[23] S. Luo, H. Yu et al., “Efficient file dissemination in data center networks
with priority-based adaptive multicast,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 6, pp. 1161–1175, Jun 2020.

[24] S. Luo, H. Xing, and P. Fan, “Softwarized ip multicast in the cloud,”
IEEE Network, vol. 35, no. 6, pp. 233–239, 2021.

[25] S. Li, O. Mangoubi et al., “Sync-switch: Hybrid parameter synchro-
nization for distributed deep learning,” in Proceedings of the 41st IEEE
ICDCS, 2021, pp. 528–538.

[26] S. Luo, H. Yu et al., “Towards practical and near-optimal coflow
scheduling for data center networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 11, pp. 3366–3380, 2016.

[27] S. Luo, P. Fan et al., “Selective coflow completion for time-sensitive
distributed applications with poco,” in Proceedings of the 49th ICPP,
2020.

[28] S. Luo, P. Fan et al., “Meeting coflow deadlines in data center networks
with policy-based selective completion,” IEEE/ACM Transactions on
Networking, vol. 31, no. 1, pp. 178–191, 2023.

[29] T. H. Cormen, C. E. Leiserson et al., Introduction to Algorithms, Third
Edition, 3rd ed., 2009.

[30] Lawrence L. Larmore, “The Partition Problem is NP–complete,” https://
web.cs.unlv.edu/larmore/Courses/CSC456/ssPart.pdf, [Online; accessed
10-Oct-2024].

[31] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized learning works:
An empirical comparison of gossip learning and federated learning,”
Journal of Parallel and Distributed Computing, vol. 148, pp. 109–124,
2021.

[32] Z. Zhang, C. Wu, and Z. Li, “Near-optimal topology-adaptive parameter
synchronization in distributed dnn training,” in IEEE INFOCOM 2021
- IEEE Conference on Computer Communications, 2021, pp. 1–10.

[33] Z. Li, W. Feng et al., “Accelerating geo-distributed machine learning
with network-aware adaptive tree and auxiliary route,” IEEE/ACM
Transactions on Networking, pp. 1–16, 2024.

[34] S. Shi, Q. Wang et al., “A distributed synchronous sgd algorithm with
global top-k sparsification for low bandwidth networks,” in Proceedings
of the 39th IEEE ICDCS, 2019, pp. 2238–2247.

[35] J. Xia, G. Zeng et al., “Rethinking transport layer design for distributed
machine learning,” in Proceedings of the 3rd Asia-Pacific Workshop on
Networking (APNet), 2019, pp. 22–28.

[36] H. Zhou, Z. Li et al., “DGT: A contribution-aware differential gradi-
ent transmission mechanism for distributed machine learning,” Future
Generation Computer Systems, vol. 121, pp. 35–47, 2021.

[37] C. Chen, H. Xu et al., “Synchronize only the immature parame-
ters: Communication-efficient federated learning by freezing parameters
adaptively,” IEEE Transactions on Parallel and Distributed Systems,
vol. 35, no. 7, pp. 1155–1173, 2024.

Shouxi Luo (Member, IEEE) received the bach-
elor’s degree in communication engineering and
Ph.D. degree in communication and information
systems from the University of Electronic Science
and Technology of China, China, in 2011 and 2016,
respectively. He is currently an Associate Professor
with Southwest Jiaotong University. His research
interests include data center networks, software-
defined networking, and networked systems.

Pingzhi Fan (Fellow, IEEE) received the M.Sc.
degree in computer science from Southwest Jiaotong
University, China, in 1987, and the Ph.D. degree in
electronic engineering from Hull University, U.K.,
in 1994. He is currently a Presidential Professor
with Southwest Jiaotong University. His research
interests include high mobility wireless communi-
cations, massive random-access techniques, etc. He
is a fellow of IEEE, IET, CIE, and CIC.

Ke Li received the B.S. degree in electronic and
information engineering from Sichuan University,
China, and the Ph.D. degree in communication and
information systems from the University of Elec-
tronic Science and Technology of China, China.
She is currently a Lecturer with Southwest Jiaotong
University. Her research interests include machine
learning, the Internet of Things, etc.

Huanlai Xing (Member, IEEE) received the B. Eng.
degree in communications engineering from South-
west Jiaotong University, China, in 2006, the
M. Eng. degree in electromagnetic fields and wave-
length technology from the Beijing University of
Posts and Telecommunications, China, in 2009, and
the Ph.D. degree in computer science from the
University of Nottingham, U.K., in 2013. Currently,
he is an Associate Professor with Southwest Jiaotong
University. His research interests include mobile
edge computing, evolutionary computation, etc.

Long Luo received the M.S. and Ph.D. in com-
munication and information systems from the Uni-
versity of Electronic Science and Technology of
China, China, in 2015 and 2020, respectively. She is
currently an Associate Professor with the University
of Electronic Science and Technology of China. Her
research interests include networking and distributed
systems, etc.

Hongfang Yu (Member, IEEE) received the Ph.D.
degree in communication and information systems
from the University of Electronic Science and Tech-
nology of China, China, in 2006. She is currently a
Professor with the University of Electronic Science
and Technology of China. Her research interests
include SDN/NFV, data center networks, networking
for AI systems, and network security, etc.

13

https://web.cs.unlv.edu/larmore/Courses/CSC456/ssPart.pdf
https://web.cs.unlv.edu/larmore/Courses/CSC456/ssPart.pdf

	Introduction
	Background and Motivation
	Distributed Data-Parallel Training
	BSP and SSP
	Drawback of State-of-the-art Solutions

	Selective Multicast
	Problem Analysis
	Math Formulation
	Hardness
	Insight

	Receiver Selections for BSP Training
	Basic Selection
	Pareto Improvement

	Receiver Selections for SSP Training
	Basic Selection
	Pareto Improvement

	Time Complexities of Proposed Algorithms

	Performance Evaluation
	Methodology
	Simulator and baselines
	Workloads and metrics

	Performance for BSP Training
	Efficiency
	Completion Time
	Number of Receivers

	Performance for SSP Training
	Case study
	Impacts of p/n
	Impacts of k and ssp
	Impacts of
	Impacts of data volume
	Impacts of bandwidth variability

	Related Work
	Conclusion
	References
	Biographies
	Shouxi Luo
	Pingzhi Fan
	Ke Li
	Huanlai Xing
	Long Luo
	Hongfang Yu

